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Abstract. The paper deals with computer vision and image processing methods applied to 
the task of corrosion damage search. A step-by-step algorithm is given for processing of 
the data from a chemical corrosion experiment on a metal surface: image preprocessing, 
image binarization and identification of object contours, and analysis of object 
characteristics. The application of the developed methods is exemplified by detection and 
recognition of corrosion damage on a steel specimen, pitting corrosion, and corrosion of 
an aluminum specimen. Furthermore, the mechanism of fractal analysis for corrosion 
cracking specimens was studied and fractal dimension was selected as characteristics of 
corrosion damage.  
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1. Introduction 
 
Metals and alloys are the key construction materials. In operation, they undergo corrosion due to chemical 
or electrochemical impact of the environment [1]. Corrosion is irreversible and can result in failure of 
various equipment items and metal structures; hence, it has to be identified at early stages. Furthermore, 
there is a need for quantitative estimation of corrosion damage and prediction of the danger of corrosion 
enhancement if no measures for improvement of corrosion protection are taken. Identification of the 
corrosion damage origin makes it possible to choose an appropriate protection method. 

The complexity of the problem being studied, complexity and diversity of the corrosion environment 
and corrosion conditions give impetus to development of a set of research and test methods that would 
help to answer the questions raised by theory and practice. 

Analysis of corrosion process (corrosion metal damage) development is based on corrosion indicators. 
All corrosion indicators are divided into quantitative and qualitative ones. 

The weight, volume, electrochemical, magnetometric, and other quantitative indicators are often used 
to study corrosion. The main drawback of these methods is that they are rather laborious and that they 
cannot be used outside laboratory conditions.  

Qualitative indicators do not provide comprehensive characterization of metal corrosion resistance but 
can serve to determine the nature and intensity of the corrosion process. Qualitative methods include visual 
examination of a metal specimen and monitoring of solution changes: optical microscopy [2], confocal 
microscopy [3], laser scanning microscopy, scanning reflectometry [4], etc. The complexity of quantitative 
description is the main drawback of visual methods. 

Corrosion is a complex and irregular process. In view of this, the morphology and geometry of a 
corroded surface vary even in studies with the same material and the same corrosion medium. Furthermore, 
analysis of corrosion by visual methods is complicated by the diversity of objects to be analyzed for 
corrosion estimation. Depending on the corrosive medium, corrosion process mechanism, and nature of 
additional impacts on the corroding metal that interacts with the environment, various corrosion processes 
are possible: cavitation corrosion, pitting corrosion, and stress corrosion cracking. The image analysis 
criteria for these processes will differ dramatically.  

Analysis of corrosion from photographic images is commonly based on the mesh method. The method 
involves visual determination of the type of corrosion damage on the specimens followed by measurement 
of the damaged area. 

However, a drawback of the mesh method is that it is difficult to describe a complex irregular structure, 
such as a corrosion crack, using this method. An efficient approach to this problem involves the use of 
fractals originally suggested by Mandelbrot in 1982 [5]. In [6] texture analysis (atmospheric corrosion in an 
ASTM A36 sample) by six characteristics of image was used (one of them is Hurst coefficient, which 
directly related to fractal dimension) for checking the state of surface corrosion. In case of abrupt changes 
in the corrosion rate, the method is not seen as efficient enough. Using of texture descriptor constructed by 
means of a cellular automaton from the pitting corrosion phenomenon was shown by Silva and Van Der 
Weeen [7]. Fractals are used in computer systems (data compression) [8], simulation of turbulent flows [9], 
description of complex surfaces [10], as well as in medicine and biology.  

It often happens that researchers who use fractal geometry or any other method for corrosion process 
analysis [11] fail to consider the fact that efficient application of analysis techniques requires preliminary 
image processing for noise reduction.  

Thus, development of a mathematical model for quantitative description of processes at interfaces in a 
broad range of testing media and metals and based on processing of corroded surface images would enable 
a more comprehensive application of visual monitoring methods and a deeper understanding of reaction 
mechanisms at phase boundaries. A computer vision system may serve as a system implementing this 
model. 
 

2. Computer Vision. Methods and Goals 
 
Intense research of computer vision started only in the late 1970s when computing systems exceeded a 
certain productivity threshold and it became possible to process large data arrays such as images. The 
following typical tasks of computer vision can be pinpointed: recognition, motion, scene reconstruction, 
and image reconstruction. The goal of computer vision is to generate scene descriptions based on images. 
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As concerns corrosion damage analysis, of most interest are problems such as recognition of corrosion 
effects on an image and motion, i.e., variation of corrosion effects in time, as well as their spatial changes 
(area, position of the center). 

Computer vision methods are widely used in studies of corrosion processes [12]. An example is a study 
of pitting corrosion of stainless steel in a FeCl3 solution [13]. Worth mentioning is a study of corrosion as a 
3D object, i.e., pit depth and shape determination by computer vision methods [14]. The application of 
wavelet analysis for studies of the geometric characteristics of pitting corrosion is also of interest [15]. In 
2002, Szunerits and Walt analyzed pitting corrosion images by means of wavelet analysis. A distinctive 
feature of the study was that a neuron network with horizontal, vertical, and diagonal directions was used. 
This approach gave good results [16]. The corrosion rate can be affected by controlling the process kinetics 
in the case of electrochemical corrosion. Determination of the optimal conditions from the kinetic model 
of the process [17-19] can provide control over the phenomenon. Yan Yun Hui presented another method 
for identification of metal corrosion damage based on the minimum distance between the recognition 
objects [20]. Computer vision reduces the general problem of “image understanding” to a much simpler 
and clearer problem of detection and identification or measurement, based on one or more images, of 
objects that satisfy some model description known a priori [21]. Thus, computer vision finds use in 
corrosion studies, but the development and application of models suitable for efficient solution of the 
problem of detection of appropriate objects largely remains on the border of science and art, i.e., it requires 
a special “know-how” or, in other words, knowledge in the subject matter reflecting a long-term experience 
of studies on specific problems. We will consider the methods and algorithms used in studies and 
identification of corrosion by computer vision methods. 
 

3. Image Processing Methods in the Analysis of Corrosion Development in Metals 
 
The following steps can be distinguished in the recognition of surface defects: 
•     Preliminary image processing 
•     Image binarization and isolation of object contours 
•     Analysis of object characteristics 

The images produced by various information systems are generally corrupted by noise. This 
complicates both their visual analysis by a human operator and automatic computer processing. Various 
image components can play the role of noise in some image processing tasks. For example, analysis of 
satellite images of the Earth surface might have the goal of determining the boundaries between its certain 
parts, i.e., forest and field, water and land, etc. In this task, some image details within the areas to be 
separated play the role of noise. 

Noise reduction is achieved by filtration. The application of filtration methods implies finding a rational 
computational procedure suitable for the optimal determination of the object and the “noise” 
corresponding to that object. The common practice is to solve this task using stochastic models of an 
image and noise, as well as statistical criteria of optimality. After all, even if the models and criteria match, it 
often happens that the optimal procedure cannot be found due to mathematical difficulties. The complexity 
of finding exact solutions gives rise to various approximation methods and procedures. 

At the next step after noise reduction, the input data are converted to the binary form and the input 
image pixels are separated into “signal” and “noise”, i.e., image binarization is performed. A binary image is 
a variety of digital raster images where each pixel can represent only one of two colors. The values of each 
pixel are arbitrarily coded as “0” or “1”. The value of “0” is arbitrarily referred to as background and “1” as 
foreground [22]. 

Binary images encode only the information about the object contour; their applicability is limited. In 
this work, attention is focused on such simple geometry characteristics as object area, position, and 
orientation. 

To form a binary image B based on the data of a gray-scale or color image I, an operation can be 
performed that selects some subset of image pixels as foreground pixels. These pixels are of interest for the 
image analysis task that we are performing. The remaining pixels are ignored as background ones. 

The pixel selection operation may be simple (e.g., a threshold operator that selects pixels with values 
from a preset brightness range or color subspace) or a complex classification algorithm.  

When it comes to the processing of binary images, morphological operations are important. 
Mathematical morphology operations were originally defined as operations on sets [23]. In binary 
morphology, a binary image is represented as an ordered set of black and white pixels. An image domain is 
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usually understood as some subset of image points. Each operation of binary morphology is some 
transformation of this set. A binary image I and some structural element S are used as source data. The 
operation also produces a binary image. Structural element S is some binary image (geometric shape). It can 
have an arbitrary size and arbitrary structure. 

The main operations of mathematical morphology are: dilation, erosion, closing and opening. 
Dilation is image convolution with some kernel that has a certain supporting point. Usually the kernel 

is a small square mask or disc with a reference point at the center. As a result of the operation, light areas in 
the image dilate. Erosion is an operation that is reverse to dilation. Closing is one of the most important 
operations in mathematical morphology. The result of the operation is equivalent to consecutive application 
of morphological dilation and erosion. This results in elimination of small dark areas present in the image, 
while the large ones remain almost unchanged. Opening eliminates all objects smaller than the structuring 
element, but meanwhile helps to avoid a strong decrease in object sizes. Opening is perfect for removal of 
lines thinner than the structuring element diameter. 

Thus, we obtain an image that explicitly specifies the object boundary. This set of pixels constituting 
the boundary is the object contour. For handling the contour thus obtained, it has to be represented 
(encoded) in some way. For example, the ends of the segments that constitute the contour can be specified. 
Yet another known method of contour encoding employs the Freeman Chain Code. Chain codes are used 
to represent a boundary as a sequence of straight segments with certain lengths and directions. This 
representation is based on a 4- or 8-connected lattice. The length of each segment is determined by the 
lattice resolution, while the directions are specified by the selected code. 

The next step involves analysis of characteristics of the objects found. Depending on the problem 
statement, researchers may be interested in the following information: filtration of contours along the 
perimeter, area, shape factor, and fractality.  

Thus, this section dealt with the main operations involved in the recognition operation. Below we 
consider various test tasks in which this approach was used. These tasks have been chosen as test data 
because they are investigated in laboratory of metal corrosion under natural conditions (Frumkin Institute 
of Physical Chemistry and Electrochemistry). 
 

4. Computer Vision Methods for a Local Corrosion Study 
 
4.1. Analysis of Aluminum Surface 
 
The first test task was to analyze the images of an aluminum surface under corrosion potential in a 0.1 M 
NaCl solution (pH 11) (Fig. 1). The task of searching objects in the image was reduced to detection of 
bubbles of hydrogen being evolved. The intensity of this evolution had to be determined from a series of 
pictures. 

 

 
 

Fig. 1. Snapshot from the test task on analysis of evolution of hydrogen bubbles after application of the 
“conversion to gray” operation. 
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Defects can be searched using various methods. In this case, the boundaries of the bubbles of interest 
blend with shadow, hence additional difficulties may appear if a SURF (Speeded Up Robust Features) 
detector is used. Furthermore, it is possible to convert test images to the binary form and separate objects 
into types: hydrogen bubble and background. Therefore, it was decided to study the ways of intelligent 
binarization with elements of template matching. 

In this task, color does not carry useful information, so the image is converted to gray scale in order to 
simplify the processing. 

The images to be analyzed are taken with a photographic camera, which inevitably causes a number of 
problems. As a rule, an image of an object does not match with those in the reference database of the 
image recognition system in terms of size and scale. Moreover, it is subject to various brightness aberrations. 
To suppress aberrations of this kind, the brightness histogram is equalized. Automatic determination of 
bubble parameters was required in the study, so it was decided to use the histogram equalization method 
where the image histogram obeys the uniform distribution law. The result of applying this algorithm to the 
test image is shown in Fig. 2. 

 

 
 

Fig. 2. Image after application of the histogram equalization method. 
 
After contrast improvement, the binarization procedure, i.e., the threshold separation operation that 

results in a binary image, can be started. The brightness of the pixels at bubble boundaries in Fig. 2 is nearly 
equal to that of the bubble shadow, hence binarization initially fails to discriminate bubbles from the 
background.  

In order to obtain information about a bubble and perform discrimination from shadows, we will use 
the tools of mathematical morphology.  

 

 
 

Fig. 3. Result of applying morphological operations. 
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After applying morphological operations, it just remains to find all dark regions confined within the 
white background – these will be the boundaries of the assumed bubbles (Fig. 3). 

Otsu’s method [24] was used for binarization as it does not require that the user should manually 
choose the binarization threshold. The idea of Otsu’s method is as follows: the image brightness range [0; L] 
(in this case, L = 255) is divided into two parts by a threshold value T. In Otsu’s algorithm, minimization of 
the intra-class variance is equivalent to maximization of the inter-class variance. 

 

 
 

Fig. 4. Operation of the detector of bubbles on a metal surface. 
 
Once all the required contours have been found, the bubble parameters need to be determined. Since 

the bubble contour is a circle, we will find the desired bubble radius and bubble center using the least-
squares method for a circle. Figure 4 shows an example of operation of a detector of bubbles on a metal 
surface. Identification of bubbles was successful, except for boundary regions for the bubbles that did not 
completely fit in the image. This resulted from a fault in the circle drawing algorithm. 
 
4.2. Analysis of Pitting Corrosion on a Steel Specimen. Test Task 
 
The next test task involved analysis of pitting corrosion on a steel specimen. In the case of pitting corrosion, 
some surface sites degrade to form pits, i.e., deep damaged sites. 

An algorithmic solution of this task nearly does not differ from that of the bubble formation search 
problem. The application of the algorithms described in section 3.1 to the current task is demonstrated in 
Fig. 5. Subsequently, we intend to apply this detector for analysis of a video sequence showing the 
development of pitting corrosion. 

  

 
 

Fig. 5. Operation of a detector of pitting corrosion on a metal surface. Color indicates the pits rated by 
size (blue are small, green are medium, and red are large pits). 
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4.3. Analysis of Stress Corrosion Cracking of a Steel Specimen. Test Task 
 
The third test task involved analysis of images obtained in the course of stress corrosion cracking (Fig. 6). 

 

 
 

Fig. 6. Specimens subjected to stress corrosion cracking. 
 
The preliminary image treatment involved noise reduction filters and filters for contrast and sharpness 

enhancement. In particular, sharpness was enhanced using the linear histogram stretching method that has 
the form: 
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where a and b are stretch factors; max and min are the maximum and minimum brightness values in the 
image, respectively; src and dst are the original and processed images, respectively. 

A median filter is used as the noise reduction filter. Owing to its characteristics and provided that an 
optimum aperture (filter window size) is selected, the median filter can keep sharp object boundaries while 
suppressing non-correlated and weakly correlated noise and small-size details. Under similar conditions, 
linear filtration algorithms inevitably “blur” sharp boundaries and contours of objects.  

After preliminary image processing, segmentation operations have to be performed, i.e., corrosion 
cracking has to be detected in the image obtained. The image has to be divided into areas within which a 
certain uniformity criterion is met. To do so, the binarization operation has to be performed. Again, the 
Otsu method was chosen for binarization.  

After binarization, mathematical morphology methods are used: the opening operation is applied, 
contours of the objects are found, insignificant ones (noise) are filtered out, and fractal analysis is applied to 
the remaining contours.  
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Fig. 7. Determination of a stress corrosion cracking boundary. 
 
The corrosion cracking was characterized by fractal analysis. A fractal is a geometriс shape that has a 

self-similarity property. To estimate corrosion spots, it was decided to compare their fractal dimensions. 
Dimension is the main characteristics of a fractal object. As a rule, fractal dimension is a non-negative 
fractional number that in some way reflects the geometric complexity of an object and is calculated as 
follows: 

  

 







 0

ln
lim ,

ln( )

N
D  (2) 

 
where D is the fractal dimension and Nε is the minimum number of sets with diameter ε required to cover 
the original set. The fractal dimension was calculated using the box-counting method. The idea of the 
algorithm is described below. 

The set of points in question is divided into pixels with size ε, and the number of pixels N containing at 
least one point from the set is calculated. 

For various ε, the corresponding N values are determined, i.e., data for plotting the N(ε) dependence 
are accumulated. 

The N(ε) plot is constructed in double logarithmic coordinates, its slope is determined and then used as 
the fractal dimension value. 

The fractal dimension was calculated for a steel specimen subjected to cracking. Figure 7 demonstrates 
a steel sample with the boundary found using the above methods. The corresponding calculated fractal 
dimension is shown in Fig. 8. 
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Fig. 8. Fractal dimension of a specimens subjected to stress corrosion cracking. 
 

5. Conclusion 
 
The main results are as follows:  

• computer vision and image processing methods were analyzed in application to corrosion damage 
search tasks;  

• an algorithm was developed for processing of data obtained in a chemical experiment of metal surface 
corrosion: image preprocessing, image binarization and identification of object contours, and analysis of 
object characteristics; 

• the described algorithms were used to detect and recognize the corrosion damage for a steel specimen, 
pitting corrosion, and corrosion of an aluminum specimen; 

• the mechanism of fractal analysis for the specimens subjected to corrosion cracking was studied and 
fractal dimension was selected as the characteristics of corrosion damage. 

If corrosion happens in several forms in the investigating area (corrosion, cracking, spalling), then our 
technique can’t distinguish them. Therefore in the following investigation we will offer a recognition 
method of corrosion type. 

The study was financially supported in part by the Russian Foundation for Basic Research (grant No. 
14-03-31509 mol_a, 15-07-01764 А). 
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