
 

 
 
Article 

 

Reference Stress Approach for Fracture Assessment of 
Extrados Circumferential Through-Wall Crack 
between Elbow and Pipe under Internal Pressure 
 
Jirapong Kasivitamnuay* and Pairod Singhatanadgid 
 

Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Phayathai Rd., 
Wangmai, Patumwan, Bangkok 10330, Thailand 
*E-mail: jirapong.K@chula.ac.th (Corresponding author) 
 
Abstract. The fracture assessment of a cracked component can provide technical support 
for an effective maintenance and a prevention of catastrophic accident. The present study 
applies the reference stress method to extend the J-integral solution from the finite element 
analysis for the Ramberg-Osgood stress-strain relationship to other types of stress-strain 
relationship. The problem in this study is an extrados circumferential through-wall crack at 
the interface between elbow and pipe subjected to internal pressure. The finite element 
results from the literature were analyzed to determine the optimized reference pressure. The 
fracture loads predicted by the reference-stress-based failure assessment curve which 
incorporated with the optimized reference pressure were compared with those predicted by 
the finite-element-based failure assessment curve. The failure load predicted from the 
reference-stress-based failure assessment curve deviated from that predicted from the finite-
element-based failure assessment curve within the range of -7% to 11%. 
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1. Introduction 
 
Piping system is an important structural component in industrial plants. When a crack-like flaw is detected in 
the component due to in-service loading or environmental effects, engineers have to take an appropriate 
action, e.g. continue operation, rerate an operating condition, or repair the component etc. A reasonable 
decision is important to avoid unnecessary maintenance cost and also to prevent a catastrophic accident. 
Integrity assessment can provide a technical support for this decision-making process. 

Standard practice for integrity assessment of a cracked component, e.g. API 579 [1], adopts the failure 
assessment diagram (FAD) approach. The information about a component at the present time, such as 
dimensions, material, crack, service load etc., is analyzed to determine the tendency of the component to fail 
by unstable fracture and plastic collapse in terms of specific parameters namely a toughness ratio (also called 
a stress intensity factor ratio) and a load ratio, respectively. By plotting these parameters on the FAD, the 
assessment point which represents the current status of the component is obtained. The assessment point is 
then compared with the failure assessment curve (FAC). If the assessment point lies below or on the FAC, 
the component is predicted to be safe and it is allowed to continue an operation for a certain period of time. 
However, if this is not the case, another action (e.g. repair, replace etc.) has to be carried out. 

Several options of the FAC are available for fracture assessment. The most accurate FAC is derived from 
J-integral solution. However, J solution depends not only on a particular cracked component and applied load 
but also on material deformation behavior, i.e. a true tensile stress-strain curve. The available solutions which 
are determined by finite element (FE) method were typically adopted the Ramberg-Osgood (RO) type stress-
strain relation [2]. If a material exhibits a deformation behavior which does not fit the RO equation, e.g. 
carbon steel [3], cold-worked stainless steel [4] etc., the application of RO-based J solutions without 
modifications may result in an inaccurate value of J and FAC. Recently, Kamaya [5] proposed a new J 
estimation scheme. But his approach utilized the J solution for a bi-linear stress-strain relation to estimate J 
for a specific type of stress-strain relation that is not fit RO equation. However, an application of this 
approach was limited by the availability of the J solution for a bi-linear stress-strain relation which was very 
limited. Ainsworth [6] observed that the dependence of a fully-plastic J solution on the strain hardening 
behavior can be minimized if the applied load is normalized by a reference load instead of a limit load. As a 
result, he obtained a J estimation equation and a reference stress (RS) based FAC, which are applicable to any 
types of stress-strain relation. The reference stress method has been further refined and successfully applied 
to various components in the piping system [7-18]. Furthermore, it has been incorporated into many standard 
procedures for structural integrity assessment. Therefore, it might be the most practical approach for an 
estimation of J and FAC. 

In a piping system, crack can initiate at any locations, e.g. straight pipe, elbow, interface between elbow 
and pipe etc. For a straight pipe, applications of the reference stress have been extensively done, e.g. axial 
through-wall crack under pressure [7, 13]; circumferential through-wall crack under combined tension and 
in-plane bending [8, 9, 13]; axial constant-depth surface crack under internal pressure [11, 13]; circumferential 
semielliptical surface crack under tension, in-plane bending and internal pressure [10, 12, 18]; circumferential 
constant-depth surface crack under tension, in-plane bending and internal pressure [13]. For an elbow, much 
less applications of the reference stress method have been reported, e.g. axial through-wall crack at crown 
under pressure and in-plane bending [14]; circumferential through-wall crack located in the center of the 
elbow at the intrados or at the extrados and subjected to in-plane bending [15]. Similarly, applications of the 
reference stress method to the crack problem at the interface between straight pipe and elbow were limited 
to the case of circumferential through-wall crack [16] and circumferential constant-depth surface crack under 
in-plane bending [17]. Recently, Jang et al. [19, 20] reported a completed set of the fracture mechanics 
parameters of circumferential through-wall crack at the interface between elbow and straight pipe under 
internal pressure. However, application of the reference stress method to this problem has not been reported. 

This study analyses the fully-plastic J solution published by Jang et al. [20] to determine the reference 
pressure for incorporating with the reference stress based FAC of an extrados circumferential through-wall 
cracked at the interface between straight pipe and elbow subjected to internal pressure. Section 2 derives the 
estimation equations of J and FAC by the reference stress method. Section 3 describes how to determine the 
reference pressure and reports the result. Section 4 evaluates the accuracy of RS-based FAC by comparing 
with FE-based FAC. 
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2. The Reference Stress Method 
 
This section presents a derivation of the estimation equations of J and FAC for the cracked component 
shown in Fig. 1 by the reference stress method. An elbow with a bend radius of R is joined to a straight pipe 
having the same cross-sectional dimension: a mean radius of rm and a wall thickness of t. At the interface, the 

extrados through-wall crack with a surface length of 2a (or crack angle 2) exists. The component is subjected 
to an internal pressure, p.   

Consider the following uniaxial stress-strain relation, i.e. the Ramberg-Osgood (RO) equation, 
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where Y is yield strain, Y is yield stress,  and n are strain hardening coefficient and exponent, respectively. 
The J solution can be estimated from the elastic component Je and the fully-plastic component Jp by the 

following equation, 

   e pJ J J  . (2) 

 

The elastic component of J (i.e. Je) can be expressed in terms of the stress intensity factor K by  
 

 

2

( )eff

e

K a
J

E

 
 




, (3) 

 

where E E   for the plane stress problem and 2(1 )E E     for the plane strain problem; aeff is an effective 

half-crack length, which is defined in Ref. [2] as 
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where  = 2 for the plane stress problem and  = 6 for the plane strain problem. The K solution for the 
present problem is taken from Ref. [19] and is summarized for completeness in appendix A. 

For the present problem, the fully-plastic component of J (i.e. Jp) for material obeying the RO equation 
can be written as [20] 
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where h1 is a plastic influence function which is tabulated in Table 2 of Ref. [20], and pL is a limit pressure. 
The limit pressure adopted in Eq. (5) is that used in case of a straight pipe with a circumferential through-
wall crack, which is expressed by 
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By changing the normalizing pressure from the limit pressure pL to the reference pressure pref, Eq. (5) can 
be rewritten as 
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If pref is chosen such that the dependence of *

1
h  on n is minimized, then the elastic component of J can be 

estimated from Eq. (7) by substituting  = 1 and n = 1 into the equation, which yields  
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Dividing Eq. (5) by Eq. (9) yields the ratio of fully-plastic and elastic components of J as 
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Define the reference stress ref  as 

 

 ref r YL  , (11) 

where Lr is a load ratio and is defined as 
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Rewriting Eq. (10) by using Eqs. (11) and (12) yields 
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From Eq. (1), the plastic component of the reference strain p

ref  at  ref   is  
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Substituting Eq. (14) into Eq. (13) and applying the relationship Y YE   , where E is the elastic 

modulus, yields 
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The reference strain ref  is composed of the elastic component e

ref  and plastic component p

ref , i.e. 
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Since 1e

ref ref E    and the J solution from Eq. (2), Eq. (16) can be written as 
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Reference [21] suggested that J estimation in the small-scale yielding range can be improved by adding of 

the plasticity correction term 2 2r ref refL E  . The RS-based J estimation equation is finally written as 
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The FAC is constructed by plotting the stress intensity factor ratio Kr versus the load ratio Lr, where Kr 
is defined as [21] 
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If the J solution from finite element method (i.e. Eqs. (3) and (5)) is substituted into Eq. (19), the FE- 
based FAC is obtained. If the J estimation equation by reference stress method (i.e. Eq. (18)) is used instead, 
the following RS-based FAC is obtained as 
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Fig. 1. Extrados through-wall crack at an interface between elbow and pipe under internal pressure. 
 

3. Reference Pressure 
 
This section summarizes the underlying data used in the determination of the reference pressure. After that, 
a procedure and criteria for determining the appropriate reference pressure are described. Lastly, the result is 
reported. 

 
3.1. Summary of the Data from the Literature 
 

Jang et al. [20] adopted the ABAQUS software in the FE analysis of the present problem and varied the ratio 
of pipe mean radius to wall thickness, rm/t; the ratio of elbow bend radius to pipe mean radius, R/rm; the 

normalized half crack angle, /; and the strain hardening exponent, n. The values of these parameters are 

rm/t = 5, 10, 20 and 30; R/rm = 2, 3, 4, 5 and 6; / = 0.125, 0.25, 0.3, 0.4 and 0.5; and n = 1, 3, 5, 7 and 10. 
Therefore, their analyses covered a total of 500 cases (or 100 geometries). 

Due to the symmetry of component’s geometries, the constructed FE model was only a half of an elbow 
with an attached straight pipe. The FE model used a 20-node isoparametric quadratic brick element with 
reduced integration. For all cases, five elements were used in the thickness direction and the number of 
elements and nodes of the models are 10,500 and 50,521, respectively. The internal pressure was applied as 
distributed load acting on the inner surface of the model. Effect of the end cap at the pipe’s ends was replaced 
by an equivalent tensile force. The effect of crack face pressure on the fracture parameters was included by 
applying 50% of the internal pressure to the crack face of a through-wall crack. 

The value of J was determined by the domain integral method. The representative value of J for each 
case was an average of J from several paths along the thickness direction excluding the values from the path 
at innermost and outermost surfaces. 

 
3.2. Determination of the Reference Pressure 
 

Assume the reference pressure is related to the limit pressure by  

R

Extrados crack

p

2a
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rmt

Cracked section
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where k is an undetermined function of component’s geometrical variables and crack angle. 
By substituting Eq. (21) into Eq. (8) yields 
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To find the reference pressure for each set of rm/t, R/rm and /, firstly, assume a specific value of k and 

calculated the parameter  defined as 
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which represents the sum square of the deviation. Next, repeat the calculation until the value of k that 

minimizes the parameter  is found. The values of k obtained from this process are listed in Table 1. It can 
be observed that the values of k are depended on the normalized geometrical parameters, i.e. rm/t, R/rm and 

/. Therefore, to facilitate an application of these results in the calculation of J or construction of FAC, the 
following equation is proposed to fit the tabulated results. 
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where  is a bending characteristic and is defined as 
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and the functions c1(), c2(), c3() and c4() are given by: 
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4 ( ) 0.412 0.524 0.652c       . (29) 

 

Equation (24) can be used to estimate the tabulated values of k in Table 1 with an accuracy within the 
range of -7.6 to 11.4%. 
 

4. Validation and Discussion 
 
This section investigates the accuracy of the obtained reference pressure by comparing the RS-based FAC 
with the FE-based FAC. The accuracy of the RS-based FAC is quantitatively expressed by the parameter [18] 
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r ref
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where Kr(ref) and Kr(FEM) as illustrated in Fig. 2 are the ordinates of the failure points on the FACs obtained by 
RS method and by FE method, respectively. The failure point is the intersection between a loading path and 
FAC. Note that the parameter Q can be interpreted as the ratio of failure pressure obtained from the RS-
based FAC to that obtained from the FE-based FAC. Thus, the value of Q less than unity implies that the 
RS-based FAC predicts a more conservative failure pressure than the FE-based FAC. The value of Q equal 
to unity represents the most accurate estimation of the FAC by the reference stress method. 
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Table 1. Optimized values of k for each elbow geometries and crack angles. 
 

Case Geometrical variables k  Case Geometrical variables k 

rm/t R/rm /  rm/t R/rm /  

1 5 2 0.125 0.733  51 20 2 0.125 0.636 

2    0.25 0.901  52    0.25 0.788 

3    0.3 0.999  53    0.3 0.889 

4    0.4 1.212  54    0.4 1.087 

5    0.5 1.334  55    0.5 1.261 

6  3 0.125 0.714  56  3 0.125 0.635 

7    0.25 0.905  57    0.25 0.814 

8    0.3 1.012  58    0.3 0.931 

9    0.4 1.222  59    0.4 1.157 

10    0.5 1.327  60    0.5 1.309 

11  4 0.125 0.708  61  4 0.125 0.637 

12    0.25 0.909  62    0.25 0.831 

13    0.3 1.019  63    0.3 0.954 

14    0.4 1.222  64    0.4 1.191 

15    0.5 1.321  65    0.5 1.319 

16  5 0.125 0.705  66  5 0.125 0.640 

17    0.25 0.912  67    0.25 0.843 

18    0.3 1.022  68    0.3 0.968 

19    0.4 1.222  69    0.4 1.208 

20    0.5 1.316  70    0.5 1.319 

21  6 0.125 0.703  71  6 0.125 0.643 

22    0.25 0.913  72    0.25 0.851 

23    0.3 1.024  73    0.3 0.978 

24    0.4 1.221  74    0.4 1.216 

25    0.5 1.314  75    0.5 1.316 

26 10 2 0.125 0.683  76 30 2 0.125 0.608 

27    0.25 0.850  77    0.25 0.737 

28    0.3 0.954  78    0.3 0.822 

29    0.4 1.168  79    0.4 0.980 

30    0.5 1.305  80    0.5 1.142 

31  3 0.125 0.675  81  3 0.125 0.611 

32    0.25 0.866  82    0.25 0.772 

33    0.3 0.980  83    0.3 0.876 

34    0.4 1.203  84    0.4 1.069 

35    0.5 1.319  85    0.5 1.247 

36  4 0.125 0.673  86  4 0.125 0.615 

37    0.25 0.876  87    0.25 0.794 

38    0.3 0.994  88    0.3 0.908 

39    0.4 1.214  89    0.4 1.124 

40    0.5 1.315  90    0.5 1.296 

41  5 0.125 0.674  91  5 0.125 0.619 

42    0.25 0.883  92    0.25 0.809 

43    0.3 1.001  93    0.3 0.929 

44    0.4 1.217  94    0.4 1.160 

45    0.5 1.311  95    0.5 1.311 

46  6 0.125 0.675  96  6 0.125 0.623 

47    0.25 0.887  97    0.25 0.820 

48    0.3 1.006  98    0.3 0.944 

49    0.4 1.218  99    0.4 1.183 

50    0.5 1.308  100    0.5 1.313 
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The loading path for a component subjected to only a primary load (i.e. a pressure, herein) is a straight 
line passing through the origin of the FAD. Since the slope of this path depends on component geometrical 
variables and the crack length. Therefore, for each FAC, various loading paths were analyzed and the 
maximum deviations on the conservative side (Q < 1) and unconservative side (Q > 1) were determined. 

 

Sr = p/pL

e
r

J
K

J


Loading path

( )r refK

( )r FEMK

FE-based FAC

RS-based FAC

 
 
Fig. 2. Illustration of fracture assessment by FAD approach and definition of the parameter for indicating 
the accuracy of the RS-based FAC. 

 
In practice, the FAC is a plot of Kr versus Sr, where Sr is also called the load ratio and it is defined as 

r LS p p . The relationship between both definitions of load ratio (Sr and Lr) can be derived by using Eq. 

(21) and it can be shown that Lr = kSr. The RS-based FAC is now depended on the component’s geometrical 

variables (i.e. rm/t, R/rm) and the normalized half crack angle (i.e. /) which is similar to the FE-based FAC. 
However, if the RS-based FAC is plotted against Lr, the curve will depend only on the material’s stress-strain 
relation. 

All verification cases adopted the RO stress-strain relation shown in Eq. (1). The chosen values of 

normalized geometrical parameters (i.e. rm/t, R/rm and /) and the strain hardening exponent n are 
summarized in Table 2. Group 1 investigates the effect of crack angle (or length) and strain hardening 
behavior (i.e. in terms of n). Group 2 investigates the effect of component geometry and strain hardening 
behavior.  

 
Table 2. Verification cases. 
 

Group 
Geometrical variables 

n 
rm/t R/rm / 

1 5 3 0.125, 0.25, 0.5 3, 5, 7, 10 
2 5, 10, 15, 20 2, 4, 6 0.3 3, 10 

 
The FACs from conditions in group 1 are shown in Fig. 3. The FACs from both approaches are 

comparable to each other. The condition n = 10 and / = 0.125 in Fig. 3(d) gives the highest deviation of 
the parameter Q from unity (i.e. Q = 0.91), which means that the RS-based FAC predicts a more conservative 
fracture load than that of the FE-based FAC by at most 9%. The FACs from conditions in group 2 are shown 
in Figs. 4 and 5 for n = 3 and 10, respectively. For all selected cases, the same level of agreement between the 
FACs by both approaches is obtained.   

Analyses of all remaining cases found that the values of the parameter Q were within the range of 0.89 
to 1.07. This finding implies that the RS-based FAC predicts a failure load more conservative than the FE-
based FAC by at most 11%, and more unconservative than the FE-based FAC by at most 7%. The average 
values of Q are 0.97, 0.95, 0.93 and 0.92 for n = 3, 5, 7 and 10, respectively. This finding implies that the RS-
based FAC tended to predict a conservative fracture load. Similar conclusions have been reported in Ref. [18] 
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for the problem of pipe with a semi-elliptical circumferential crack subjected to a bending moment. 
Therefore, the obtained reference pressure and the estimated failure assessment curve by the reference stress 
method have a sufficient accuracy for fracture assessment of the present cracked component. 
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Fig. 3. Comparison of reference stress based FAC with finite element based FAC for various strain 
hardening behaviors and crack angles. 
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Fig. 4. Comparison of reference stress based FAC with finite element based FAC for various component’s 

geometrical variables at a specific normalized half crack angle / = 0.3 and n = 3. 
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Fig. 5. Comparison of reference stress based FAC with finite element based FAC for various component’s 

geometrical variables at a specific normalized half crack length / = 0.3 and n = 10. 
 

5. Conclusion 
 
The reference stress approach was applied to the problem of extrados through-wall crack at the interface 
between elbow and straight pipe under internal pressure. The finite element results from the literature were 
analyzed and the expression of optimized reference pressure for incorporating with the reference stress 
method was determined. This expression was evaluated by comparing the FACs obtained by the reference 
stress method with those obtained by the finite element method for the Ramberg-Osgood type material. The 
cases for comparisons covered the ratios of pipe mean radius to wall thickness, rm/t, from 5 to 30; the ratios 

of elbow bend radius to pipe mean radius, R/rm, from 2 to 6; the normalized half crack angles, /, from 0.125 
to 0.5; and the strain hardening exponents n from 1 to 10. The RS-based FAC tended to predict a  
conservative fracture load as compared with those obtained from the FE-based FAC. Deviation of the RS-
based FAC solutions from those of the FE-based FAC was within the range of -7% to 11% 
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Appendix A: Stress intensity factor (K ) solution 
 
The following K solution is taken from Ref. [19]. 
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