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Abstract. This study uses Multivariate Adaptive Regression Spline (MARS) for 
determination Maximum Shear Modulus (Gmax) and Minimum Damping Ratio (ξmin) of 

synthetic reinforced soil. MARS employs confining pressure (, psi), rubber (r, %) and 

sand (s, %) as input variables. The output of the MARS is Gmax and min. The developed 

MARS gives equations for determination of Gmax and min. The results of MARS have been 
compared with the adaptive neuro-fuzzy inference system (ANFIS), multi-layer perceptron 
(MLP) and multiple regression analysis method (MRM). A sensitivity analysis has been also 

carried out to determine the effect of each input variable on Gmax and min. This study 

shows that the developed MARS is a robust model for prediction of Gmax and min. 
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1. Introduction 
 
Geotechnical engineers use synthetic reinforced soil for different purposes such as pavement structures, 
canal lining, erosion control, slope stabilization, piles, walls, liquefaction, etc [1-5]. So, the determination of 
different dynamic properties {Maximum Shear Modulus (Gmax) and Minimum Damping Ratio (ξmin)} of 
synthetic reinforced soil is an imperative task in geotechnical earthquake engineering. Laboratory 
determination of dynamic properties is a tedious and time consuming task [6]. Recently, Akbulut et al. [6] 
successfully used Adaptive Neuro-Fuzzy Inference (ANFIS) for determination of  Gmax and ξmin of synthetic 
reinforced soil. However, the developed ANFIS has low generalization capability. It also did not give 

equations for determination of Gmax and min.  
This article adopts an alternative method based on Multivariate Adaptive Regression Spline (MARS) for 

determination of Gmax and ξmin of synthetic reinforced soil. MARS is a non-parametric adaptive regression 
procedure  [7]. It can be considered as a generalisation of classification and regression trees (CART) [8]. It 
uses a lot of piecewise regression equations in the model. It has been successfully used for solving different 
problems in engineering [9-16]. This article uses the database collected by [6]. The results of MARS have 
been compared with the models developed by [6]. This study gives equations for prediction of Gmax and ξmin 

of synthetic reinforced soil. This paper is structured as follows: Section 2 describes the MARS model; 
Section 3 discusses the main results; finally Section 4 contains the conclusion of the paper. 
 

2. Details of MARS 
 
MARS divides the whole space of input variable into various sub-regions. It defines a different mathematical 
equation for each area. This equation relates each sub-region of input variable to the output variable. MARS 
uses the following two-sided truncated power functions as spline basis functions [17]. 
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where q is the power and t is knot. 
 
The final MARS model has the following form: 
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where y is the output variable, x is the input variable, a0 is  the coefficient of the constant term, M is the 

number of spline functions, and Bm and am is the m
th spline function and its coefficient [7] respectively. 

Confining pressure (, psi), rubber (r, %) and sand (s, %) have used as input of the MARS. The output of 

the MARS is Gmax and min. So,  srx ,,  and  minmax ,Gy   

 
MARS uses the following two steps: 
Forward Algorithm: Basis functions are introduced to define Eq. (3). Many basis functions are added in Eq. 

(3) to get better performance.  The developed MARS can show overfitting problem due to large number of 
basis functions.  

Backward Algorithm: For preventing overfitting, redundant basis functions are deleted from Eq. (3). 
MARS adopts Generalised Cross-Validation (GCV) to delete the redundant basis functions [18]. The 
expression of GCV is given below: 
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where N is the number of data and C(B) is a complexity penalty that increases with the number of basis 
function (BF) in the model and which is defined as: 

    dBBBC  1  (5) 

where d is a penalty for each BF included into the model and B is number of basis functions in Eq. (3). The 
details about d are given by [7]. 
 

3. Details of Present Analysis 
 

This article employs the above MARS for prediction of Gmax and min. The same training and testing dataset 
have been used as used by [6]. The data is normalized between 0 and one.  Table 1 shows the different 
statistical parameters of the dataset.  
 
Table 1. Statistical parameter of the dataset. 

 

Variable Mean 
Standard 
Deviation 

Skewness Kurtosis 

 16.66 10.52 0.23 1.50 

s 80.00 6.27 0 2.16 
r 10 6.27 0 2.16 

min 3.60 1.20 -0.01 1.97 

Gmax 192.96 63.57 -0.32 2.50 

 
A sensitivity analysis has been done to extract the cause and effect relationship between the inputs and 
outputs of the MARS model. The basic idea is that each input of the model is offset slightly and the 
corresponding change in the output is reported. The procedure has been taken from the work of [19]. 
According to [19], the sensitivity (S) of each input parameter has been calculated by the following formula: 
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where N is the number of data points. The analysis has been carried out on the trained model by varying 
each of input parameter, one at a time, at a constant rate of 30%. The program of MARS has been 
constructed by using MATLAB. 
 

4. Results and Discussion  
 
The performance of the developed MARS has been accessed in terms of Coefficient of Determination (R2). 
For good model, the value of R2 should be close to one. Figure 1 shows the flow chart of the MARS.  
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Fig 1. Flow chart of the MARS model. 
 
 

Figure 2 depicts the effect of number of basis function on the testing performance. It is observed from 
Fig. 2 that 12 basis functions give best performance for prediction of Gmax.  
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Fig 2. Effect of number basis function on the testing performance. 
 
 

So, 12 basis functions have been introduced in forward algorithm. However, 5 basis functions have been 
deleted in backward algorithm. So, the final MARS model includes 7 basis functions. The expression of the 
final MARS model is given below (by putting y=Gmax, a0=0.174 and M=7 in Eq. (3)): 
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The expression of Bm and corresponding coefficients (am) is given in Table 2. 
 
 



DOI:10.4186/ej.2012.16.5.69 

 
ENGINEERING JOURNAL Volume 16 Issue 5, ISSN 0125-8281 (http://www.engj.org/)                                                        73 

Table 2. Basis functions and their corresponding coefficient (am) for Gmax. 
 

Basis Functions Equation Coefficient (am) 

B1(x)  0343.0,0max r  0.761 

B2(x)  r0343.0,0max  -1.547 

B3(x)  059.0,0max  4.749 

B4(x)  545.0,0max s  1.498 

B5(x)  s545.0,0max  -0.334 

B6(x)    sxB  545.0,0max4  10.897 

B7(x)    245.0,0max*059.0,0max  s  -4.729 

 
The above Eq. (7) has been adopted for determination of the performance of training and testing dataset. 

Figure 3 illustrates the performance of the training dataset. As far as the MARS model training is concerned, 
the developed MARS has successfully captured the input and output relationship. The performance of 
testing dataset has been shown in Fig. 4. 
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Fig. 3. Performance of the training dataset for Gmax.  
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Fig. 4. Performance of the testing dataset for Gmax. 
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It is observed from Figs. 3 and 4 that the value of R2 is close to one. Therefore, the developed MARS 
shows good predictive ability for prediction of Gmax. 

It is clear from Fig. 2 that 10 basis functions give best performance for prediction of min. So, 10 basis 
functions have been introduced in forward algorithm. However, the final MARS model contains 6 basis 
functions. So, 4 basis functions have been deleted in backward algorithm. The expression of the final MARS 

model is given below (by putting y=min, a0=0.189 and M=6 in Eq. (3)): Table 3 summarizes the expression 
of Bm and corresponding coefficients (am).  
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Table 3. Basis functions and their corresponding coefficient (am) formin. 
 

Basis Functions Equation Coefficient(am) 

B1(x)  0343.0,0max r  0.545 

B2(x)  059.0,0max  2.864 

B3(x)  545.0,0max s  1.093 

B4(x)  s545.0,0max  -0.311 

B5(x)    283.0,0max*3 xB  7.235 

B6(x)    245.0,0max*059.0,0max  s  -3.310 

 
 

The performance of training and testing dataset has been determined by using Eq. (8). Figures 5 and 6 
depict the performance of training and testing dataset respectively. It is clear from Figs. 5 and 6 that the 

value of R2 is close to one. Therefore, the developed MARS has ability for predicting min. 
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Fig. 5. Performance of the training dataset for min. 
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Fig. 6. Performance of the testing dataset for min. 
 
 

The results of MARS have been compared with ANFIS, multi-layer perceptron (MLP) and multiple 
regression analysis method (MRM) developed by [6]. The comparison has been carried out in terms of R2 

Figure 7 illustrates the bar chart of R2 values of the different model.  

 
Fig. 7. Bar chart of R2 for the different models. 
 
 

The value of R2 of ANFIS, MLP and MRM is given by [6]. It is observed from Fig. 7 that the 
performance of MARS and ANFIS is almost same. However, the developed MARS outperforms the MLP 

and MRM models. The developed MARS gives Eq. (6) and (7) for prediction of Gmax and min. But, the 

developed ANFIS and MLP did not give any equation for prediction of Gmax andmin. 
Figure 8 shows the results of sensitivity analysis. It is clear from Fig. 8 that r has maximum effect on 

Gmax and min. 
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Fig 8. Sensitivity analysis of the input parameters. 
 
 

5. Conclusion 
 

This article successfully adopted MARS for prediction of Gmax and min of synthetic reinforced soil. The 
developed MARS has shown good predictive abilities. The performance of MARS is comparable to ANFIS. 
However, the developed MARS outperforms the MLP and MRM models. Geotechnical engineers can use 

the developed equations for determining Gmax and min. Sensitivity analysis shows that r has maximum 

impact on Gmax and min.  This study shows that MARS can be used as a robust tool for solving different 
problems in geotechnical earthquake engineering. 
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