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Abstract. Input shaping convolutes the reference signal with a sequence of impulses, whose 
amplitudes and timings are designed to produce a shaped reference that avoids exciting 
lightly-damped modes to reduce residual vibration from a quick movement. The input 
shaper can be made robust to uncertain mode parameters by adding more impulses, which 
delays the reference signal, resulting in longer move time. Instead of using more impulses, 
in this paper, a feedforward-feedback control system, based on the quantitative feedback 
theory, is placed in the loop to match the closed-loop system, with uncertain plant, to a 
known reference model. The feedforward-feedback system handles the uncertainty, so the 
input shaper, placed outside the loop, needs not be robust. The closed-loop system 
emphasizes on selected frequencies and reduces the cost of feedback. It is shown that the 
proposed feedforward-feedback system is less conservative than the pure-feedback system. 
Other sources of vibration such as external disturbances and noise can be handled by the 
feedforward-feedback system as well. Simulation shows that the proposed technique can 
withstand large plant uncertainty with fast move time when compared to traditional robust 
input shaper. 
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1. Introduction 
 
The input shaper is viewed as a filter that reduces the vibrations induced by external sources such as reference 
input, disturbances, and noise. Since vibration reduction is not the only objective of the control system, the 
input shaper is often implemented together with feedback controller.  

In general, there are two configurations; either the input shaper is placed outside or inside the feedback 
loop. Although placing the input shaper inside the loop can reduce vibrations from all external sources, there 
are some limitations for the design of the feedback controller due to additional time delay introduced by the 
input shaper. Meanwhile, placing the input shaper outside the loop only reduces vibration from the reference 
input but without additional limitations. 

Several researchers have investigated placing the input shaper outside the loop together with different 
types of feedback controller: iterative learning controller by Zolfagharian et al. in [1]; genetic algorithm by 
Aldebrez et al. in [2]; sliding mode controller by Pai in [3] and by Hu et al. in [4]; PD controller by Huey and 
Singhose in [5] and by Kenison and Singhose in [6]; and adaptive controller by Dharne and Jayasuriya in [7]. 
A feedback controller based on quantitative feedback theory (QFT) is used in this paper. 

QFT was introduced by Horowitz in [8] as a loop shaping control design technique that extends the 
work of Bode in [9]. It is so-called quantitative because various specifications such as tracking, disturbances 
and noise rejections, relative stability, and model matching are graphically displayed on the Nichols chart for 
the designer to make trade-off among them. At a specific frequency, instead of being viewed as a point on 
the Nichols chart, the plant is now viewed as a template, which is an area containing possible plant values 
due to uncertainties. The loop shaping process results in a feedback controller and a prefilter that ensure the 
closed-loop system meet all specifications for all uncertain plants. Model matching capability of the QFT is 
what emphasized in this paper. 

Several researchers have used feedback control system to match the closed-loop system to a reference 
model. The input shaper is then designed using vibratory mode parameters of the reference model. Pai in 
[10] used ADALINE neural network to enforce both sliding and reaching phases in a sliding mode control 
to make model matching error go to zero despite parameter variations and external disturbance. Only 
simulation was presented, and the complexity and global convergence of this time-domain algorithm may 
pose implementation problem. Other closely related works to [10] that used sliding mode controller for 
reference model matching are [11]-[16]. Yu and Chang in [17] used a PI controller to match the closed-loop 
system of a piezoelectric nano-positioner to a reference model, while Yu and Chang in [18] used a P controller 
to match the closed-loop system of a dual solenoid actuator to a reference model. Both works used zero-
vibration input shaper. However, the design of the PI or P controller was heuristic; and there was no mention 
about attainable specifications or allowable uncertainty. Dharne and Jayasuriya in [7] used a direct model 
reference adaptive control to match the closed-loop system to a reference model. The technique may 
therefore be susceptible to insufficiently persistent excitation of input, global instability, and divergence of 
adapted parameters.     

In this paper, instead of using signal-based reference model matching as in other previous works, 
system-based method is considered. Closeness between the reference model and the closed-loop system from 
reference input to output is formulated as a frequency-domain specification. The plant is allowed to be 
uncertain. This uncertainty together with the specification can be converted to bounds on the Nichols chart. 
A proposed feedforward-feedback controller, which is shown to be less conservative than the pure-feedback 
controller, is designed to loop-shape the open-loop system to satisfy all bounds. Simulation on a benchmark 
mass-damper-spring plant, with 35% uncertainties in all plant parameters, shows that the closed-loop system 
matches the reference model well within the pre-specified specification. A zero-vibration (ZV) input shaper 
is placed outside the loop and is designed from the vibratory mode parameters of the reference model. The 
responses to step reference inputs, for all uncertain plants, show significant vibration reduction using the 
proposed system compared to using the open-loop ZV and robust input shapers. Vibrations induced by 
disturbances and noise are also reduced by the system.  

The materials and methods section contains the following content. First are details of robust input 
shaping. Details include finding amplitudes and time locations of the impulses in the input shaper, how robust 
input shaper is obtained, and how to apply the input shaper as an open-loop system. Second is the proposed 
model reference input shaping system, consisting of a ZV input shaper and a feedforward-feedback 
quantitative controller. In this section, model matching bounds are derived for both feedforward-feedback 
and pure-feedback cases. The results section contains a simulation on a benchmark mass-damper-spring plant. 



DOI:10.4186/ej.2017.21.1.207 

ENGINEERING JOURNAL Volume 21 Issue 1, ISSN 0125-8281 (http://www.engj.org/) 209 

The control design steps are demonstrated, followed by the simulation results. The results section is followed 
by discussion and conclusion sections. 
 

2. Materials and Methods 
 
2.1. Robust Input Shaping 
 
Input shaping was originated by Singer and Seering in [19] based on the Posicast control of Smith in [20] and 
Tallman and Smith in [21]. Excellent review of the input shaping technique can be found in [22]. 

The technique includes finding amplitudes and time locations of the impulses in an impulse train by 
solving: 1) residual vibration constraint; 2) robustness constraint; 3) impulse amplitude constraint; and 4) time 
optimality constraint. The resulting impulse train is then convoluted with the reference input resulting in a 
shaped reference input that 1) avoids exciting the system vibratory modes for minimal residual vibration; 2) 
is robust against vibratory mode parameter variations; 3) has the same final value as that of the original 
reference input; and 4) arrives at the final value in the shortest time. 

To formulate the residual vibration constraint, consider a unit, single-impulse response of a one DOF, 

lightly-damped system, after an applied time 
1,t  given by 
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where 
1y  is the response, 

n  is the natural frequency,   is damping ratio, and m  is mass. The amplitude of 

the sine function at the applied time 1t t  is given by 
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Next, consider an n-impulses response, after the applied time of the thn  impulse, ,nt  given by 
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where 
iA  is the thi  impulse magnitude and 

it  is the applied time of the thi  impulse. Using a trigonometric 

identity, the sum of n impulse responses at 
nt t  is given by 
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where C and S are given by 

    2

1

, cos 1 ,n i

n
t

n i n i

i

C Ae t
   



    

    2

1

, sin 1 .n i

n
t

n i n i

i

S Ae t
   



    

The ratio between A  and A

 is a non-dimensional quantity so-called percentage vibration, which gives the 

ratio of vibration with input shaping to that without input shaping. The residual vibration constraint is then 
given by 
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where tolV  is a desired percentage of vibration, normally set to zero. 

The robustness constraint is found from setting derivatives of  , ,nV    with respect to its variables, 

to zero, as given by 
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This constraint reduces the sensitivity of the percentage vibration to uncertainties in n  and .  

The impulse amplitude constraint is simply a requirement, given by 
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to ensure that the shaped reference input has the same final value as that of the original reference input. 
Because the residual vibration constraint contains sine and cosine terms, there will be infinite number 

of solutions. The time optimality constraint is simply to find the shortest ,nt  as given by 

  min .nt  (4) 

By solving constraints (1), (3), and (4), and setting 0,tolV   one obtains a so-called zero vibration (ZV) 

input shaping with two impulses whose magnitudes and time locations are given by 
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where K is given by 
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In addition, if the robustness constraint (2) is also included, one obtains a so-called zero vibration derivative 
(ZVD) input shaping with three impulses whose magnitudes and time locations are given by 
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If the robustness constraint also includes second-order derivatives onward, the resulting input shapers 
will be with four or more impulses and are so-called ZVDD, ZVDDD, and so on. More impulses means 
more robustness but with longer time to the final reference value.  

Because of their simplicity, the ZV and ZVD input shapers will be compared with the proposed 
technique in this paper. Other robust input shaping techniques are the extra-insensitive (EI) by Singhose et 
al. in [23] and the specified-insensitivity (SI) by Singer and Seering in [24]. In EI, multi-humped vibration 
sensitivity curve, which is the plot of the percentage vibration versus natural frequency variation, is first 
specified. Then, the robustness constraint (2) is replaced by constraints on the desired percentage vibration 
and the zero slopes at the top of the humps. In SI, the residual vibration constraint (1) becomes a set of 

constraints, each for a specified frequency. A specified 
tolV  is applied across the specified frequency range. It 

was shown that both EI and SI techniques are less sensitive to parameter variation than the family of the 
ZVD technique when the same shaper duration is considered. However, they are more complicated. 

Figure 1 shows the input shaper applied to an uncertain plant, where r  is the original reference input, 
r  is the shaped reference input, and y  is the output. 

 

 
 
Fig. 1. Application of the input shaper to an uncertain plant. 

 
2.2. Model Reference Input Shaping with Quantitative Feedback Controller 
 
Even though the robust input shapers, such as the ZVD, can handle uncertainties in parameter variations, 
they come at a price of having longer time to reach final reference set-point. From (6), the shaped reference 

input of the ZVD reaches its final value at 2

2 2 / 1 ,nt     
 

 which is twice that of the ZV.  

For shorter move time, in this section, we investigate using feedback control system together with the 
non-robust ZV input shaper. The job of handling the parameter uncertainties is delegated to the feedback 
control system. The input shaper is placed outside of the loop to reduce vibration induced by reference input, 
while the feedback system makes the uncertain closed-loop system match a reference model and reduces 
vibration induced by disturbances and noise. Two types of quantitative control systems, which use pure 
feedback and feedforward-feedback, are considered. 
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Consider a closed-loop system in Fig. 2, whose, in addition to those in Fig. 1, , , , ,I Oe d u d  and n  are 

tracking error, plant-input disturbance, control input, plant-output disturbance, and noise, respectively. The 
quantitative feedback control system consists of a feedback controller G  and a prefilter .F  They will be 
designed so that the mapping from r to y matches a reference model ,M  given by 
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where 
m  is a small number that determines how close the uncertain closed-loop system be to the exact 

reference model. Compared to that in Fig. 1, the quantitative feedback control system G  and F  helps the 
input shaper in handling the uncertainty from the plant. 

 
 
Fig. 2. Model reference input shaping with quantitative feedback controller. 
 

When F M  and 0 ,M P  where 
0P  is the nominal plant, the frequency-domain specification above 

becomes that given by 
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Further derivation leads to 1

01 / / ,mG P P P    which shows that, on the complex plane, G  must be 

shaped so that 1 /G P  is greater than 1

0 /m P P   as shown in Fig. 3. 

 
Fig. 3. Allowable region for   .G j  

 
2.3. Model Reference Input Shaping with Quantitative Feedforward-Feedback Controller 
 
In this section, we investigate using feedforward together with feedback controllers. The underlying principle 
is simply to use feedforward with what we know and to use feedback with what we do not. Information on 
nominal plant and measured disturbances and noise can be used to design feedforward controller. The 
feedback contribution can be reduced resulting in lower cost of feedback.  

Consider a closed-loop system in Fig. 4 with a feedforward controller .rG  For matching with the 

reference model ,M  the frequency-domain specification is given by 
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Fig. 4. Model reference input shaping with quantitative feedforward-feedback controller. 
 

When ,F M  
0 ,M P  and 

0/ ,rG M P  the specification above becomes that given by 
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Comparing (9) to (7), we now have  1

01/ / ,mG P P P P     which shows that, for frequencies where the 

uncertain plant does not deviate from the nominal plant much, we will have larger allowable region for 

  ,G j  that is, the specification (9) is then less conservative than (7). 

 

3. Results 
 
In this section, the simulation results on implementing the proposed technique to a benchmark mass-damper-
spring are presented.  
 
3.1. Simulation Example 
 
An m-c-k benchmark problem, shown in Fig. 5, will be used as the uncertain plant to compare the system in 
Fig. 4 to those in Fig. 1 and Fig. 2. This benchmark problem was used by Cole and Wongratanaphisan in [25]. 

The transfer function from 
1x  to 

2x  is given by 

 2
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whose nominal parameter values are 4 -21 kg, 1.5791 10 kg.s ,m k    and -125.1327 kg.s ,c   corresponding 

to a natural frequency 140 rad.sn    and a damping ratio 0.1.   

 
 
Fig. 5. A benchmark m-c-k system. 
 

Assume 35% uncertainties in each parameter, that is,  0.65,1.35 ,m   16.336, 33.929 ,c  and 

  41.0264, 2.1318 10 ,k    and select working frequencies   -110, 50, 100, 120, 150, 200, 500 rad.s ,   which 

sufficiently cover low, high, as well as the natural frequency of the system. The control system will be designed 
with specifications (7) and (9) for all uncertain plants in the uncertain regions. 
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For the feedback system in Fig. 2, the specification (7) with 1G   and 20 dB 0.1m     is converted 

to bounds on the Nichols chart as shown in Fig. 6(Top). Each bound represents boundary of the allowable 

region, shown in Fig. 3, for 
0 0 ,L GP  for all plant uncertainties and for a specified frequency. Fig. 6(Top) 

also contains the original shape of 
0 0.L GP  To be in the allowable region, 

0L  must be shaped to be above 

or outside its bounds for all working frequencies. 

Figure 6(Middle) contains the shaped 
0.L  Because the plant is of type 0, to obtain zero step input 

tracking, we first appended an integrator 1/ .s  Then a real zero  / 7.661 1s   was added to increase the 

overall phase of the system. A constant gain of 234.4 was then added to shift the shape up above its bounds. 
Note that we deliberately violated the bounds at 120 and 150 rad.s-1 to avoid too high gains around the natural 

frequency. Finally, a complex pole   2 21/ / 3439 2 0.565 / 3439 1s s   was added to have higher roll-off rate 

at high frequencies beyond 1000 rad.s-1 to avoid high-frequency noise. The overall feedback controller 
becomes that given by 
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For the feedforward-feedback system in Fig. 4, as mentioned before, the specification (9) is less 
conservative than (7) especially for frequencies where the uncertain plant does not deviate from the nominal 

plant much. With 20 dB 0.1m    , they were converted to bounds on the Nichols chart as shown in Fig. 

6(Bottom). The bounds for all frequencies, except those for 100 and 120 rad.s-1, are lower than those bounds 
of the feedback-only system, resulting in a less conservative controller G  with lower constant gain of 166.7, 
while other components of G  stay the same. Frequencies 100 and 120 rad.s-1 are where the uncertain plant 
does deviate from the nominal plant the most. 

Figure 7 contains Bode magnitude plots of the feedback controller (10) (in solid line) and feedforward-
feedback controller (in dashed line). The feedforward-feedback controller is less conservative and therefore 
has less cost of feedback than the feedback-only controller.  

Figure 8 only shows the Bode magnitude plots in the feedforward-feedback case. Figure 8(Above) 

displays the plots of the reference model 
0M P  in dashed line and of the closed-loop transfer functions 

   / / 1rY R PG PGF PG    in multiple solid lines. Each solid line represents the transfer function 

computed from each uncertain plant in the set. The feedback controller ,G  the prefilter ,F  and the 

feedforward controller 
rG  were designed to make the mapping /Y R  match the reference model M  

according to the specification (8) for working frequencies ranging from 10 to 500 rad.s-1. Figure 8(Below) 

shows the plots of the reference model 0M P  in dashed line and of the plant P  in multiple solid lines. It 

can be seen that without the closed-loop system, the uncertain plant can differ much from its nominal value. 

Since the input shaper was designed from the reference model 0M P , the deviation should adversely affect 

its performance in reducing the residual vibration as will be seen next. 
Several time-domain tracking results are presented in Fig. 9 using a sampling period of 0.001 second. 

The ZV input shaper is given by (5) and the ZVD input shaper is given by (6). Both were designed from the 

natural frequency n  and the damping ratio   of the nominal plant 0 .P  The model reference input shaping 

with quantitative feedback control system in Fig. 2 uses the ZV input shaper, the controller G  given by (10), 

and the prefilter 0.F P  The model reference input shaping with quantitative feedforward-feedback control 

system in Fig. 4 uses the ZV input shaper, the controller G  given by (10) but with the constant gain 166.7, 

the prefilter 0 ,F P  and the feedforward controller 1.rG   

Figure 9(a) contains the output 2x  from all uncertain plants for the feedforward-feedback system in Fig. 

4. Figure 9(b) is for the feedback system in Fig. 2. The shaped reference input from the ZV input shaper is 
in dashed line. Both systems deliver good tracking result with almost no overshoot and with short settling 
time. However, the feedforward-feedback system can reach the steady-state setpoint faster because the 
feedforward term uses the known nominal plant and therefore can act faster than the feedback term. 

Figures 9(c) and (d) contain the output  for the open-loop system in Fig. 1. Figure 9(c) is when the 

ZV input shaper is used, and Fig. 9(d) is when the ZVD input shaper is used. Without the closed-loop system, 
the outputs from the uncertain plants oscillate heavily even when the robust ZVD input shaper is used.  

2x
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Fig. 6. Loop shaping for the m-c-k system. (Top) Unshaped. (Middle) Feedback. (Bottom) Feedforward-
feedback.  
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Fig. 7. Bode magnitude plots of the feedback and feedforward-feedback controllers.  
 

 
Fig. 8. Bode plots in the feedforward-feedback case. (Above) The reference model M in dashed line and 
the mapping Y / R. (Below) The reference model M  in dashed line and the uncertain plant .P   
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Fig. 9. Tracking of the output 

2x : (a) for the feedforward-feedback system with ZV input shaper, (b) for 

the feedback system with ZV input shaper, (c) for the open-loop system with ZV input shaper, and (d) for 
the open-loop system with ZVD input shaper. 
  
3.2. Reduction of Vibration Induced by Disturbances and Noise 

 
Vibration can also come from disturbances and noise. The input shaper, placed outside of the loop, cannot 
reduce these vibrations. In this section, we demonstrate that the feedback controller in Fig. 2 and Fig. 4 can 
be designed to reject disturbances and noise to suppress these vibrations. 

From Fig. 4, we can include the following frequency-domain specifications in the quantitative feedback 
system design: 
1) Plant-output disturbance rejection, as given by 

  / 1/ 1 ,O dOy d PG      

2) Plant-input disturbance rejection, as given by 

  / / 1 ,I dIy d P PG      

3) Noise rejection, as given by 

  / / 1 ,ny n PG PG      

where , ,dO dI   and n  are small positive numbers. Each specification is converted to bounds on the Nichols 

chart for the open-loop shaping process. We will not design a new control system here but will apply the 
same control system as in the previous section to demonstrate the ability to reduce vibrations induced by 
disturbances and noise.  

Figures 10(a) to 10(b) show the output 2 ,x  from the open-loop system in Fig. 1, when there exist unit-

step plant-output disturbance or unit-step noise, respectively. Fig. 10(c) to Fig. 10(d) are the results from the 
feedforward-feedback system in Fig. 4. By comparing Fig. 10(a) to Fig. 10(c) and Fig. 10(b) to Fig. 10(d), we 
can see that the feedforward-feedback system can also reduce vibrations induced by disturbance and noise 
by attenuating their influences on the output. 
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Fig. 10. Output from disturbance and noise: (a)-(b) with open-loop system, (c)-(d) with feedforward-
feedback system. 
 
3.3. Summary of the Design Process 
 
The design process can be summarized in the following steps: 

1) Obtain the nominal plant model, 0 .P   

2) Choose a reference model, for example, 0.M P   

3) Specify uncertain sets of model parameters that the control system will tolerate, for example, 

 0.65, 1.35 .m  

4) Select working frequencies, .   
5) Plot plant templates on the Nichols chart to inspect the boundaries of the uncertain plant for each 

working frequency. 
6) Specify model matching specifications, (7) or (9). 
7) Specify other specifications such as stability margin, tracking, noise rejection, disturbance rejection. 

8) Plot the original open-loop shape on the Nichols chart, that is, 0.L   

9) Obtain the controller, ,G  by performing open-loop shaping on the Nichols chart by appending 

transfer functions, for example, integrator, lead/lag to have the final shape lie in the allowable regions. 
10) Choose the pre-filter as F M  and choose the feedforward controller as 0/ .rG M P   

11) Obtain simulation result in the frequency domain and confirm that all specifications are met. 
12) Design an input shaper from the reference model, .M   
13) Obtain simulation result in the time domain. 
14) Apply the control system to a hardware. 
 
Figure 11 contains a flow chart summarizing the design process. 
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Fig. 11. Flow chart of the design process. 
 

4. Discussion 
 
From Fig. 7, the proposed feedforward-feedback system has lower gain than the pure feedback system while 
still delivers equally good performance. This lower gain reduces the control effort used as well as avoids more 
noise at high frequencies. The reason for this improvement is that the feedforward term, which represents 
the known part of the uncertain plant, helps reduce the amount of feedback needed; therefore, the cost of 
feedback is reduced. 

From Fig. 8, using the proposed feedforward-feedback system in the model reference setting results in 
small deviation of the closed-loop system from the reference model. Figure 8 also shows large deviation of 
the uncertain plant from the reference model without using the proposed system. The input shaper is 
designed using the natural frequencies and damping ratios of the reference model. As a result, with the 
proposed system, the input shaper needs not be robust and can have shorter duration for faster movement. 

From Fig. 9, it can be seen that the tracking performance using the proposed feedforward-feedback 
system is slightly better than that of the pure feedback system, which is a result of using feedforward term. 
Nevertheless, both systems substantially outperform the ZV and ZVD input shapers by having more 
robustness to model uncertainty and smaller settling time. 

From Fig. 10, it is obvious that the open-loop input shaping cannot handle vibrations induced by 
external disturbance and noise. The proposed feedforward-feedback system utilizes feedback to reduce 
vibrations induced by disturbance and noise while maintains good robustness to plant model uncertainty. 

 

5. Conclusion 
 
Two very practical techniques are fused together in this paper. Input shaper reduces vibration from reference 
input, while quantitative feedforward-feedback controller reduces vibrations from disturbances and noise. 

Obtain nominal plant model

Choose a reference model 

Specify uncertain sets

Plot plant templates on the Nichols chart

Select working frequencies 

Specify model matching specification

Specify other specifications

Obtain the controller, G, by performing open-loop shaping

Plot the original open-loop shape on the Nichols chart

Choose the pre-filter and the feedforward controller

Obtain simulation result in the frequency domain

Obtain simulation result in the time domain

Apply the control system to a hardware 

Design an input shaper
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The quantitative controller is also designed to match the closed-loop system to a reference model, whose 
vibratory mode parameters are used in the design of the input shaper. The quantitative controller explicitly 
takes into account the amount of the plant uncertainty and various achievable frequency-domain 
specifications during the design process. 

Model matching enhances robustness of the input shaper to plant model uncertainty, without increasing 
the number of impulse and move time. The quantitative controller can be designed such that the resulting 
closed-loop system, which matches the reference model, has less and specifiable uncertainty than that of the 
original uncertain plant. 

The proposed technique of using the input shaper and the quantitative controller is simple yet practical 
enough to be applied to complicated as well as nonlinear plants. For these plants, we need to find a central 
linear plant model and be sure its uncertain region or plant template covers all possible plants in all operating 
points. Gain scheduling may be used to obtain multiple linear plant models. This can reduce the size of the 
uncertain region, resulting in tighter specifications. 

The proposed technique can be naturally extended to multi-mode systems by including the multi modes 
in the reference model. Extension to multi-input-multi-output (MIMO) systems can be more challenging 

because the quantitative controller may only be suitable for diagonal plant. H
-based controller, for model 

matching, may be more suitable to the MIMO systems. 
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