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Abstract. Input shaping technique can be used to suppress residual vibration, occurring from moving 
rapidly a flexible system from one point to another point. An input shaping filter produces a shaped input 
signal that avoids exciting the flexible modes of the flexible system. The technique requires accurate 
knowledge of mode parameters. When the plant model is not accurate, performance of the input shaper 
degrades. Several robust input shapers were proposed to handle this inaccuracy at the expense of longer 
move time. The purpose of this paper is, for the first time, to present an application of an intelligent 
backstepping system to matching of the resulting closed-loop system with a reference model. The input 
shaper can then be designed from the mode parameters of the reference model. Because the reference 
model is accurate even when the plant model is not, the input shaper needs not be robust, resulting in 
shorter move time. The intelligent backstepping system consists of a three-layer neural network, a variable 
structure controller, and a backstepping controller. The neural network is used as a black-box model in case 
when the plant model is unknown, making the proposed system model-independent. The adaptive property 
of the neural network also makes the proposed system suitable for nonlinear, time-varying, or 
configuration-dependent systems. The variable structure controller handles the uncertainty arisen in the 
system. The backstepping controller, through its virtual controls, provides a means for the control authority 
to reach the unmatched uncertainty in the system. This study contains simulation and experimental results 
on a flexible-joint robot manipulator. The results showed that this proposed intelligent input shaping 
system outperformed previously proposed robust input shapers in terms of allowable uncertainty amount 
and move time. The proposed system is also relatively easy to apply because it does not require the plant 
model.  
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Nomenclature: 
 

   perturbed parameter 

i   approximation error 

1   
absolute link angular position 

2   
absolute motor angular position 

a   
actual natural frequency 

d   
damped natural frequency 

ni
  natural frequency of the 

thi  mode 


  damping ratio 

iA
  

impulse amplitudes 

BMM-IS backstepping model matching with input shaping 

aid
  disturbance at the 

thi  subsystem 

aiUd   upper bound of the disturbance 

e   model output tracking error 

EI extra-insensitive 

 g    a nonlinear function to be approximated 

slink
  

linearized spring constant 

l   number of hidden-layer nodes 

PEI-ISs perturbation-based extra-insensitive input shapers 

br   
original reference input 

sr   
shaped reference input 

 s    activation function such as sigmoid function 

it   
time locations of the impulses 

1T
  

torque produced by the motor coil 

2T
  

torque output from deadzone 

3T
  

torque output from backlash 

dT
  

damped period 

u   control input 

cu
  

controller output 

v   motor input voltage 

V   percentage vibration 
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V 
  ideal weight matrix 

iUV   upper bound of the ideal weight matrix 

V̂   estimate of the ideal weight matrix 

V   weight estimation error 

limV
  

percentage vibration limit 

W 
  ideal weight matrix 

iUW   upper bound of the ideal weight matrix 

Ŵ   estimate of the ideal weight matrix 

W   weight estimation error 

y   plant output 

my
  

reference model output 

iz   inputs to the neural network 

ZV zero vibration input shaper 

ZVD zero vibration and derivative input shaper 
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1. Introduction 
 
Input shaping is a technique to reduce residual vibration. The technique is based on destructive interference 
of impulse responses, that is, an impulse response can be cancelled by another impulse response, given 
appropriate impulse amplitudes and applied times. The input shaping was originally proposed under the 
name Posicast control by Smith in [1]; Smith in [2]; and Tallman and Smith in [3]. The first application of 
the Posicast control to robot transport of suspended objects was performed by Starr in [4] and Starr in [5], 
whose method was further generalized by Strip in [6]. Singer and Seering in [7] extended the Posicast 
control by increasing its robustness to parameter uncertainty and patented the technique under the name 
input shaping. 

Applications of the input shaping technique range from gantry crane (Sorensen et al. in [8]), bridge 
crane (Peng et al. in [9]), tower crane (Huey et al. in [10]), boom crane (Huang et al. in [11]), flexible-link 
robot (Chatlatanagulchai et al. in [12]), flexible-joint robot (Chatlatanagulchai and Saeheng in [13]), liquid 
sloshing in container (Baozeng and Lemei in [14]), flexible spacecraft (Zhang and Zhang in [15]), 
coordinate measuring machine (Singhose et al. in [16]), cam follower (Pridgen and Singhose in [17]), 
telescopic handler (Park and Chang in [18]), cherry picker (Hongxia et al. in [19]), dual solenoid actuator (Yu 
and Chang in [20]), MEMS contact switch (Do et al. in [21]), hard disk drive (La-orpacharapan and Pao in 
[22]), cable-driven crane (Huey and Singhose in [23]), high-rise elevator (Fortgang et al. in [24]), wave 
suppression (Yang and Liang in [25]), atomic force microscopy (Schitter et al. in [26]), CNC machine tool 
(Altintas and Khoshdarregi in [27]), micro-milling machine (Fortgang and Singhose in [28]), wafer stage in 
chip manufacturing (Roover and Sperling in [29]), automated highway (Bae and Gerdes in [30]), brushless 
motor (Chang et al. in [31]), cooperative motion between two robots (Zhang et al. in [32]), twin rotor (Toha 
and Tokhi in [33]), quadrotor with sling load (Palunko et al. in [34]), helicopter with sling load (Potter et al. 
in [35]), nuclear power plant’s fuel transport system (Shah and Hong in [36]), to automotive wiper (Ahmad 
et al. in [37]). 

A disadvantage of using the input shaping technique is that the input shaper extends the duration of 
the shaped reference input by the length of the shaper, which is equal to the time location of the last 
impulse subtracted by that of the first impulse. Since the design parameters of the input shaper are obtained 
from the mode parameters, the vibration suppression performance of the input shaper also depends largely 
on the accuracy of the modelled mode parameters. Because the plant model can never represent the actual 
system perfectly, several robust input shapers have been proposed in the literature to maintain good 
vibration suppression performance in the presence of uncertainty in the plant model. Singer and Seering in 
[7] proposed the so-called ZVDk input shaper by including higher-order derivatives of the zero residual 
vibration expression as additional constraints to solve for the input shaper. Singhose et al. in [38] presented 
the so-called extra-insensitive (EI) shaper. This shaper is designed from relaxing the requirement that the 
residual vibration must be zero when the system model is exactly known. By allowing a low level of 
vibration, the robustness of the input shaper can be increased significantly. Singer and Seering in [39] 
proposed a so-called frequency sampling method to establish constraints on the vibration amplitude over a 
specified range of frequencies. Because the insensitivity to frequency variation can be specified by the 
designer, the resulting shaper is called specified-insensitivity (SI) shaper. Rew et al. in [40] proposed 
perturbation-based extra-insensitive input shapers (PEI-ISs). The PEI-ISs are multiplication of a series of 
ZV input shapers in the Laplace domain. The series includes ZV input shapers whose impulse times are 
slightly perturbed. PEI-ISs are simple and were shown to be more robust to parameter variation than the 
EI shaper. They were also shown to have less transient vibration than the EI and SI shapers. However, the 
SI shaper has shorter duration than the PEI-ISs. Singh in [41] proposed a robust input shaper called 
minimax input shaper. The minimax input shaper aims to move the system from rest to rest while 
minimizes the maximum magnitude of the residual states over a range of uncertain parameter values. Pao et 
al. in [42] developed an input shaping design approach that took into account the knowledge of the 
probability distribution of the system natural frequency about its modeled value. The proposed input 
shaper has the ability to deal with the statistical nature of plant parameter variations. Singh et al. in [43] 
presented an improvement over the shaper of Pao et al. in [42], which may become computationally 
expensive when the dimension of the parameters grows. The approximate of the stochastic system state by 
using finite-dimensional series expansion in the stochastic space was applied. Magee and Book in [44] 
presented a modified command filtering technique in discrete time. This modified filter ensures a more 
uniform output for each discrete-time sample as the system parameters vary with time. Conord and Singh 
in [45] formulated the design of the robust input shaper as an optimization problem having linear matrix 
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inequalities (LMI) constraints. Vaughan et al. in [46] and [47] compared among several types of robust input 
shapers and also investigated combining the specified negative amplitude (SNA) shaper (Singhose et al. in 
[48]) with the SI shaper. 

The previously proposed robust input shapers have more robustness to the mode parameter 
uncertainty at the price of having more impulses in the input shaper sequence, hence slower time to reach 
final reference value. Moreover, they require plant model either to use in their algorithms or to obtain the 
modelled mode parameters.  

Advantages of the proposed technique, over the previously proposed robust input shaping techniques, 
are as follows: 

 Substantially larger amount of uncertainty in the mode parameters can be tolerated. 

 Shaped reference input has short duration, and its duration does not increase with the amount of 
insensitivity, as in the case of the robust input shaping. 

 The proposed system applies to nonlinear, time-varying, or configuration-dependent plant. 

 The proposed system is model-independent, that is, the accurate knowledge of the plant model is 
not required in designing the system.  

In this paper, an intelligent backstepping input shaping (IBS-IS) technique is proposed. Three-layer 
neural networks are used to represent the unknown plant as in black-box system identification. The system 
uses the backstepping and variable structure controllers as feedback controllers in matching the resulting 
closed-loop system to a reference model. The backstepping structure provides a means for the control 
authority to reach the unmatched uncertainty in the system. The variable structure controller handles the 
uncertainty. The ZV input shaper is placed outside of the closed-loop system and is designed from accurate 
mode parameters of the reference model. Simulation and experiment on a flexible-joint robot manipulator 
confirm the advantages of the proposed technique. 

 

2. Materials and Methods 
 
2.1. Input Shaping 
 
Figure 1 shows input shaping for a flexible system. r  is the original reference input, normally a step signal. 
The switch is for the user to select whether to use the input shaper or not. The input shaper is a cascade of 
FIR filters; each filter handles one vibratory mode. The design parameters of the input shaper are the 

impulse amplitudes iF  and the time locations of the impulses it . The shaped reference input ,r  which is 

the output of the input shaper, is given to the flexible system to follow. The flexible system can be open-

loop or closed-loop with known natural frequencies and damping ratios. ni  are the natural frequency of 

the thi  mode whereas   is the damping ratio; they are so-called mode parameters. The parameters iF  and 

it  are designed such that the shaped reference input r  avoids exciting the flexible modes, resulting in no 

residual vibration in the output .y   

 
Fig. 1. Input shaping for a flexible system. 
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Good tutorial documents on the input shaping techniques include Singh and Singhose in [49], Singhose in 
[50], and Singer in [51]. Two text books on input shaping techniques are Singh in [52] and Singhose and 
Seering in [53]. 

In this paper, the proposed system is compared to several types of robust input shapers. For 
completeness, they are briefly presented in this section with further references given, for more details. 

 
2.1.1. ZVDk input shaper 

 
Singer and Seering in [7] proposed including higher-order derivatives of the residual vibration expression as 
additional constraints to provide more robustness to the mode parameter uncertainty at the price of having 
more impulses in the input shaper sequence and hence slower time to reach final reference value. 

ZVDk input shaper, where  , has the total of  impulses in the sequence and is shown 

to have normalized impulse amplitudes and timings as (Pai in [54]). 

  
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is the combinations of n  things taken r  at a time,   is the damping ratio, 21d n     is the damped 

natural frequency, and 
n  is the natural frequency. 

 
2.1.2. Extra-insensitive input shaper 
 
Singhose et al. in [38] proposed a one-hump, extra-insensitive (EI) shaper. This shaper has three impulses 

and a duration equal to that of the ZVD shaper. However, by allowing a low level of vibration  at the 

modeling frequency and by forcing the vibration to zero at two frequencies, one lower and the other higher 
than the modeling frequency, the robustness of the EI shaper is more than that of the ZVD shaper. For 
undamped system, the normalized impulse amplitudes and timings can be found in closed form as 

 lim lim lim
1 1 2 2 3 3

1 1 1 2
, 0, , , , .

4 2 4n n

V V V
A t A t A t

 

 

  
        (4) 

Singhose et al. in [55] extended the one-hump EI shaper to two-hump and three-hump EI shapers, 
whose number of impulses and duration are the same as the ZVD2 and ZVD3, respectively, but with more 
robustness. For undamped system, the normalized impulse amplitudes and timings of the two-hump EI 
shaper can be found exactly as  

  
2 2 1/3

2 2lim
1 lim lim

3 2 3
, 1 1 ,

16

X X V
A X V V

X

      
  

  (5) 

 2 1 3 2 4 10.5 , , ,A A A A A A      (6) 

 1 2 3 40, 0.5 , , 1.5 ,t t T t T t T      (7) 

where 2 / nT    is the period of vibration. Those of the three-hump EI shaper are given by 
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 
2

lim lim lim
lim
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, , 1 2 , , ,
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1 2 3 4 50, 0.5 , , 1.5 , 2 .t t T t T t T t T      (9) 

For damped system, the impulse amplitudes and timings cannot be obtained in closed form. They must 

be solved for numerically. However, a surface fit can be used to obtain their values in terms of 
lim ,V  ,  and 

.T   
 
2.1.3. Impulse-time perturbation input shaper 
 
In the Laplace domain, the ZV input shaper is given by a transfer function 

  0 1 2 ,ds
F s A A e


   (10) 

where  1 1/ 1 ,A K    2 / 1 ,A K K    2/ 1 ,d n      and 
2/ 1
.K e

  
  Define two perturbed ZV 

input shapers, for a perturbation parameter 0 1,   as follows: 

        1 1

1 1 2 2 1 2, .d ds s
F s A A e F s A A e

      
     (11) 

A one-hump PEI-IS is given by 

 
     
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        



   
 (12) 

It was shown in Rew et al. in [40] that the design parameter   is related to the upper limit of the allowable 

vibration percentage 
tolV  as 

 
 2

2

0.9981 1
.

tolV

A







  (13) 

A two-hump PEI-IS is given by 

        012 0 1 2 .F s F s F s F s  (14) 

A three-hump PEI-IS is given by 

          1234 1 2 3 4 ,F s F s F s F s F s  (15) 

where  

        1 1

3 1 2 4 1 2, ,d ds s
F s A A e F s A A e

      
     (16) 

and   is an additional design parameter. 
 
2.2. Intelligent Backstepping Input Shaping 
 

Typical robust input shaping is applied to a closed-loop system as shown in Fig. 2(a), where  is the 

baseline reference,  is the shaped reference,  is the plant output,  is the control effort, and  is the 

tracking error. In our flexible-joint robot application,  represents the motor shaft’s angular position, and 

 is the link’s angular position. 

The proposed intelligent backstepping input shaping system is shown in Fig. 2(b). The dashed box 

contains the closed-loop system. By using the states  the intelligent backstepping control input  is 

aimed to reduce the error  between the plant output  and the reference model output  As a result, 

the closed-loop system, which is a mapping from the shaped reference input  to  will be close to the 

known reference model, which is a mapping from  to  The input shaper then can be designed from 

mode parameters of the reference model, which are exactly known. Note that the input u  to the plant is 

the summation of cu  and sr . 

br

sr y u e

2

1

,x cu

e y .my

sr y

sr .my
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Fig. 2. Input shaping scheme. (a) Typical closed-loop scheme. (b) Proposed closed-loop system. 

 
The flexible plant is assumed to be a single-input-single-output (SISO) system in the strict-feedback 

form (Krstic et al. in [56]) with additive disturbances, that is, 

 

1

1

( ) ( )( ( )), 1 1,
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 (17) 

where ,ix  are the state variables;  1, , , 1, ,i ix x x i m   are the sets of state variables, ,u y are 

the control input and plant output, ( ), ( ), 1, ,i if g i m  are the unknown smooth functions. 

( ), 1, ,ai md x i m  are the unknown additive disturbances with unknown bounds.  

Each unknown smooth function is approximated by a three-layer neural network as shown in Fig. 3. 

Suppose a scalar-valued continuous function  1 2, , , : n

ng z z z   is to be approximated. The neural 

network has 
1 2, , , ,1nz z z  as inputs. Variables in the network can be defined as follows: 
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  (18) 

 can be any appropriate activation function that is a nonconstant, bounded and monotone increasing 

continuous function (see Theorem 3.1 in Ge et al. in [57]). In this work, a sigmoid function 

 is used. This network is proved to be a universal approximator in Funahashi in 

[58], which means any continuous nonlinear function, , can be approximated by a three-

layer neural network with some constant ideal weight matrices,  some appropriate number of 

hidden-layer nodes,  with arbitrarily small approximation error. 
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Fig. 3. Three-layer neural network. 

 
For controller design and stability proofs, we need the following assumptions. 

Assumption 1: Any smooth nonlinear function  can be represented by a three-layer neural 

network with some constant ideal weights  as 

 * * *( ) ( )T T

i i i i i ig W S V Z    (19) 

where i iU   is the approximation error with unknown 0iU  ;  

Assumption 2: On the compact set , the ideal neural network weights  are constant and bounded 

by  

 * *, , 1, ,i iU i iUF
W W V V i m   , (20) 

where . iUW . and 
iUV  are not known. 

Assumption 3: Additive disturbances ( , )ai md x t  are bounded by  

 ( , ) , 1, ,ai m aiUd x t d i m  , (21) 

where 
aiUd  are unknown. 

Assumption 4: There exist known constants 0iUg   such that ( )i iUg g   1, , 1i m   . 

The lack of knowledge of ideal weights is handled by the following lemma, whose proof can be found 
in Chapter 3 of Ge et al. in [57]. 

Lemma 1: Let  and  be the estimates of  and , respectively. Let the weight estimation errors be 

denoted by  and  Then, we have 
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The residual term ud  is bounded by 
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The symbol  denotes the Frobenius norm.  

The control objective is to design an adaptive controller such that the output  follows closely the 

reference model output  while all the signals in the closed-loop system are bounded. Backstepping 

divides control design of the total system in the strict-feedback form (17) into control design of each  
subsystem. The control design follows the following steps. 
Step 1: 

Let  be the model output tracking error. From Assumptions 1-4 and Lemma 1, the 
following inequality holds: 

 *

1 1 1 2 1 2 1 1 1 1,
T

uf f ug d g d ad d x x g d K        (25) 

where 

 

* * * * * * *

1 1 1 1 1 1 1 1 1 1 11 1

' ' ' '

1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 2

[ , , , , , ] ,

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ[ , , 1, , , ] .

T

f f f f U U a U g g g g UF F

T T T T T

f f f f f f g g g d g g g d d
F F

K V W W g d V W W

Z W S S V Z Z W S x S V Z x x

 



   


 (26) 

Since 1K   is not known, it is estimated by 1K̂  with an estimated error 1 1 1
ˆ .K K K   

Choose a virtual control input 

 

1

2 1 1 1 1 1 2

1

1 1 1 1 1 1 1 1 1 1 1 2

ˆˆ [ ],

ˆ ˆ ˆ ˆ( ) [ ( ) ],

d d dvsc

T T T T

g g g g f f f f d dvsc

x g c z f x u

W S V Z c z W S V Z x u





    

     
 

 (27) 

where 

 2 1 1 1
ˆ sgn( )T

dvscu K z   (28) 

is the variable structure controller.  

The neural network weights as well as the estimate 1K̂  are updated according to the update laws: 

 

'

1 1 1 1 1 1 1 1

'

1 1 1 1 1 1 1

'

1 1 1 1 1 1 1 2 1

'

1 1 1 1 1 1 2 1

1 1 1 1 1

ˆ ˆˆ ˆ( ) ,

ˆˆ ˆ ,

ˆ ˆˆ ˆ( ) ,

ˆˆ ˆ ,

ˆ ,

T

f f wf f f f f

T

f f vf f f f

T

g g wg g g g g d

T

g g vg g g g d

k

W W S S V Z z

V V Z W S z

W W S S V Z x z

V V Z W S x z

K K z

   

  

   

  

  

 (29) 

where 1 1 1 1 1, , , , 0wf vf wg vg k       are design constants. 

The tracking error dynamics become 

 

1 1 1

1 1 2 1 1 1 2 1 2 1 2 1 2

1 1 1 2 1 1 1 1 2 1 2 2

1
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    1 1 1 1 1 2 1 2 2

' '

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

' '
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W S S V Z W S V Z d c z K z g d
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 



    

        
 

       
 

 (30) 

Letting a Lyapunov function be 

    2 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1
,

2 2 2 2 2 2

T T T T T

f wf f f vf f g wg g g vg g kV z W W tr V V W W tr V V K K                (31) 

|| ||F

y

my
thi
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its derivative is given by 

 

   
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 (32) 

where 2 2 2 .dz x x   The term 1 1 2Uz g z  will be cancelled in the next step. 

 

Step i:  2 i m   

Let  1 1 1
, 2 1,i i i d

z x x i m  
      be the error between the state 

ix  and a virtual control law 
idx . 

Similar derivation to that of Step 1 can be used with virtual control input 

 1

( 1) ( 1) 1 ( 1)
ˆˆ [ ], 2 1,i d i i U i i i i id i dvscx g g z c z f x u i m

             (33) 

variable structure control 

 ( 1)
ˆ sgn( ),i dvsc i i iu K z    (34) 

update laws 

 

'

'

'

( 1)

'

( 1)
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T

gi gi vgi gi gi gi i d i

i i ki i i

W W S S V Z z

V V Z W S z

W W S S V Z x z

V V Z W S x z

K K z





   
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 (35) 

and Lyapunov function 

    2 1 1 1 1 1

1

1 1 1 1 1 1
,

2 2 2 2 2 2

T T T T T

i i i fi wfi fi fi vfi fi gi wgi gi gi vgi gi i ki iV V z W W tr V V W W tr V V K K    

             (36) 

to obtain the derivative of the Lyapunov function as 

 2

1

1

i

i k k i iU i

k

V c z z g z 



 
   
 
  (37) 

Step m: 

This is the last step. Let m m mdz x x   be the tracking error. The control effort is selected as 

  
1

( 1) 1 1
ˆˆ ˆ[ ].c m m U m m m m md m sm dvsc

u g g z c z f x u g r

  
        (38) 

Note the addition of the last term ˆ
m sg r  in the cu  expression to compensate for the shaped reference 

.sr  With similar variable structure control 
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and Lyapunov function 

 

 

 

 

 

2 1 1

1

1 1 1

2 1 1

1

1 1

1 1 1

2 2 2

1 1 1

2 2 2

1 1 1

2 2 2

1 1 1

2 2 2

T T

m m m fm wfm fm fm vfm fm

T T T

gm wgm gm gm vgm gm m km m

m
T T

k fk wfk fk fk vfk fk

k

T T

gk wgk gk gk vgk gk k

V V z W W tr V V

W W tr V V K K

z W W tr V V

W W tr V V K

 



  

 



 

     

     


    



    



1 ,T

kk kK 
 



 (41) 

the derivative of the Lyapunov function becomes 

 2

1

.
m

m k k

k

V c z


 
  
 
  (42) 

Therefore, if   is negative semi-definite or  From Theorem 4.1 in Khalil in 

[59], this results in stable zero equilibrium points of the tracking error dynamics , the neural 

network weight error dynamics  and the variable structure control weight error dynamic 

   

Several remarks are as follows: 

 To avoid chattering due to discontinuous variable structure control laws, the signum  

function can be replaced by the smooth arctan  function. 

 To prevent the weights  and  from growing unboundedly, the - modification scheme 

introduced by Ioannou and Sun in [60] can be applied. In addition, the  - modification by 
Spooner et al. in [61] can be used to prevent the domination of the  terms leading to poor 
approximations of the weights. 

 Since the control law has a  term in it, to prevent  from approaching zero, which may 

destabilize the closed-loop system, a discontinuous projection mapping can be applied to confine 

the weights  and hence  to values away from zero. For example, assume each element in the 

weight matrix has desired lower and upper bounds as . The projection algorithm 

is 

 

 
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w w and w
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 (43) 
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The reader is referred to Chatlatanagulchai in [62] and Chatlatanagulchai and Meckl in [63] for selection 
of design parameters, detailed derivations, and stability proofs.  

 
2.3. Flexible-Joint Robot Manipulator 

 
Both simulation and experiment were performed on a flexible-joint robot manipulator, whose photograph 

is shown in Fig. 4(a). Two optical encoders are used to measure the motor angle  and the link angle 

relative to the motor  Two soft springs are attached to the link and the motor hub to provide 

flexibility. Fig. 4(b) contains a top-view diagram of the robot with pertaining dimensions. 

 
Fig. 4. Flexible-joint robot manipulator: (a) Hardware. (b) Top-view diagram of the robot. 

 
Table 1 contains parameter description and parameter values of the robot, which were obtained from 

either direct measurements or experimental system identifications. The nonlinear equations of motion of 

the robot are given in Table 2.  is the control command voltage from the data acquisition card. 

 is the motor input voltage.  and  are the current and voltage in the motor coil.  is the 

torque produced by the motor coil. 
 

Table 1. Parameter values of the flexible-joint robot. 
 

Parameter Description Values 

1 2 3, , , ,l r r r L   Link length, dimensions 1 2 3, ,r r r  in Fig. 4(b), 

unstretched spring length  
0.3 m,

0.1 m, 0.05 m, 0.04 m,

0.02 m

  

,l pm m   Link mass, payload mass 
0.05 kg, 0.1 kg   

, ,l h pJ J J   Link, hub, and payload masses moment of inertia 
about pivot point 

2

2

2

0.0015 kg m ,

0.0011 kg m ,

0.0281 kg m







  

2

1 2. 

 2.5 voltsu 

 24 voltsv  i v T
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1 2,c c   Damping constant at link bearing, damping 
constant at motor bearing 

1

1

0.1 kg s ,

1 kg s








  

sk   Spring constant 
21000 kg s   

, , , ,m v t aR L k k k   Motor coil resistance, motor coil inductance, back-
EMF constant, current-to-torque gain, amplifier 
gain 

100, 0.01, 0.01,

2000, 9.6
 

 
Table 2. Nonlinear governing equations of the flexible-joint robot. 

 

Description Governing equations 

From free-body diagram of 

the link. 
kM  is the moment of 

the nonlinear spring. 

   
     

     

     

     

  

  

  

  

 

1 1 1 2

1 1 1 2

1 1 1 2

2 1 1 2

2 1 1 2

2

1 1 2 3

1 2

1 1 2 2

2

1 1 2 3

2 2

1 1 2 2

1 1 2 31

,

cos cos

sin sin

cos cos

sin sin ,

cos
,

sin

cos
,

sin

cos
tan

l p k

k s

s

s

s

J J c M

M k L L r

k L L r

k L L r

k L L r

r r
L

r r

r r
L

r r

r r

r

  

  

  

  

  

 

 

 

 

 
 

    

   

  

  

  

 


  

 


   

 


 

 
 

1 1 2 2

1 1 2 31

1 1 2 2

,
sin

cos
tan

sin

r

r r

r r

 

 


 



 
    

  
      

 

From free-body diagram of 
the motor hub.  2 1 1 2 2 2h kJ c M c T          

DC motor electrical model 

2 ,m v

di
v Ri L k

dt
    

tT k i  

Power amplifier 
av k u  

 
The nonlinear governing equations of the flexible-joint robot in Table 2 can be linearized as 

 

1 11 1

2 2

3

3 3

4 41 2 1

0 1 0 0
0

0

,0
0 0 0 1

slin slin

l p l p l p l p

t a

slin slin t v
h

h h h h h h

k kc cx x

J J J J J J J Jx x
T

x x
k k

x xk k k kc c c
J R

J J J J R J J

 
  

       
         
       
      
                   

   

 (44) 

where 1 1 2 1 3 2 4 2, , ,x x x x       , and  
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 

1 2
1 2 0

8.043.k
slin

M
k

 
 

 


 
 

  (45) 

Upon substituting the parameter values in Table 1 into (44), the mode parameters, which are the natural 
frequency and damping ratio, are given by 

 16.206 rad/s, 0.052.n     (46) 

These natural frequency and damping ratio were used in designing all input shapers in this paper. 
 

3. Results and Discussion 
 

The proposed intelligent backstepping input shaping technique in Fig. 2(b) was compared to the typical 
closed-loop input shaping in Fig. 2(a). In Fig. 2(b), the ZV input shaper was used. In Fig. 2(a), the robust 
ZVDk, EI, and PEI-IS input shapers were used.  

In Fig. 2(a), the rigid-body dynamics are from the control effort  to the motor angular position . 

The flexible dynamics are from  to the link angular position . Both rigid-body and flexible dynamics 

are the nonlinear governing equations, given in Table 2. The proportional gain was set equal to  

for all simulation and experiment. The baseline reference signal  was a square wave having an amplitude 

of 1 radian and a period of 15 seconds. The input shaper is one of the ZVDk, EI, and PEI-IS. 
In Fig. 2(b), the input shaper is the simple ZV input shaper. The reference model is a second-order 

underdamped system, 

 
 
 

2

2 2
,

2

m n

s n n

y s

r s s s



 


 
 (47) 

where  and  are given by (46). The flexible plant is the nonlinear governing equations in Table 2. The 

intelligent backstepping controller and update laws are (27)-(40), with the following design parameters: 
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 (48) 

The number of hidden nodes of all neural networks is five. The inputs to  and  neural networks are 

 and  The inputs to  and  neural networks are  and  The initial conditions for the 

weights are as follows:  
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 (49) 

Note that 1 3
ˆ ˆ 0f f   and 1 3

ˆ ˆ 1.g g   

For all simulation and experimental results, the percentage vibration was obtained from the step 
responses using a formula (Vyhlidal et al. in [64]): 
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1x 2.x 4f̂ 4ĝ 1 2 3, , ,x x x 4.x



DOI:10.4186/ej.2017.21.5.203 

218 ENGINEERING JOURNAL Volume 21 Issue 5, ISSN 0125-8281 (http://www.engj.org/) 

where  is the step response of the system without the input shaper and  is the step response 

with the input shaper. 
Figure 5 contains two sensitivity curves for the ZV, ZVD, one-hump EI, one-hump PEI-IS, and the 

proposed intelligent backstepping input shaping (IBS-IS) techniques. Fig. 5(a) is the percentage vibration as 

a function of the normalized frequency  where  is the actual natural frequency and  is the 

model natural frequency. Among the robust input shapers, the PEI-IS is the most robust, followed by the 
EI, ZVD, and ZV shapers. The proposed IBS-IS shaper has literally zero sensitivity to the uncertainty in 
the natural frequency because the feedback controller matches the uncertain closed-loop system to a fixed 
reference model. Therefore, the ZV shaper is always designed on the fixed mode parameters. Fig. 5(b) 
shows the percentage vibration as a function of the damping ratio. Among the robust input shapers, the 
ZVD has the most robustness, followed by the ZV, PEI-IS, and EI shapers. The proposed IBS-IS shaper 
also has zero sensitivity to the uncertainty in the damping ratio due to the reasons mentioned above. 

 
Fig. 5. Sensitivity curves. (a)Percentage vibration as a function of normalized frequency. (b) Percentage 
vibration as a function of damping ratio. 

 
Figure 6 compares the simulation result to experimental result, using the proposed IBS-IS shaper. The 

sensitivity curves with respect to the normalized frequency are shown in Fig. 6(a) whereas the sensitivity 
curves with respect to the damping ratio are shown in Fig. 6(b). The experimental result with the flexible-
joint robot is close to the simulation result. Some residual vibration still remains in the experiment because 
of the unforeseen nonlinearity in the plant. 

 
Fig. 6. Simulation and experimental results using the proposed IBS-IS shaper. (a) Sensitivity curve with 
respect to normalized frequency. (b) Sensitivity curve with respect to damping ratio. 
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Figure 7 presents input shaper length as a function of 10% insensitivity. The insensitivity is an important 
measure of robustness in an input shaper. The higher the insensitivity, the more robust the input shaper. 
Comparing among the robust input shapers, the PEI-IS shaper is the most robust, followed by the EI 
shaper and the ZVDk shaper. The ZVDDD, three-hump EI, and three-hump PEI-IS shapers are the most 
robust; however, they have the longest shaper length, which affects directly the speed of the robot to reach 
its final angular position. In the proposed IBS-IS shaper, the shaper length remains at the minimum value, 
equal to that of the ZV shaper, and the shaper length does not increase with the amount of insensitivity. 

 
Fig. 7. Input shaper length as a function of insensitivity. 

 
Figure 8 shows simulated link position when payload is time-varying. The payload mass moment of 

inertia  is increased by 20 percent during the 15th to 30th seconds and is decreased by 20 percent during 

the 30th to 40th seconds. Figure 8(a) contains the result using the ZV shaper whereas Fig. 8(b) contains the 
result using the proposed IBS-IS shaper. Using the ZV shaper, residual vibration is obvious during the 
moments when the payload is changed from its model value. Using the proposed IBS-IS shaper, there is 
literally no residual vibration even during payload variation as a result of the adaptive attribute of the IBS-IS 
shaper. 

 
Fig. 8. Simulated link position when payload changes. (a) ZV shaper. (b) Proposed IBS-IS shaper. 

 
Figure 9 contains the percentage vibration as a function of payload deviation percentage. The ZV 

shaper is the most sensitive to the deviation in payload. The EI and PEI-IS shapers have similar sensitivity 
because they were both designed to have 10% vibration when the deviation is zero. The ZVD shaper has 
low level of sensitivity, and the proposed IBS-IS shaper has literally zero sensitivity to payload deviation. 

pJ
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Fig. 9. Percentage vibration as a function of payload deviation percentage. 

 

4. Conclusions 
 

An intelligent backstepping input shaping system is presented. The system uses three-layer neural networks 
to estimate the unknown plant functions in real time. These estimated plant functions are used in the 
backstepping and variable structure controllers to match the closed-loop system to a known reference 
model. The ZV input shaper is placed outside the feedback loop and is designed from the mode parameters 
of the known and fixed reference model. 

From doing so, several benefits include handling of more uncertainty in the plant model, shortest input 
shaper length, and application to nonlinear and time-varying plant. The use of intelligent system such as 
three-layer neural networks enables plant model independence, that is, the plant mathematical model is not 
required in the algorithm. The use of intelligent system in an adaptive setting also enables the proposed 
system to handle time-varying and configuration-dependent plant. 

We have presented in our study: 

 The sensitivity curves for the ZV, ZVD, EI, PEI-IS and IBS-IS; 

 Simulation and experimental results are done by using the proposed IBS-IS; 

 The input shaper length is studied as function of insensitivity (10 % insensitivity); 

 The simulated link position for ZV, ZVD, EI, PEI-IS and IBS-IS when payload changes; 

 And finally, the percentage vibration for ZV, ZVD, EI, PEI-IS and IBS-IS as function of payload 
deviation percentage. 
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