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Abstract. A new and complete version of the   Lk  transition model has been 

continually developed and proposed in the present paper. This version of the   Lk  

transition model can predict the effects of pressure gradient on the mean flow. The 

  Lk  transition model is validated with the ERCOFTAC T3- and T3C-series 

experimental data of Coupland [1]. The validation shows that the computed results of the 

  Lk  transition model are in good agreement with the experimental data. The 

performance of the   Lk  transition model is assessed in comparison with those of the 

Lk  transition model of Walters and Cokljat [2], the  Re  transition model of Langtry 

and Menter [3], and the   transition model of Ge et al [4] in case of the transitional flow 

through the compressor blade passage of Zaki et al [5]. It is found that the proposed 

  Lk  transition model is the only transition model that can consistently capture the 

separation bubble on the compressor blade. 
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1. Introduction 
 
Transition from laminar to turbulent flow is significant in modern and future engineering applications. Only 
a few examples are given here. The first example is gas turbine engines where the effect of transitional flow 
on the design of gas turbine engines was critically studied by Mayle [6]. Another example is the design of 
wind turbines in which case transition modelling is essentially needed because the prediction could be 
significantly improved by the transition model compared to the turbulence model as demonstrated in 
Menter et al [7]. A hypersonic future aircraft is one of the challenging examples where transition modelling 
plays a key role to the success of hypersonic propulsion system simulation, as mentioned in Georgiadis et al 
[8], because the laminar flow takes place over a large proportion of the aircraft forebody which is employed 
as part of the scramjet engine inlet. The state of the inflow into the scramjet engine and the thermal load on 
the aircraft forebody are greatly affected by the flow transition. 

The first ever study on transition perhaps started when Emmons [9] proposed a theory by using a 
probability function to quantitatively formulate the transition process from laminar to turbulent flow on a 
flat plate in which the local skin friction coefficient was considered. To the best of the authors’ knowledge, 
the probability function that was used by Emmons [9] to define the fraction of the total time that the flow 
is turbulent at any point in the transition region was named for the first time as an intermittency factor   
by Schubauer and Klebanoff [10]. Dhawan and Narasimha [11] reported a single universal distribution of 
the intermittency factor   that was found to be defined as a function of the normalized streamwise 

coordinate in the transition region of the boundary layer on a flat plate. Furthermore, Dhawan and 
Narasimha [11] proposed a simple mathematical model to predict the mean flow in the transition zone by 

using a linear combination of the laminar flow and the turbulent flow with the proportions of (1 )  and 


 respectively:          L T1  where the overbar denotes the mean flow, the subscript L  denotes 

the laminar flow, and the subscript T  denotes the turbulent flow. Since then, there have been various ways 
that were proposed for transition modelling in the literature. 

Dick and Elsner [12] as editors collected a set of 18 papers for an overview of the knowledge on most 
important aspects of transition physics and on developed modelling methods. Recently, Fu and Wang [13] 
provided a comprehensive review on RANS modelling of flow transition in which the review of low-
Reynolds-number turbulence models that were applied to transition predictions was given. Therefore, only 
transition models will be reviewed here in more detail. The development of transition models can be 
categorized into 2 main directions: one based on the transport equation of the intermittency factor   and 

the other based on the transport equation of the laminar kinetic energy Lk . 

The development of the transport equation for the intermittency factor   started around 1975 when 

Libby [14] and Dopazo [15] attempted to construct the transport equation for   using the conditioned 

averages to describe the interface dynamics for the interaction between the turbulent part and the non-
turbulent part at the outer-edge intermittent region of turbulent shear flows. Vancoillie and Dick [16] and 
Steelant and Dick [17] adopted such a conditioned-average concept to construct the conditionally averaged 
Navier-Stokes equations in conjunction with the intermittency factor   to predict the transitional flow. In 

Vancoillie and Dick [16], the intermittency factor   was algebraically prescribed according to Dhawan and 

Narasimha [11]. The transport equation of   was derived by Steelant and Dick [17] based on (starting 

from) the algebraic description of   in the streamwise direction proposed by Dhawan and Narasimha [11]. 

However, with the conditionally averaged Navier-Stokes equations in the transition zone, one set of the 
conditionally averaged laminar equation was required to describe the laminar state and another set of the 
conditionally averaged turbulent equation was needed to describe the turbulent state. As a result, the 
number of equations based on conditioned averages became double compared to the RANS simulation. In 
Steelant and Dick [18], the intermittency factor   was replaced by the turbulence weighting factor   and 

the transport equation for the turbulence weighting factor   was derived. The turbulence weighting factor 

  was defined as the summation of the intermittency factor   and the free-stream factor   (not to be 

confused with the specific dissipation rate   ) where the intermittency factor   was responsible for the 

transport and growth of the turbulent spots while the free-stream factor   was responsible for the 
diffusion of free-stream turbulent eddies into the boundary layer. 
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To be compatible with the conventional RANS modelling framework, Suzen and Huang [19] proposed 
the transport equation for the intermittency factor   based on a combination of the source terms adopted 

from Steelant and Dick [17] and Cho and Chung [20] in order to reproduce the streamwise and cross-
stream variations of the intermittency factor   in the transition zone. The transitional effect on the mean 

flow was taken into account by multiplying the eddy viscosity T  by the intermittency factor   in the 

diffusion terms of the Reynolds-averaged momentum equations. To account for the turbulent effect on the 

mean flow via the eddy viscosity 
T , the SST k  turbulence model of Menter [21] was employed as a 

baseline turbulence model. 
Menter, Esch and Kubacki [22] proposed the transport equation for the generalized intermittency 

variable based on experimental correlations in which case the momentum-thickness Reynolds number was 

linked to the vorticity Reynolds number 






y 2

Re  by adopting the concept of van Driest and Blumer [23] 

so that only local variables were employed and hence the integral or non-local parameters, i.e. the 

momentum thickness   or free-stream turbulence intensity Tu , could be avoided. Their transition model 

interacted with the SST k  turbulence model via the production term of the k equation only. 

Continually, Menter et al [24] proposed a general framework for the correlation-based  Re  transition 

model in which the transport equations for the intermittency factor   and the transition momentum-

thickness Reynolds number  tRe  were constructed so that their transition model could be implemented 

into the general-purpose unstructured and parallelized CFD code. Their transition model interacted with 

the SST k
 turbulence model via both the production and destruction terms of the k equation. 

However, two correlations were not provided at that time:  cRe  to control the location of transition onset 

and lengthF  to control the length of transition region. The complete version of the correlation-based  Re  

transition model with the given correlations for  cRe  and lengthF  was published later by Langtry and Menter 

in [3]. 
Durbin [25] proposed an empirical transport equation for the intermittency factor, based on local 

variables without experimental correlations, in which the diffusion of free-stream turbulence (disturbances) 
into the boundary layer was used to initiate the transition and the source term was employed to control the 

transition process. The intermittency factor obtained was then used to alter the production term of the k

equation only. The k
 turbulence model with a set of constants from Wilcox [26] was adopted. Ge, 

Arolla and Durbin [4] further improved the   equation of Durbin [25] by adding a sink term in order to 

preserve the laminar region before transition and this sink term disappeared in the turbulent region. Once 
the intermittency factor was obtained, it was further modified in order to account for the separation-
induced transition. Duraisamy and Durbin [27] reported the potential of using the data-driven approach for 
transition modelling in which the modelling information was extracted from data using inverse solutions 
and then such information was converted into modelling knowledge using machine learning techniques. 

The concept of the laminar kinetic energy Lk  started in 1997 when Mayle and Schulz [28] proposed the 

transport equation for the laminar kinetic energy to predict the streamwise fluctuations in the laminar 
boundary layer underneath free-stream turbulence before the onset of transition (the pre-transitional flow), 
and eventually to predict the onset of transition. 

Walters and Leylek [29] extended the laminar kinetic energy concept of Mayle and Schulz [28] by 

constructing the transport equation for the laminar kinetic energy Lk  in conjunction with the modified

k  turbulence model in which the energy of the streamwise fluctuations in the pre-transition zone is 
transferred to the turbulent kinetic energy via the redistribution mechanisms. Walters and Leylek [30] 

improved their 2004 version by incorporating the transport equation of the laminar kinetic energy Lk  with 

the modified k  turbulence model in order to better predict the transition breakdown process when the 
adverse pressure gradients were present. Walters and Cokljat [2] continually improved the 2005 version to 
provide a useful and practical tool over a wide range of complex flow conditions. 

Among these transition models, there have been only two transition models used in CFD commercial 

software: the Lk  transition model (Walters and Cokljat, [2]) and the  Re  transition model (Langtry and 
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Menter, [3]). The  Re  transition model is correlation-based so that it is viable only within a range of 

flow conditions that the experiments were set up to obtain such correlations. The Lk transition model is 

physics-based so that itcan be applied over a wider range of flow conditions. However, the modeling 

scheme of the Lk  transition model is insufficient and one more transport equation for   is required to 

complete the relationship among  , k  and Lk , according to the definition of  , as mentioned in 

Juntasaro and Ngiamsoongnirn [31]. Therefore, Juntasaro and Ngiamsoongnirn [31] proposed a new  Lk  

transition model in whichthe   equation was derived from the definition of   using the existing 

transport equations of k  and Lk . However, their
 
  Lk  transition model was validated only for the case 

of the transitional boundary layer on a flat plate without pressure gradient at various free-stream turbulence 

levels. Moreover, during the development of their   Lk  transition model, two non-linear terms, i.e. 

 


 

   
          

T

k jx

2

2

1
 and 

 




  
    

  

T L

L k j j

k

k x x

2
, in the intermittency transport equation were 

omitted due to the numerical difficulty of the singularity existence when the flow becomes fully turbulent in 
which case the intermittency factor is equal to unity and the laminar kinetic energy is equal to zero. For 

compensation, Juntasaro and Ngiamsoongnirn [31] used the extra term 
   




  
   

 

T

k j

k

k x

2

2

1
 to 

balance the transition mechanism in the intermittency transport equation. Therefore, the present research 

work is aimed to propose a new and complete version of the   Lk  transition model that satisfies the 

following objectives: 

(a) the new   Lk  transition model can handle the singularity problem in the fully turbulent flow 

regime after including those two non-linear terms into the intermittency transport equation of the 

  Lk
 
transition model and excluding the extra term 

   




  
   

 

T

k j

k

k x

2

2

1

 

that was previously 

used for compensation in Juntasaro and Ngiamsoongnirn [31]; 

(b) the new   Lk  transition model can take into account the effect of pressure gradient; 

(c) the performance of the new   Lk  transition model is to be assessed in a complex-flow problem. 

 

2. Model Development 
 
The derivation of the transport equation for   will be described in Subsection 2.1. How to take into 

account the effect of pressure gradient in the   Lk
 
transition model will be expressed in Subsection 2.2. 

Subsection 2.3 will provide a summary of the   Lk  transition model for transitional flow with pressure 

gradient. 
 
2.1. Derivation of a Transport Equation for   

 
Following Juntasaro and Ngiamsoongnirn [31], the definition of an intermittency factor   for modelling 

purpose is given as 
 

 
 L

k

k k
 (1) 

 

where k  is the turbulent kinetic energy and Lk  is the laminar kinetic energy. In order to derive the 

transport equation for   from its definition, Eq. (1) must be re-arranged as 
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



 
  

 1
Lk k

 

(2) 

 

Now, the transport equations of k  and Lk  are needed for use in derivation which are given 

respectively as follows: 






     
     

      

T
j k

j j k j

k k k
U S

t x x x
 

(3) 


   

   
     

L

L L L
j k

j j j

k k k
U S

t x x x
 (4) 

where Eq. (3) is the k equation from the SST k  turbulence model of Menter [21], Eq. (4) is the Lk

equation from the Lk
 
transition model of Walters and Cokljat [2], kS  denotes the source/sink terms of the 

k equation, and 
LkS  denotes the source/sink terms of the Lk equation. After substituting Eq. (2) into 

Eq. (3), the resulting equation is 
 

 

 

   

  


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     
                    

2

2

2 3

11

   +
11

22
   + +

1 1

L L L
j j

j j

L T T L

j k j j k j

T L L T

k j j k j

k k k
U U

t x t x

k k

x x x x

k k

x x x 

2

+Sk

 (5) 

 

After multiplying Eq. (5) by 




1
 and then using Eq. (4) for subtraction, the resulting equation is 

 

   

   

   


     

   
 

     

           
           

                  

      
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2

2

+
1 1

22 1
   + + + S

1 1
L

L L T T L
j

j j k j j k j

T L L T
k k

k j j k j

k k k
U

t x x x x x

k k
S

x x x

 (6) 

 

After multiplying Eq. (6) by 
  1

Lk
 and thenre-arranging with the aid of 

    



2

11

Lk k
, the 

resulting equation is 
 

 

   
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

 
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 (7) 

 
Equation (7) can be re-arranged as 
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 (8) 

 
After the last two terms in Eq. (8) are combined, the transport equation for   is obtained as 
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After all the components of the source/sink terms kS  and 
LkS  are substituted into Eq. (9), the  

equation can be expressed as 
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where  ,k kP D are the production and destruction terms from the k equation in the SST k  

turbulence model of Menter [21],  , , ,
LNAT BP L kR R D P  are the natural & bypass redistribution, dissipation 

and production terms from the Lk equation in the Lk  transition model of Walters and Cokljat [2]. 

Following Juntasaro and Ngiamsoongnirn [31], the shear-sheltering function SSf  is needed to account 

for the shear-sheltering effect in order to damp or promote the influence of bypass transition mechanism 

by controlling the production term obtained from the turbulent kinetic energy, i.e. kP , which is one of the 

main energy sources to promote bypass transition mechanism, so that the   equation finally becomes 
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 (11) 

 

where the function SSf  from Walters and Cokljat [2] is adopted here without any modification as follows: 
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  
   

   

2

expSS SSf C
k

 (12) 

 

in which case SSC  is the model constant and its optimum value was found by Juntasaro and 

Ngiamsoongnirn [31] to be  2

,SS BP critC C
 
and   2 ij ij  is the magnitude of mean rotation rate with 

 
   

   

1

2

ji
ij

j i

UU

x x
. The model constant 

,BP critC  is the threshold value for the critical point of bypass 

transition. 
 
2.2. How to Take into Account the Effect of Pressure Gradient  
 
As appearing in the empirical correlations for the determination of the transition Reynolds number based 

on momentum thickness Re t , Menter et al [24] used the local mean resultant velocity 

  
2 2 2

U U V W  to account for the effect of pressure gradient on transition via 
dU

ds
 and hence the 

pressure gradient parameter Re t  and the acceleration parameter 



2

dU
K

U ds
. 

Referred to Durbin [25] in the Discussion Section of his paper, i.e. “Turbulence closures generally do not 
depend explicitly on pressure gradient” and also referred to Menter et al [32] in the Model Formulation Section 
(in Subsection 2.2 to be more specific), i.e. “Turbulence models do typically not depend on pressure gradient”, the 

local mean resultant velocity   
2 2 2

U U V W  is employed to account for the effect of pressure 

gradient on transition in this work. 
When the    equation in Eq. (11) was used to simulate the flow with non-zero pressure gradient, i.e. 

the ERCOFTAC T3C test cases: T3C1-T3C5, it was found in the computed results that the onset of 
transition was delayed for all five test cases. This implies that there is inadequate energy transfer from the 
laminar kinetic energy to the turbulent kinetic energy during the transition process when the pressure 
gradient is applied. Since the free-stream turbulence intensity is higher than 3% for all test cases, T3C1-

T3C5 can be considered as bypass transition, and hence the redistribution term BPR
 in Eq. (11) is modified 

in order to account for the effect of pressure gradient as follows: 
 

    * 1BP PG PG BPR C f R  (13) 

 

where PGC  is the pressure gradient switch (  0PGC
 for zero pressure gradient and 1PGC  for non-zero 

pressure gradient) and PGf  is the pressure gradient function and their formulations are given below: 

 

 

 
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

 
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P
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P
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C
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 (14) 

 ,1 ,2PG PG PGf f f  (15) 

  
     

  

2

,1 1 57000 800,0PG

U
f F max

k
 (16) 

       
 

4
10 8 5

,2 ,110 4.4 10 ,0 ,5 10PG PGf min max f  (17) 
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with 






21

2

in
P

in

P P
C

U

 as the pressure coefficient and 1F  from the SST k  turbulence model of Menter 

[21]. In effect, *

BPR  will appear in both    and Lk equations but with different signs in order to transfer 

sufficient energy from laminar kinetic energy to turbulent kinetic energy to trigger the onset of transition 
when the flow experiences the pressure gradient. 
 

2.3. Lk   Transition Model 

 
For mean incompressible transitional flow, the governing equations in tensor notation can be written as 
follows: 
 





0i

i

U

x
 (18) 

    
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,

1 2

3

i i i
j T T ij

j j j i j

U U U P k
U

t x x x x x
 (19) 

 

where iU  is the mean-flow velocity, P  is the mean-flow pressure,   is the kinematic viscosity, and T  and 

 ,T  are the eddy viscosity and large-scale eddy viscosity with the following definitions respectively: 

 

 

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

1

1 2max ,
T
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 (20) 
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
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2

,2

, , 1 , 2

0.5
min Re ,

L Teff

T T eff TS

k k
f C k C d

S
 (21) 

 
The large-scale eddy viscosity in Eq. (21) is used to account for the transition process from the laminar 

state to the fully turbulent state. For turbulence and transition closures, the   equation is used in 

cooperation with the Lk equation of Walters and Cokljat [2] and the SST k  turbulence model of 

Menter [21]. A complete set of the   Lk  transition model, together with the SST k  turbulence model, 

and boundary conditions is summarized in this subsection as follows: 
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
   

      
     

*

L

L L L
j k NAT BP L

j j j

k k k
U P R R D

t x x x
 (23) 

 


  


     
        

      

max ,0.1T
j k k

j j k j

k k k
U P D

t x x x
 (24) 



DOI:10.4186/ej.2017.21.2.279 

ENGINEERING JOURNAL Volume 21 Issue 2, ISSN 0125-8281 (http://www.engj.org/) 287 

 



   


 

     
       

      

T
j k

j j j T

U P D CD
t x x x

 (25) 

 
Boundary conditions: 
 
At solid wall: 





0

nx
,  0Lk ,  0k , and 







2

1

60

d
 where nx  is the wall-normal coordinate. 

 
At inlet: 

  1,  610Lk ,  
2

1.5 in ink Tu U , and 






k

R
 with a specified viscosity ratio 






 TR . 

 
At free-stream and outlet:  
 
Zero normal gradients for all variables. 

With the aid of 
 


1

Lk k
, the coefficient of 

LkP  in the   equation is changed from 
  1

Lk
 in Eq. 

(11) to 
 2

k
 in Eq. (22) in order to enhance the numerical stability. To bring the transition mechanism into 

effect, the production and destruction terms in the k  equation, Eq. (24), are controlled by weighting 
(multiplying) them with   following the concept of Menter et al ([7], [24], [32]) and Langtry and Menter [3] 

The limit specified for   in the destruction term of Eq. (24) is required to retain the dissipation rate in the 

laminar regime. The details of the   Lk  transition model and the SST k  turbulence model used are 

summarized in the Appendix. 
 

3. Model Implementation and Numerical Method 
 

The   equation in Eq. (22), the Lk equation in Eq. (23), and the SST k  turbulence model in Eqs. 

(24) - (25) are implemented into the commercial CFD software ANSYS FLUENT version 14.0 by 
transforming these model transport equations into the User-Defined Scalar (UDS) transport equations in 

User-Defined Functions (UDFs) as guided in the ANSYS FLUENT UDF manual, including T  in Eq. (20) 

and  ,T

 
in Eq. (21) that are added into the momentum equations in Eq. (19) via the diffusion term using 

the built-in DEFINE_TURBULENT_VISCOSITY macro and the source term using the built-in 
DEFINE_SOURCE macro respectively. The implementation of the models into ANSYS FLUENT using 
UDF is properly validated. The SIMPLEC scheme is selected to cope with the pressure-velocity coupling. 
The second-order upwind scheme is used for the discretization in all equations. In case of the transitional 
boundary layer on a flat plate with zero pressure gradient, the mesh resolution and number of cells used for 
the ERCOFTAC test cases T3AM, T3A and T3B are summarized in Table 1, and a typical mesh 
distribution is shown in Fig. 1 where the domain inlet is located at the streamwise distance  0.05x  m 
upstream of the leading edge (  0x m).  
 
Table 1. Mesh and cell information for the transitional boundary layers on a flat plate with zero pressure 
gradient. 
 

Test case Mesh resolution in x direction Mesh resolution in y direction No. of cells 

T3AM 794 176 138775 
T3A 336 147 48910 
T3B 336 147 48910 
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Fig. 1. Computational domain, boundary conditions and mesh distribution for the transitional boundary 
layer on a flat plate with zero pressure gradient. 
 

In case of the transitional boundary layer on a flat plate with non-zero pressure gradient, the mesh 
resolution employed for the ERCOFTAC test cases T3C1-T3C5 is 300 75x  in the streamwise and wall-
normal directions respectively, and a typical mesh distribution is displayed in Fig. 2.  
 
 
 

 
 
 
 
Fig. 2. Computational domain, boundary conditions and mesh distribution for the transitional boundary 
layer on a flat plate with non-zero pressure gradient. 
 

In case of the transitional flow in a compressor cascade of Zaki et al [5], the mesh resolution is 
223 226x  in the streamwise and wall-normal directions respectively, and a typical mesh distribution is 
illustrated in Fig. 3. For all simulations, the first cell center adjacent to the wall is maintained to locate well 

below the distance of 
  1y . All the results presented here are grid-independent solutions. 
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Fig. 3. Computational domain, boundary conditions and mesh distribution for the transitional flow in a 
compressor cascade. Only every third line in x- and y-directions is presented in the mesh distribution. 
 

4. Results and Discussion 
 

The   Lk  transition model is validated with the experimental data of Coupland [1] in ERCOFTAC T3 

series (T3AM, T3A, T3B) in case of the transitional boundary layer on a flat plate with zero pressure 
gradient and the experimental data of Coupland [1] in ERCOFTAC T3C series (T3C1-T3C5) in case of the 

transitional boundary layer on a flat plate with non-zero pressure gradient. The performance of the   Lk  

transition model is assessed in case of the transitional flow in a compressor cascade where the DNS data of 
Zaki et al [5] are available. The predicted results of (1) flow with zero pressure gradient, (2) flow with non-
zero pressure gradient, and (3) flow in a compressor cascade are summarized in Subsections 4.1, 4.2 and 4.3 
respectively. Discussion on model performance is given in Subsection 4.4. In comparison with the results 

of the   Lk  transition model, the results from the Lk  and  Re  transition models are obtained from 

ANSYS FLUENT which are already validated with the original ones reported in Walters and Cokljat [2] 
and Langtry and Menter [3] respectively. 
 
4.1. Flow with Zero Pressure Gradient 
 
The computational domain and boundary conditions are shown in Fig. 1. The inlet conditions of T3AM, 

T3A and T3B are summarized in Table 2 where the free-stream velocity at inlet inU  is fixed with the same 

value as given in the experimental data while the free-stream turbulence intensity at inlet inTu  and the 

viscosity ratio at inlet R  are adjusted to match the decay of free-stream turbulence intensity between 

simulation and experiment. Only the   Lk  transition model is considered in this case.  

 

Table 2. Inlet conditions for ERCOFTAC T3 series where L  = 1.7 m is the length of the flat plate. 
 

Test case inU  (m/s) inTu  (%) TR    ReL inU L   

T3AM 19.8 1.04 7.0 62.24 10  

T3A 5.4 3.8 12.0 56.12 10  

T3B 9.4 6.5 100.0 61.07 10  

 
 

Figure 4 shows the decay of free-stream turbulence intensity, Tu , where the simulation results fit the 

experimental data very well for all three test cases. 
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Fig. 4. Decay of free-stream turbulence intensity in case of the transitional boundary layer on a flat plate 
with zero pressure gradient. Lines for simulations. Symbols for experimental data. 

 

In Fig. 5, the distributions of skin friction coefficient, fC , obtained from the simulations are in good 

agreement with the experimental data for T3A and T3AM test cases. For T3B test case, the   Lk  

transition model cannot capture the minimum value of fC . 

 

 
Fig. 5. Distribution of fC  in case of the transitional boundary layer on a flat plate with zero pressure 

gradient. Lines for simulations. Symbols for experimental data. 
 
4.2. Flow with Non-Zero Pressure Gradient 
 
In this case, the computational domain and boundary conditions are shown in Fig. 2. The local height of 
the upper curved boundary from the lower flat plate is mathematically described following the conservation 
law of mass so that the local free-stream velocity as a slip boundary condition is distributed in the same way 
as the experimental data, and hence the desired pressure gradient is obtained. The formulations of the local 
height of the upper curved boundary are adopted from Suluksna et al [33] as follows: 
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       6 5 4 3 2/ min 1.356 7.591 16.513 17.510 9.486 2.657 0.991,1h H x x x x x x  (26a) 

       6 5 4 3 2/ min 1.231 6.705 14.061 14.113 7.109 1.900 0.950,1h H x x x x x x  (26b) 

 

where h  is the local height of the upper curved boundary, H  is the height of the upper curved boundary at 

inlet (  0.2H m), and x  is the streamwise distance along a lower flat plate starting from the leading edge (
0x   m). Eq. (26a) is specifically applied to T3C4 while Eq. (26b) is applied to T3C1, T3C2, T3C3 and 

T3C5. Figure 2 displays a typical profile of the upper curved boundary. 
The inlet free-stream velocity conditions of T3C1-T3C5 are summarized in Table 3 where the free-

stream velocity at inlet 
inU  is adjusted to match the local free-stream velocity distribution between the 

simulation results and the experimental data. In this case, the   Lk  transition model is considered in 

comparison with the Lk  and  Re  transition models within the same CFD software.  

 

Table 3. Inlet free-stream velocity conditions for ERCOFTAC T3C series where L  is the horizontal length 
of the upper curved boundary from the leading edge x = 0 m to x = 1.7 m. 
 

Test case inU  (m/s) ReL inU L   

T3C1 5.7 6.46x105 
T3C2 4.85 5.50x105 
T3C3 3.55 4.02x105 
T3C4 1.14 1.29x105 
T3C5 8.2 9.29x105 

 
It is shown in Fig. 6 that the distributions of the local free-stream velocity obtained from the 

simulations of T3C1-T3C5 are in good agreement with the experimental data for all three transition models.  
 

 
Fig. 6. Distribution of the local free-stream velocity in case of the transitional boundary layer on a flat 
plate with non-zero pressure gradient. 

In Table 4 and Table 5, the inlet free-stream turbulence intensity and viscosity ratio conditions of 

T3C1-T3C5 are summarized respectively where the free-stream turbulence intensity at inlet inTu  and the 
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viscosity ratio at inlet R
of each transition model are adjusted to match the decay of free-stream 

turbulence intensity between the simulation results and the experimental data. 
 

Table 4. Inlet free-stream turbulence intensity conditions for ERCOFTAC T3C series. 
 

Test case inTu  (%) 

 Lk   Re   Lk  

T3C1 15.0 15.0 15.0 
T3C2 5.0 5.0 5.0 
T3C3 4.0 4.0 4.5 
T3C4 3.0 4.0 3.0 
T3C5 5.0 7.0 5.0 

 
Table 5. Inlet viscosity ratio conditions for ERCOFTAC T3C series. 
 

Test case 
TR    

Lk   Re   Lk  

T3C1 60.0 60.0 55.0 
T3C2 9.0 9.0 9.0 
T3C3 7.0 7.0 7.5 
T3C4 3.0 4.0 4.0 
T3C5 16.0 20.0 16.0 

 
Figure 7 shows the decay of free-stream turbulence intensity where the simulation results obtained 

from all three transition models can fit the experiment data for all five test cases. 

 
Fig. 7. Decay of free-stream turbulence intensity in case of the transitional boundary layer on a flat plate 
with non-zero pressure gradient. 

For the T3C1 test case, the distribution of fC  is shown in Fig. 8 where the Lk  transition model can 

predict the minimum value of fC  very well while both   Lk  and  Re
 
transition models over-predict 

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

1

2

3

T3C5

Re
x
/Re

L

T3C5T3C5

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0.5

1

1.5

2

2.5

3

T3C4T3C4T3C4

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0.5

1

1.5

2

2.5

3

T3C3

T
u


 
(
%

)

T3C3T3C3

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0.5

1

1.5

2

2.5

3

T3C2T3C2T3C2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

2

4

6

8

T3C1

 

 

Exp

-k
L

-Re

k
L



DOI:10.4186/ej.2017.21.2.279 

ENGINEERING JOURNAL Volume 21 Issue 2, ISSN 0125-8281 (http://www.engj.org/) 293 

the minimum value of fC . The onset of transition is well predicted by all three transition models but the 

transition lengths from these three transition models are rather short compared to the experimental data. 
 

 
Fig. 8. Distribution of fC  in case of T3C1. 

 

The distribution of 
fC in case of T3C2 is illustrated in Fig. 9 in which the predicted result of the 

  Lk  transition model is in good agreement with the experimental data whereas both  Re  and Lk  

transition models similarly predict the delayed onset of transition and hence the under-predicted 

distribution of fC  in the transition zone. 

 

 
Fig. 9. Distribution of fC  in case of T3C2. 
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In case of T3C3 where the distribution of fC  is displayed in Fig. 10, the predicted result of the   Lk  

transition model is in good agreement with the experimental data while the  Re  transition model yields 

too fast growth rate for fC  and the 
Lk  transition model predicts the onset of transition too late. 

 
Fig. 10. Distribution of fC  in case of T3C3. 

 

For the T3C4 test case, the distribution of fC  is shown in Fig. 11 where the predicted result of the 

  Lk  transition model is in reasonably good agreement with the experimental data. The  Re  

transition model predicts the good onset location of transition but the transition growth rate is too slow. 

Like the T3C3 test case, the Lk  transition model predicts the onset of transition too late in this case. 

 

 
Fig. 11. Distribution of fC  in case of T3C4. 

 

Figure 12 illustrates the distribution of fC  in case of T3C5 in which the predicted result of the   Lk  

transition model is in good agreement with the experimental data. The  Re  transition model under-

predicts the distribution of fC  in the transition zone due to the slightly delayed onset of transition. Similar 
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to the T3C3 and T3C4 test cases, the 
Lk  transition model predicts the onset of transition too late in this 

case. 

 
Fig. 12. Distribution of fC  in case of T3C5. 

 
4.3. Flow in a Compressor Cascade 
 
The geometry of the compressor blade is based on NACA 65. The computational domain and boundary 

conditions are shown in Fig. 3. The inflow angle of the inlet free-stream velocity is 42o
 with respect to the 

horizontal axis. The inlet conditions of T2 and T3 test cases are summarized in Table 6.  
 

Table 6. Inlet conditions for flow in a compressor cascade where L  is the axial chord length. 
 

Test case inU  (m/s) inTu  (%) ink  in  ReL inU L   

T2 2.0775 9.0 0.05243948 130.0 138500 
T3 2.0775 11.0 0.07833551 100.0 138500 

 
In this case, the computational domain, mesh and inlet conditions are adopted from Ge et al [4]. Since 

all three transition models (   Lk ,  Re and Lk  models) are applied with the same computational 

domain, mesh and inlet conditions as Ge et al [4] so that the performance of these three transition models 
can be compared with that of the   transition model of Ge et al [4]. With the same inlet conditions, the 

computed results of the decay of turbulence intensity along the mid-pitch obtained from the   Lk ,

 Re  
and Lk  transition models are compared with the DNS data of Zaki et al [5] for both T2 and T3 

test cases in Fig. 13 in which the results of both   Lk  and  Re  transition models are in good 

agreement with the DNS data while the results of the Lk  transition model are under-predicted for both T2 

and T3 test cases. This implies that the Lk  transition model is sensitive to the inlet conditions. For the T2 

test case, the distributions of fC  along the suction- and pressure-side surfaces of the compressor blade are 

shown in Fig. 14 and Fig. 15 respectively. On the suction-side surface, there appears a separation bubble in 

the DNS data which can be detected by the   Lk , Lk  and   transition models whereas the  Re  

transition model cannot detect the separation. The separation lengths predicted by the   Lk , Lk  and   

transition models are almost the same but larger than that of the DNS data. It is noticed that in this T2 case 

the   Lk
 
transition model fails to predict reattachment. The reattachment cannot be captured because 

the energy transfer from the laminar kinetic energy ( Lk ) to the turbulent kinetic energy ( k ) is insufficient. 
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The minimum value of fC  in the DNS data can be best predicted by the   transition model but worst by 

the Lk  transition model. On the pressure-side surface, there is no separation bubble in the DNS data 

which can be predicted correctly by the   Lk ,  Re
 
and   transition models, except the 

Lk  transition 

model which predicts a large extent of separation zone. The minimum value of fC  in the DNS data can be 

predicted correctly by the  Re  and   transition models but is over-predicted by the   Lk  transition 

model. The onset of transition can be predicted correctly by the   Lk  and  Re  transition models but 

is delayed as found in the result of the   transition model. 

 

 
Fig. 13. Decay of turbulence intensity along the mid-pitch in case of the transitional flow in a compressor 
cascade (T2 and T3 test cases). 
 

 
Fig. 14. Distribution of fC  on the suction-side surface in case of T2. 
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Fig. 15. Distribution of fC  on the pressure-side surface in case of T2. 

 

The distributions of the pressure coefficient, PC , along the suction- and pressure-side surfaces of the 

compressor blade are shown in Fig. 16. On the pressure-side surface, the   Lk ,  Re  and   

transition models can predict the distribution of PC  very well, except the Lk  transition model. On the 

suction-side surface, there is a dip in the DNS data at around / 0.6x L  which can be correctly predicted 

only by the   Lk  transition model while over-predicted by the  Re
 
and   transition models and 

under-predicted by the Lk  transition model. 

 

 
Fig. 16. Distribution of PC  in case of T2. 

 

For the T3 test case, the distributions of fC  along the suction- and pressure-side surfaces of the 

compressor blade are shown in Fig. 17 and Fig. 18 respectively. On both suction- and pressure-side 

surfaces, there is no separation bubble detected in the DNS data. However, the Lk  transition model detects 

the fault separation bubble on both suction and pressure sides. On the suction-side surface, the   Lk  

transition model can predict the fC  distribution better than the  Re  and   transition models where 
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the  Re  transition model over-predicts the fC  distribution in the transition region while the   

transition model predicts the fault separation like the Lk  transition model. On the pressure-side surface, 

the   Lk ,  Re
 
and   transition models can reasonably predict the fC  distribution in the transition 

region. The minimum value of fC  in the DNS data can be best predicted by the   transition model but 

worst by the   Lk  transition model. It is noticed that the transition extent in this T3 case predicted by the 

  Lk transition model is rather small on both suction- and pressure-side surfaces.  

 

 
Fig. 17. Distribution of fC  on the suction-side surface in case of T3.

 

 
Fig. 18. Distribution of fC

 
on the pressure-side surface in case of T3.

 
 

The distributions of PC  along the suction- and pressure-side surfaces of the compressor blade are 

shown in Fig. 19 in which the  Lk ,  Re
 
and   transition models can predict the distribution of PC  

very well, except the Lk  transition model which detects the fault dips of PC  on both suction and pressure 

sides. 
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Fig. 19. Distribution of PC  in case of T3. 

 
4.4. Discussion on Model Performance 
 
The DNS data of the transitional flow in the compressor cascade from Zaki et al [5] is a good test case for 
assessing the performance of transition models because the ERCOFTAC T3- and T3C-series experimental 
data have already been employed to determine the appropriate values for the model constants. The ability 
to detect a separation bubble on a compressor blade is a good indicator for the prediction capability of 
transition models. Therefore, the separation bubbles detected on the suction- and pressure-side surfaces of 

the compressor blade by the  Re , Lk ,   and   Lk  transition models are summarized in comparison 

with the DNS data in Table 7. It is found that the   Lk  transition model is the one and only transition 

model that can consistently predict the existence of the separation bubble on the compressor blade. 
 
Table 7. Summary of model performance. 
 

Transition models 
T2 test case T3 test case 

Suction side Pressure side Suction side Pressure side 

DNS separation no separation no separation no separation 

  Lk  separation no separation no separation no separation 

 Re  no separation no separation no separation no separation 

Lk  separation separation separation separation 
  separation no separation separation no separation 

 

5. Conclusion 
 
The present research work has been conducted in order to continually develop and propose a new and 

complete version of the   Lk  transition model that can apply to the transitional flow with pressure 

gradient. The new   Lk  transition model is validated with the ERCOFTAC T3- and T3C-series 

experimental data of Coupland [1]. The validated results of the   Lk  transition model are in good 

agreement with the experimental data. The performance of the   Lk  transition model is assessed in case 

of the transitional flow through the compressor blade passage of Zaki et al [5]. It is found that the   Lk  

transition model is the only transition model that can consistently capture the separation bubble on the 
compressor blade. 
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Appendix: Details of the Lk   Transition Model and the SST k   Turbulence Model 

Used 
 

All physical terms, extra term, parameters, functions and constants of the   Lk  transition model are given 

below: 
 
Production terms: 
 

 2

k TP S
 

 2

,Lk TP S
 

 
Destruction terms: 
 

  *

kD k
 

  2D
 


 


 

2
L L

L

j j

k k
D

x x
 

 
Redistribution terms: 
 

 ,NAT R NAT NAT LR C k
 




,R BP BP

BP L

W

C
R k

f
 

 
Other relevant physical terms: 
 

 2 ij ijS S S = Magnitude of the mean strain rate 

 
  

   

1

2

ji
ij

j i

UU
S

x x
= Mean strain rate 

  2 ij ij = Magnitude of the mean rotation rate 

 
   

   

1

2

ji
ij

j i

UU

x x
= Mean rotation rate 

   , 1T SS Wk f f k = Large-scale turbulent kinetic energy 

  min ,eff TC d  = Effective length scale 







*

T
T

k
= Turbulent length scale 

d = Wall-normal distance to the nearest wall 
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Parameters of the   Lk  transition model: 

 

 



 
   
 
 

2

,max Re ,0
1 exp

TS crit
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1 exp NAT

NAT
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 
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    

   

,

,

max Re ,0
NAT crit
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NAT crit
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f
 


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 
   

 
1 exp BP

BP

BPA
 




  
     

,max ,0BP BP crit

k
C  

 

Functions of the   Lk  transition model: 
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 
 

, 1 exp
L
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k d
f C  

 

Constants of the Lk   transition model: 

 

Model constants Specified values References 

1.
 

,NAT critC  817 present 

2.
 

,BP critC  8.2 present 

3.
 

C  0.39 present 

4.
 

,R NATC  2 Juntasaro and Ngiamsoongnirn [31] 

5.
 

2C  10-8 
Juntasaro and Ngiamsoongnirn [31] 

6.
 

,R BPC  0.36 Juntasaro and Ngiamsoongnirn [31] 

7.
 

SSC   2

,SS BP critC C  Juntasaro and Ngiamsoongnirn [31] 

8.
 

BPA  0.6 Walters and Cokjlat [2] 

9.
 

NATA  200 Walters and Cokjlat [2] 

10.
 

TSA  200 Walters and Cokjlat [2] 

11.
 

NCC  0.1 Walters and Cokjlat [2] 

12.
 

,TS critC  1000 Walters and Cokjlat [2] 

13.
 

1C  3.4x10-6 
Walters and Cokjlat [2] 

14.
 

 ,C  4360 Walters and Cokjlat [2] 
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Extra term and relevant functions of the SST k   turbulence model: 
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 
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Constants of the SST k   turbulence model: 
 

1 0.31a  

     1 1 1 21F F  

 

where 
 
stands for  k ,  ,   and   with the following two-layer parts: 

 

1  (SST inner):
 
 1 1.176k ,  1 2.0 ,  1 0.075 ,  * 0.09 ,  1 0.553  

 

2  (Standard k  outer):  2 1.0k ,  2 1.168 ,  2 0.0828 ,  * 0.09 ,  2 0.44  

 
Reynolds numbers: 
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