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Abstract. A number system that is well-designed can affect the computational time and 
the hardware implementation. An interesting number system called Round-to-Nearest 
coding (RN-coding) was proposed to reduce a time consuming in a rounding process. 
Rounding to the nearest in RN-coding can be done using only truncation at any positions 
in a sequence of digits (representation). This concept can save a lot of time in a parallel or 
pipeline computation manner. However, an RN-coding does not support an on-line 
arithmetic computation. In this paper, we propose a rational digit number system which 
is composed of rational signed-digits in the digit set. This new system preserves a round-
to-nearest property and is suitable for an on-line arithmetic computation. Performing on-
line elementary arithmetic operations in our system can be done by an on-line digit set 
conversion algorithm. We show that our new algorithm, which is an improvement of an 
on-line addition algorithm in our previous work, can be demonstrated by an on-line finite 

automaton with a finite on-line delay . 
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1. Introduction 
 
The characteristics of a number system mostly affect the performance of computation in a computer system. 
The Signed-digit number system proposed by Avizienis [1] is a well-known example. The system consists of 
positive and negative integer digits in the digit set that has an important characteristic called redundant 
property. It means that a redundant number in this system can have more than one representation. Since this 
property has an ability to limit carry propagation during a computation, a parallel computational manner can 
be performed in a constant time. However, a number representation in a computer system is finite and cannot 
represent all numbers. It needs an additional process to round an overflow number that needs more 
computational time. 

An idea on number system called interval number system [2-4] was proposed to handle an inexact 
number. An interval consists of two numbers that are a lower bound and an upper bound. The idea of this 
system is to represent an inexact number within an interval. During a computational process, an interval 
representation does not need a rounding process often comparing with a conventional number 
representation. An improvement made on interval number system [5, 6] is a new system designed to reduce 
the number of digits in the digit set. The new system can save a space used to represent an interval. However, 
a computational time in an interval number system is slower than a conventional number system due to the 
comparison between a lower bound and an upper bound of an interval. 

There is an interesting number system called RN-coding [7]. This system was proposed to reduce 
unnecessary time consumption in a rounding process. A rounding process in this system can be done by 
truncating at any position in a sequence of digits (representation). The obtained number representation always 
has the same numerical value as a rounding to the nearest. However, an RN-coding does not support an on-
line computational manner that is suitable for an inexact number in the case where number is very large. An 
on-line computational manner [8, 9] was first introduced by Ercegovac and Trivedi. The idea of this 
computation is to perform addition, subtraction, multiplication and division in the same direction started 
from the most significant digit. 

In this work, we propose a rational digit number system that supports an on-line computational manner. 
It also preserves a round-to-nearest property similar to an RN-coding. This number system consists of 
rational signed-digits in the digit set. Since an elementary arithmetic operation can be expressed by a digit set 
conversion, we then propose an on-line digit set conversion algorithm that is demonstrated by an on-line 

finite automaton with an on-line delay 𝑘 in our system. This new algorithm is an improvement of an on-line 
addition algorithm in our previous work [10]. 

This paper is organized as follows: Section 2 recalls some background and notations used in this work. 
The rational digit number is proposed in Section 3. Section 4 shows a digit set conversion by an on-line finite 
automaton in our system. The conclusion is discussed in Section 5. 
 

2. Background and Related Works 
 
In this section, we start by reviewing some preliminaries on number systems including redundancy property 
which is required in an on-line computation. We then recall some definitions of a digit set conversion and an 
on-line finite automaton that are used in this work. Finally, we talk about a round-to-nearest number system.   
 
2.1. Number Systems 
 

A conventional number representation consists of a contiguous digit set (𝒟) and a positive integer base (𝛽). 
A number is represented by a finite or infinite sequence of digits. In this system, each positive number can 
have only one representation. We start by introducing the definition of the conventional number 
representation in definition 1.  
 
Definition 1 (Conventional number representation) 
A conventional number representation consists of a base 𝛽 which can be an integer number such that 𝛽 ≥ 2 

and a finite digit set 𝒟 = {0, 1, … , 𝛽 − 1}. A number representation 𝑋 on 𝒟 is a sequence of digits as 𝑋 =
(𝑥𝑛𝑥𝑛−1…𝑥0. 𝑥−1𝑥−2…)𝛽 where 𝑥𝑖 ∈ 𝒟 and 𝑖 ≤ 𝑛. A numerical value of 𝑋 in a base 𝛽 is denoted by 

‖𝑋‖ = ∑ 𝑥𝑖𝛽
𝑖𝑛

𝑖=−∞ . 
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Since a conventional number representation has only one representation in each number, it limits an 
ability to perform a parallel or pipelining arithmetic computation. An interesting number system called 
redundant number system was proposed handle those problems. Redundant number system has a 
characteristic that some numbers in this system can have more than one number representation. It can limit 
carry propagation during a computational process. To construct a redundant number system is to add more 
digits in the digit set. There are many number systems that have a redundant property such as a signed-digit 
number system proposed by Avizienis [1] in 1961. A generalized signed-digit number representation was 
proposed by Parhami [11] in definition 2. 
 
Definition 2 (Generalized signed-digit number representation) 

A generalized signed-digit number representation consists of a base 𝛽 ≥ 2 where 𝛽 is an integer number and 

a finite digit set 𝒟 = {−𝑎,−𝑎 + 1,… ,0, … , 𝑏 − 1, 𝑏} with 𝑎and 𝑏 as integers that 𝑎, 𝑏 ≥ 0 and 𝑎 + 𝑏 +

1 > 𝛽. A numerical value of 𝑋 can be defined as ‖𝑋‖ = ∑ 𝑥𝑖𝛽
𝑖𝑛

𝑖=−∞  where 𝑥𝑖 ∈ 𝒟 and 𝑖 ≤ 𝑛. 
 

In a signed-digit number representation, we usually denotes a signed-digit –𝛼 by 𝑎. We show an example 
of the number system that has a redundant property in example 1. 
 

Example 1 A representation of 𝑋 = (312)10 in a base 𝛽 = 3 with a digit set 𝒟 = {1̅ ,0, 1, 2}. 
Since the number of digits in the digit set 𝒟 is more than the base 𝛽, it means that this system has a redundant 

property by Definition 2. Thus, the number 𝑋 = (312)10 can have more than one representation in a base 

𝛽 = 3 such as (111̅21̅0)3 and (1101̅1̅0)3.           □ 
 
2.2. Digit Set Conversion 
 
Digit set conversion [12, 13] can be used to describe arithmetic operations. Digit set conversion is a conversion 

from a digit set 𝐸 to a digit set 𝒟 with the same base 𝛽 where 𝐸 ≠ 𝒟. It means that given any number 

representation in a digit set 𝐸, find the number representation in a digit set 𝒟 that has the same numerical 

value with the same base 𝛽. A conversion function 𝜆 can be defined as 𝜆: 𝐸ℕ → 𝒟ℕ where 𝐸ℕ and 𝒟𝒩 are 

finite or infinite words and for each  𝑋 ∈ 𝐸ℕ, ‖𝜆(𝑋)‖ = ‖𝑋‖. 
A digit set conversion can be applied to an addition and a multiplication with a fixed integer. An addition 

by a digit set conversion is a conversion from 𝐸 = {𝑒 ∈ ℤ|2𝑎 ≤ 𝑒 ≤ 2𝑏} to 𝒟 = {𝑑 ∈ ℤ|𝑎 ≤ 𝑑 ≤ 𝑏}. A 

multiplication with an integer 𝑚 is a conversion from 𝐸 = {𝑒 ∈ ℤ|𝑚𝑎 ≤ 𝑒 ≤ 𝑚𝑏} to 𝒟 = {𝑑 ∈ ℤ|𝑎 ≤ 𝑑 ≤
𝑏} with the same base 𝛽. For example, an addition of two numbers in base 𝛽 = 2 with a digit set 𝒟 = {1̅, 0, 1} 
can be described as a digit set conversion from a digit set 𝐸 = {2̅, 1̅, 0, 1, 2} to a digit set 𝒟 = {1̅, 0, 1} with 
the same numerical value. 
 

Example 2 An addition of 𝑋 = 11̅0011̅ and 𝑌 = 1011̅11̅ in a base 𝛽 = 2 by a digit set conversion. 

An addition of any two numbers can be done by a digit set conversion from a digit set 𝐸 = {2̅, 1̅, 0, 1, 2} to a 

digit set 𝒟 = {1̅, 0, 1} with the same base 𝛽 = 2. A process starts by making a sum in all positions which gives 

a temporary result as 21̅11̅22̅. This corresponds to the conversion from 21̅11̅22̅ to 11̅01̅101̅0 in base 𝛽 =
2. 

       1 1̅ 0 0 1 1̅        𝑋 
       1 0 1 1̅ 1 1̅ +    𝑌 

       2 1̅ 1 1̅ 2 2̅        𝑋 + 𝑌 
1 1̅ 0 1̅ 1 0 1̅ 0  

 
 

2.3. On-line Finite Automaton 
 
In order to reduce an arithmetic computational time, an on-line finite automaton is applied with a digit set 
conversion to perform a pipelining arithmetic computation. An on-line finite automaton [14-17] is known as 

transducer or sequential automaton. This automaton can convert a digit set 𝐸 to a digit set 𝒟, flowing  serially 
digit by digit, starting from the most significant digit. 
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Definition 3 (On-line finite automaton) 

An on-line finite automaton 𝒜 = (𝑄, 𝐸 × (𝒟 ∪ 𝜀), 𝑞0, 𝐹) with an on-line delay 𝑘 consists of a finite set of 

states 𝑄, a finite set of input 𝐸 and output 𝒟, an empty word 𝜀, an initial state 𝑞0, and a finite set of transition  

𝐹 which can be illustrated by 𝑝
𝑥/𝑦
→  𝑞 with 𝑥 ∈ 𝐸 and 𝑦 ∈ 𝒟. 

 

An on-line finite automaton has a special characteristic called an on-line delay 𝑘. The process of an on-

line finite automaton with an on-line delay 𝑘 starts from reading the first 𝑘 input digits (from the most 

significant digit) without producing any output digits. From the (𝑘+1)th-position of the input, it produces one 
output digit after reading one input digit consequently. The transition of an on-line finite automaton can be 

defined as 𝑝
𝑥/𝑦
→  𝑞 where 𝑥 ∈ 𝐸 and 𝑦 ∈ 𝒟. This automaton can be described with a directed labeled graph as 

follow. 

𝑞0
𝑥1/𝜀
→  𝑞1

𝑥2/𝜀
→  𝑞2. . .

𝑥𝑘/𝜀
→  𝑞𝑘 

Before it produces an output result after reading all input digits and then stopping at state 𝑞𝑗, it needs an 

additional function to calculate the rest of the output result from a last state 𝑞𝑗. A function called terminal 

function 𝜔:𝑄 → 𝒟∗ is defined to produce 𝑘 output digits appended to the end of an output result. An example 

of an on-line finite automaton in base 𝛽 = 2 that converts a digit set 𝐸 = {2̅, 1̅, 0, 1, 2} to a digit set 𝒟 =
{1̅, 0, 1} with an on-line delay 𝑘 = 2 is shown in Fig. 1. 

 

 
 

Fig. 1. An on-line finite automaton in base 𝛽 = 2 that converts a digit set 𝐸 = {2̅, 1̅, 0, 1, 2} to a digit set 

𝒟 = {1̅, 0, 1} with an on-line delay 𝑘 = 2 [16]. 
 
2.4. Round-to-Nearest Number System 
 
Round-to-Nearest (RN) number system has an important property that truncating at any position of a 
sequence of digits (representation) is equivalent to rounding to the nearest. Balanced ternary system [18, 19] 

consists of a base 𝛽 = 3 and a digit set 𝒟 = {1̅, 0, 1} is an example of the system that has this property. In 
2005, Kornerup and Muller [7] introduced a generalization of round-to-nearest number system called RN-
coding which was defined in definition 4. 
 
Definition 4 (RN-coding) 

A number system consists of a base 𝛽 ≥ 2 with a digit set 𝒟 = {−𝛽 + 1,−𝛽 + 2,… ,0, … , 𝛽 − 2, 𝛽 − 1}. 
Any number representation 𝑋 = (𝑥𝑛𝑥𝑛−1…𝑥0. 𝑥−1𝑥−2…)𝛽 is an RN-coding if and only if 
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∀𝑖 ≤ 𝑛, | ∑ 𝑥𝑖𝛽
𝑖

𝑗−1

𝑖=−∞

| ≤
1

2
𝛽𝑗 

 
Some important characteristics of an RN-coding are 

 For an odd base 𝛽, a number representation 𝑋 is an RN-coding if and only if ∀𝑖,
−𝛽+1

2
≤ 𝑥𝑖 ≤

𝛽−1

2
 

 For an even base 𝛽, a number representation 𝑋 is an RN-coding if and only if ∀𝑖,
−𝛽

2
≤ 𝑥𝑖 ≤

𝛽

2
 and 

if |𝑥𝑖| =
𝛽

2
 then the next first nonzero digit on the right must have an opposite sign compare to 𝑥𝑖. 

 
Remark There are two representations of an RN-coding in an even base but there is only one representation 
in an odd base. 
 

Example 3 RN-coding of 𝑋 = (151)10 in base 𝛽 = 2 and 𝛽 = 3. 

RN-coding of 𝑋 = (151)10 in base 𝛽 = 2 and 𝛽 = 3 both use the same digit set 𝒟 = {1̅, 0, 1}. For an odd 

base 𝛽 = 3, a unique representation 𝑋 is (11̅01̅1̅1)3. For an even base 𝛽 = 2, there are two representations 

𝑋 that are (11̅011̅1001̅)2 and (11̅011̅101̅1)2.                   □ 
 

There are many researches in RN-coding [20-24] that propose about arithmetic algorithms together with 
their implementation. However, they do not support an on-line computational manner. 
 

3. Rational Digit Number 
 
We propose a rational digit number system that is suitable for an on-line digit set conversion. The definition 
of a rational digit number is described in definition 5. 
 
Definition 5 (Rational digit number) 

A number 𝑋 = (𝑥𝑛𝑥𝑛−1…𝑥0. 𝑥−1𝑥−2…)𝛽 with 𝑥𝑖 ∈ 𝒟 and 𝑖 ≤ 𝑛 is said to be a representation in a rational 

digit number if and only if a base 𝛽 ≥ 2 and a digit set 𝒟 = {−𝛼,−𝛼 + 1

2
, … ,0, … , 𝛼 − 1

2
, 𝛼} where 𝛼 =

𝛽+(𝛽 𝑚𝑜𝑑 2)

4
. 

 

A rounding process of a rational digit number 𝑥𝑛𝑥𝑛−1…𝑥0. 𝑥−1𝑥−2… at position 𝑗 (𝑗 ≤ 𝑛) can be 

performed using only a truncation at the position 𝑗 and  

| ∑ 𝑥𝑖 × 𝛽
𝑖

𝑗−1

𝑖=−∞

| <
1

2
𝛽𝑗 

The obtained representation 𝑋′ = 𝑥𝑛𝑥𝑛−1…𝑥𝑗 is always closest to 𝑋 and also valid in a rational digit number 

representation. 
To show the completeness of this number system, we introduce a theorem that can convert every 

conventional number into a rational digit number. 
 
Theorem 1 
Any conventional number can have a representation in a rational digit number. 
Proof: To proof this theorem, we introduce two conversion algorithms for an even base and odd base. Both 
algorithms convert a conventional number into a rational digit number.  
 
Algorithm 1 (Rational digit number conversion for an even base) 

input   𝑋 = 𝑥𝑛𝑥𝑛−1…𝑥0. 𝑥−1𝑥−2…  where 0 ≤ 𝑥𝑖 ≤ 𝛽 − 1 

output 𝑍 = 𝑧𝑛+2𝑧𝑛+1…𝑧0. 𝑧−1𝑧−2…   where −𝛼 ≤ 𝑧𝑖 ≤ α 
begin 

            𝑐𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0 

            for all (𝑖 ≤ 𝑛) 
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     if 0 ≤ 𝑥𝑖 ≤ ⌈𝛼⌉ − 1    then  𝑐𝑖+1 = 0 endif 

     if ⌈𝛼⌉ ≤ 𝑥𝑖 ≤
𝛽

2
+ ⌈𝛼⌉ − 1   then  𝑐𝑖+1 =

1

2
 endif 

     if 
𝛽

2
+ ⌈𝛼⌉ ≤ 𝑥𝑖 ≤ 𝛽 − 1  then  𝑐𝑖+1 = 1 endif 

                 𝑦𝑖 = 𝑥𝑖 − (𝑐𝑖+1 × 𝛽) + 𝑐𝑖 
            𝑦𝑛+1 = 𝑐𝑛+1 
 

            for all (𝑖 ≤ 𝑛 + 1) 

    if ⌈−𝛼⌉ ≤ 𝑦𝑖 ≤ ⌊α⌋     then  𝑐𝑖+1 = 0 endif 

                  if 𝑦𝑖 = 𝛼  and 𝑦𝑖−1 < 𝛼    then  𝑐𝑖+1 = 0 endif 

                  if 𝑦𝑖 = 𝛼  and 𝑦𝑖−1 ≥ 𝛼    then  𝑐𝑖+1 =
1

2
 endif 

     if 𝑦𝑖 = ⌈𝛼⌉     then  𝑐𝑖+1 =
1

2
 endif 

                  𝑧𝑖 = 𝑦𝑖 − (𝑐𝑖+1 × 𝛽) + 𝑐𝑖 
             𝑧𝑛+2 = 𝑐𝑛+2 
end 
 
Proof of the algorithm: We separate the proof of this algorithm into two parts; 

Part 1: Given 𝛼 = 𝛽

4
. All input digits 𝑥𝑖 will be converted to temporary output digits 𝑦𝑖 where  0 ≤ 𝑥𝑖 ≤

𝛽 − 1 and ⌈−𝛼⌉ ≤ 𝑦𝑖 ≤ ⌈𝛼⌉. Since 𝑦𝑖 = 𝑥𝑖 − (𝑐𝑖+1 × 𝛽) + 𝑐𝑖 and 𝑐𝑖 ∈ {0,
1

2
, 1}, it is found that 𝑥𝑖 = 𝑦𝑖 +

𝑐𝑖+1𝛽 − 𝑐𝑖. 
Case: 0 ≤ 𝑥𝑖 ≤ ⌈𝛼⌉ − 1 

From the algorithm, 𝑐𝑖+1 = 0 and 𝑥𝑖 = 𝑦𝑖 − 𝑐𝑖. Hence 𝑐𝑖 ≤ 𝑦𝑖 ≤ ⌈𝛼⌉ − 1 + 𝑐𝑖. Since 𝑐𝑖 ∈ {0,
1

2
, 1} then 

all possible values of 𝑦𝑖 satisfy 0 ≤ 𝑦𝑖 ≤ ⌈𝛼⌉. 
Case: ⌈𝛼⌉ ≤ 𝑥𝑖 ≤

𝛽

2
+ ⌈𝛼⌉ − 1 

From the algorithm, 𝑐𝑖+1 =
1

2
 and 𝑥𝑖 = 𝑦𝑖 +

𝛽

2
− 𝑐𝑖. Hence ⌈−𝛼⌉ + c𝑖 ≤ y𝑖 ≤ ⌈𝛼⌉ − 1 + 𝑐𝑖 . Since 𝑐𝑖 ∈

{0, 1
2
, 1} then all possible values of 𝑦𝑖 satisfy ⌈−𝛼⌉ ≤ 𝑦𝑖 ≤ ⌈𝛼⌉. 

Case: 𝛽
2
+ ⌈𝛼⌉ ≤ 𝑥𝑖 ≤ 𝛽 − 1 

From the algorithm, 𝑐𝑖+1 = 1 and 𝑥𝑖 = 𝑦𝑖 + 𝛽 − 𝑐𝑖 . Hence ⌈−𝛼⌉ + 𝑐𝑖 ≤ 𝑦𝑖 ≤ −1+ 𝑐𝑖. Since 𝑐𝑖 ∈
{0, 1

2
, 1} then all possible values of 𝑦𝑖 satisfy ⌈−𝛼⌉ ≤ 𝑦𝑖 ≤ 0. 

From three cases, we can conclude that ⌈−𝛼⌉ ≤ 𝑦𝑖 ≤ ⌈𝛼⌉. 
 

Part 2: Some temporary output digits 𝑦𝑖 may not be valid in our system. In that case, the algorithm proceeds 

to convert all temporary output digits 𝑦𝑖 to final output digits 𝑧𝑖 where −𝛼 ≤ 𝑧𝑖 ≤ α. Since 𝑧𝑖 = 𝑦𝑖 −
(𝑐𝑖+1 × 𝛽) + 𝑐𝑖 and 𝑐𝑖 ∈ {0,

1

2
}, it is found that 𝑦𝑖 = 𝑧𝑖 + 𝑐𝑖+1𝛽 − 𝑐𝑖 . 

Case: ⌈−𝛼⌉ ≤ 𝑦𝑖 ≤ ⌊α⌋ 
From the algorithm,𝑐𝑖+1 = 0 and 𝑦𝑖 = 𝑧𝑖 − 𝑐𝑖 . Hence ⌈−𝛼⌉ + c𝑖 ≤ 𝑧𝑖 ≤ ⌊α⌋ + 𝑐𝑖 . Since 𝑐𝑖 ∈ {0,

1

2
} then 

all possible values of 𝑧𝑖 satisfy ⌈−𝛼⌉ ≤ 𝑧𝑖 ≤ α. 

Case: 𝑦𝑖 = 𝛼  and 𝑦𝑖−1 < 𝛼  

From the algorithm, 𝑐𝑖+1 = 0 and 𝑦𝑖 = 𝑧𝑖 − 𝑐𝑖 . Hence 𝑧𝑖 = 𝛼 + 𝑐𝑖. Since 𝑐𝑖 = 0 then 𝑧𝑖 = 𝛼. 

Case: 𝑦𝑖 = 𝛼  and 𝑦𝑖−1 ≥ 𝛼  

From the algorithm, 𝑐𝑖+1 =
1

2
 and 𝑦𝑖 = 𝑧𝑖 +

𝛽

2
− 𝑐𝑖. Hence 𝑧𝑖 = −𝛼 + 𝑐𝑖. Since 𝑐𝑖 ∈ {0,

1

2
} then all 

possible values of 𝑧𝑖 satisfy −𝛼 ≤ 𝑧𝑖 ≤ −𝛼 +
1

2
. 

Case: 𝑦𝑖 = ⌈𝛼⌉   

From the algorithm, 𝑐𝑖+1 =
1

2
 and 𝑦𝑖 = 𝑧𝑖 +

𝛽

2
− 𝑐𝑖. Hence 𝑧𝑖 = ⌈−𝛼⌉ + 𝑐𝑖. Since 𝑐𝑖 ∈ {0,

1

2
} then all 

possible values of 𝑧𝑖 satisfy ⌈−𝛼⌉ ≤ 𝑧𝑖 ≤ ⌈−𝛼⌉ +
1

2
. 

From four cases, we can conclude that −𝛼 ≤ 𝑧𝑖 ≤ 𝛼 which are valid in our system.           ■ 
 

For better understanding about Algorithm 1, an example of a conversion from any conventional number 
into a rational digit number with the same even base is shown in example 4. 
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Example 4 Let 𝛽=4, find a representation of 𝑋 = (10231)4 in a rational digit number. 

From Algorithm 1, a conventional number representation 𝑋 = (10231)4 in an even base with a digit set 

𝒟 = {0, 1, 2, 3} can be converted to a rational digit number representation 𝑍 = (1
2
 1̅ 1

2
 1 1

2
 1̅)4 with a digit set 

𝒟′ = {1̅, 1
2
, 0, 1

2
, 1} in the same base.               □ 

 
Algorithm 2 (Rational digit number conversion for an odd base) 

input   𝑋 = 𝑥𝑛𝑥𝑛−1…𝑥0. 𝑥−1𝑥−2…    where 0 ≤ 𝑥𝑖 ≤ 𝛽 − 1 

output 𝑍 = 𝑧𝑛+1𝑧𝑛…𝑧0. 𝑧−1𝑧−2…       where −𝛼 ≤ 𝑧𝑖 ≤ α 
begin 

            𝑐𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0 

            for all (𝑖 ≤ 𝑛) 

     if 0 ≤ 𝑥𝑖 ≤ 𝛼 − 1    then  𝑐𝑖+1 = 0 endif 

     if 𝛼 − 1

2
≤ 𝑥𝑖 ≤

𝛽

2
+ 𝛼 − 1   then  𝑐𝑖+1 =

1

2
 endif 

     if 𝛽
2
+ 𝛼 − 1

2
≤ 𝑥𝑖 ≤ 𝛽 − 1  then  𝑐𝑖+1 = 1 endif 

                  𝑧𝑖 = 𝑥𝑖 − (𝑐𝑖+1 × 𝛽) + 𝑐𝑖 
            𝑧𝑛+1 = 𝑐𝑛+1 
end 
 

Proof of the algorithm: Given 𝛼 = 𝛽+1

4
. Since 𝑧𝑖 = 𝑥𝑖 − (𝑐𝑖+1 × 𝛽) + 𝑐𝑖 and 𝑐𝑖 ∈ {0,

1

2
, 1}, it is found that 

𝑥𝑖 = 𝑧𝑖 + 𝑐𝑖+1𝛽 − 𝑐𝑖. 
Case: 0 ≤ 𝑥𝑖 ≤ 𝛼 − 1 

From the algorithm, 𝑐𝑖+1 = 0 and 𝑥𝑖 = 𝑧𝑖 − 𝑐𝑖 . Hence 𝑐𝑖 ≤ 𝑧𝑖 ≤ 𝛼 − 1 + 𝑐𝑖. Since 𝑐𝑖 ∈ {0,
1

2
, 1}, it is 

found that 0 ≤ 𝑧𝑖 ≤ 𝛼. 

Case: 𝛼 − 1

2
≤ 𝑥𝑖 ≤

𝛽

2
+ 𝛼 − 1 

From the algorithm, 𝑐𝑖+1 =
1

2
 and 𝑥𝑖 = 𝑧𝑖 +

𝛽

2
− 𝑐𝑖 . Hence −𝛼 + 𝑐𝑖 ≤ 𝑧𝑖 ≤ 𝛼 − 1 + 𝑐𝑖 . Since 𝑐𝑖 ∈

{0, 1
2
, 1}, it is found that −𝛼 ≤ 𝑧𝑖 ≤ 𝛼. 

Case: 𝛽
2
+ 𝛼 − 1

2
≤ 𝑥𝑖 ≤ 𝛽 − 1 

From the algorithm, 𝑐𝑖+1 = 1 and 𝑥𝑖 = 𝑧𝑖 + 𝛽 − 𝑐𝑖. Hence −𝛼 + 𝑐𝑖 ≤ 𝑧𝑖 ≤ −1 + 𝑐𝑖. Since 𝑐𝑖 ∈
{0, 1

2
, 1}, it is found that −𝛼 ≤ 𝑧𝑖 ≤ 0. 

From three cases, we can conclude that −𝛼 ≤ 𝑧𝑖 ≤ 𝛼 which are valid in our system.          ■ 
 

The following example demonstrates a conversion from a conventional number into a rational digit 
number with the same odd base. 

 

Example 5 Let 𝛽=5, find a representation of 𝑋 = (1240)5 in a rational digit number. 

A conventional number representation 𝑋 = (1240)5 in an odd base with a digit set 𝒟 = {0, 1, 2, 3, 4} can 

be converted to a rational digit number representation 𝑍 = (1
2
 1̅ 1

2
 1̅ 0)5 in the same base with a digit set 𝒟′ =

{3
2
, 1̅, 1

2
, 0, 1

2
, 1, 3

2
}.                 □ 

 

4. On-line Digit Set Conversion 
 
In this work, we propose an on-line digit set conversion algorithm for a rational digit number. This algorithm 

can be performed by an on-line finite automaton with an on-line delay 𝑘 and 𝛽𝑘 states. 
 
Algorithm 3 (On-line digit set conversion for rational digit number) 

input    𝑋 = 𝑥𝑛𝑥𝑛−1…    where −𝛾 ≤ 𝑥𝑖 ≤ γ 
output  𝑍 = 𝑧𝑛+k𝑧𝑛+𝑘−1… where −𝛼 ≤ 𝑧𝑖 ≤ α 
begin 

𝑚 =
𝛾

𝛼
 

𝑞𝑛+𝑘 = 0 (initial state) 
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𝑔 ≥
(−𝛼)(𝛽𝑘−𝑚)

𝛽−1
 

  𝑗 = 𝑛 

   while 𝑗 ≤ 𝑛 do 

𝑧𝑗+𝑘 ≤
−𝑔+(𝑞𝑗+𝑘𝛽)+𝑥𝑗

𝛽𝑘
 

𝑞𝑗+𝑘−1 = (𝑞𝑗+𝑘𝛽 + 𝑥𝑗) − (𝑧𝑗+𝑘𝛽
𝑘) 

𝑗 = 𝑗 − 1 
enddo 

end 
 

Before proving this algorithm, we start by introducing how to construct an on-line finite automaton for 
this on-line digit set conversion. After that we introduce two lemmas that are required in the proof of this 

algorithm. Lemma 1 describes how to construct an on-line finite automaton and show that a set of states 𝑄 

is finite. Lemma 2 describes how to derive an inequality of an on-line delay 𝑘. 

We can construct an on-line finite automaton 𝒜 = (𝑄, 𝐸 × 𝒟, 0, 𝐹) where 𝑄 is a finite set of states, 𝐸 =
{−𝛾,… , 𝛾} and 𝒟 = {−𝛼,… , 𝛼} are finite sets of input and output digits, 0 is an initial state and 𝐹 is a set of 
transitions. Every transition can be defined as 

𝑞𝑗+𝑘
𝑥𝑗/𝑧𝑗+𝑘
→     𝑞𝑗+𝑘−1 

with 𝑞𝑗+𝑘 and 𝑞𝑗+𝑘−1 are the member of 𝑄, 𝑥𝑗 is an input digit, 𝑧𝑗+𝑘 is an output digit. 

 
Lemma 1 

A set of states 𝑄 in an on-line finite automaton is finite and valid in  (−𝛼)(𝛽
𝑘−𝑚)

𝛽−1
≤ 𝑞 ≤ 𝛼(𝛽𝑘−𝑚)

𝛽−1
 . 

Proof: We assume that 𝑔 and ℎ is a lower bound and an upper bound of a state 𝑞 ∈ 𝑄.  

 𝑔 ≤ 𝑞 ≤ ℎ (1) 

We define that 𝑄 = {𝑔, 𝑔 + 1

2
, … ,0, … , ℎ − 1

2
, ℎ}. Given a base 𝛽 ≥ 2, a state 𝑞𝑗+𝑘−1 is defined as  

 𝑞𝑗+𝑘−1 = (𝑞𝑗+𝑘𝛽 + 𝑥𝑗) − (𝑧𝑗+𝑘𝛽
𝑘) (2) 

From Eq. (1) and Eq. (2), 

𝑔 ≤ (𝑞𝑗+𝑘𝛽 + 𝑥𝑗) − (𝑧𝑗+𝑘𝛽
𝑘) ≤ ℎ. 

An output digit 𝑧𝑗+𝑘 can be calculated as 

 
−ℎ+(𝑞𝑗+𝑘𝛽+𝑥𝑗)

𝛽𝑘
≤ 𝑧𝑗+𝑘 ≤

−𝑔+(𝑞𝑗+𝑘𝛽+𝑥𝑗)

𝛽𝑘
 (3) 

From Eq. (3), we will calculate 𝑔 from this inequality 

𝑧𝑗+𝑘 ≤
−𝑔+(𝑞𝑗+𝑘𝛽+𝑥𝑗)

𝛽𝑘
 

Given = 𝛽+(𝛽𝑚𝑜𝑑2)

4
 , 𝑧𝑗+𝑘 = −𝛼, 𝑞𝑗+𝑘 = 𝑔, 𝑥𝑗 = 𝑚(−𝛼) and 𝑚 = 𝛾

𝛼
 . Hence, 

 𝑔 ≥ (−𝛼)(𝛽𝑘−𝑚)

𝛽−1
 (4) 

From Eq. (3), ℎ can be calculated from this inequality 

𝑧𝑗+𝑘 ≥
−ℎ+(𝑞𝑗+𝑘𝛽+𝑥𝑗)

𝛽𝑘
 

Given 𝑧𝑗+𝑘 = 𝛼, 𝑞𝑗+𝑘 = ℎ, 𝑥𝑗 = 𝑚(𝛼) and 𝑚 = 𝛾

𝛼
 . Hence, 

 ℎ ≤ 𝛼(𝛽𝑘−𝑚)

𝛽−1
 (5) 

Thus, from Eq. (4) and Eq. (5), a set of states 𝑄 is finite and valid in 

 (−𝛼)(𝛽𝑘−𝑚)

𝛽−1
≤ 𝑞 ≤ 𝛼(𝛽𝑘−𝑚)

𝛽−1
  

 
Lemma 2 

An on-line delay 𝑘 of an on-line finite automaton is 𝑘 ≥ log𝛽(
1+4𝛼𝑚−𝛽

1+4𝛼−𝛽
). 

Proof: Given a base 𝛽 ≥ 2. Since the number of states 𝑞 is 𝛽𝑘 then 

2|𝑔| + 2|ℎ| + 1 ≥ 𝛽𝑘 

From Lemma 1, 𝑔 ≥ (−𝛼)(𝛽𝑘−𝑚)

𝛽−1
 and ℎ ≤ 𝛼(𝛽𝑘−𝑚)

𝛽−1
 then 
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2|
(−𝛼)(𝛽𝑘−𝑚)

𝛽−1
|+ 2|

𝛼(𝛽𝑘−𝑚)

𝛽−1
|+ 1 ≥ 𝛽𝑘 

Thus, an on-line delay 𝑘 can be calculated from this inequality 

 𝑘 ≥ log𝛽(
1+4𝛼𝑚−𝛽

1+4𝛼−𝛽
)  

 

Proof of the algorithm 3: From Lemma 1, states 𝑞 are valid in 𝑙 ≤ 𝑔 ≤ 𝑞 ≤ ℎ ≤ 𝑢  where 𝑙 = −𝛼(𝛽𝑘−𝑚)

𝛽−1
 and 

𝑢 = 𝛼(𝛽𝑘−𝑚)

𝛽−1
. From Lemma 2, we will show that an on-line delay 𝑘 is enough to produce the last 𝑘 digits of 

the result. We divide the proof into two parts  

Part 1: we will show that (−𝛼)𝛽𝑘 + (−𝛼)𝛽𝑘−1 +⋯+ (−𝛼) ≤ 𝑙. 
𝛽𝑘+2 ≥ 𝛽𝑘 

𝛽𝑘+2 − 𝛽𝑘+1 ≥ 𝛽𝑘 

                                           𝛽𝑘+2 − 𝛽𝑘+1 − 𝛽 + 1 ≥ 𝛽𝑘 −𝑚 

                                                (𝛽𝑘+1 − 1)(𝛽 − 1) ≥ 𝛽𝑘−𝑚 

                                                           𝛽𝑘+1 − 1 ≥ 𝛽𝑘−𝑚

𝛽−1
 

      (−𝛼)(𝛽𝑘+1 − 1) ≤ (−𝛼)(𝛽
𝑘−𝑚

𝛽−1
) 

   (−𝛼)𝛽𝑘+1 − (−𝛼) ≤ −𝛼(𝛽𝑘−𝑚)

𝛽−1
 

        (−𝛼)𝛽𝑘 + (−𝛼)𝛽𝑘−1 +⋯+ (−𝛼) ≤ −𝛼(𝛽𝑘−𝑚)

𝛽−1
            (6) 

 

Part 2: we will show that 𝛼𝛽𝑘 + 𝛼𝛽𝑘−1 +⋯+ 𝛼 ≥ 𝑢. 

              𝛽𝑘+2 ≥ 𝛽𝑘 

              𝛽𝑘+2 − 𝛽𝑘+1 ≥ 𝛽𝑘 

                                          𝛽𝑘+2 − 𝛽𝑘+1 − 𝛽 + 1 ≥ 𝛽𝑘 −𝑚 

                                              (𝛽𝑘+1 − 1)(𝛽 − 1) ≥ 𝛽𝑘−𝑚 

     𝛽𝑘+1 − 1 ≥
𝛽𝑘−𝑚

𝛽−1
 

             𝛼(𝛽𝑘+1 − 1) ≥ 𝛼(
𝛽𝑘−𝑚

𝛽−1
) 

  𝛼𝛽𝑘+1 − 𝛼 ≥
𝛼(𝛽𝑘−𝑚)

𝛽−1
 

             𝛼𝛽𝑘 + 𝛼𝛽𝑘−1 +⋯+ 𝛼 ≥ 𝛼(𝛽𝑘−𝑚)

𝛽−1
           (7) 

 

From Eq. (6) and Eq. (7), we can conclude that an on-line delay 𝑘 is enough to produce the last 𝑘 digits of the 
result. 
 

Some examples about an on-line digit set conversion in a rational digit number are shown in example 6 

and example 7. An on-line digit set conversion in a base 𝛽 = 3 with 𝑚 = 2 and an on-line delay 𝑘 = 1 is 

described in example 6. Example 7 illustrates an on-line digit set conversion in the same base 𝛽 = 3 but 

change 𝑚 = 4 and an on-line delay 𝑘 = 2. 
 

Example 6 Given a number 𝑋 = (11̅
2
02̅11

2
)3 where 𝑋 ∈ 𝐸∗. Find a result of a digit set conversion of 𝑋 from 

a digit set 𝐸 = {−2,… , 2} to a digit set 𝒟 = {−1,… ,1} in a rational digit number with a base 𝛽 = 3 by an 
on-line finite automaton. 

From Algorithm 3, a digit set conversion of a number 𝑋 = (13̅
2
02̅11

2
)3 can be performed using an on-

line finite automaton with 𝑚 = 2. An on-line delay 𝑘 can be calculated from Lemma 2 which is 𝑘 = 1. A 

digit set conversion from a digit 𝐸 = {−2,… , 2} to a digit set 𝒟 = {−1,… , 1} in a rational digit number in 

a base 𝛽 = 3 by an on-line finite automaton with an on-line delay 𝑘 = 1 in Fig. 2 can be illustrated by this 
directed labelled graph, 

0
 1 / 

1

2
→   

−1

2
 

3̅

2
 / 1̅

→   0 
0 / 0
→   0 

2̅ / 
1̅

2
→   

−1

2
 
1 / 0
→   

−1

2
 

1

2
 / 
1̅

2
→    

1

2
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After reading all input digits, a temporary result is 1
2
1̅01̅

2
01̅
2
. There is one more step needed for completing 

this conversion. Since a conversion process stops at state  𝑞 = 1

2
 and an on-line delay 𝑘 = 1 then we define 

a terminal function 𝜔:𝑄 → 𝒟∗ such that 𝜔(1
2
) = 1

2
. We append a digit 1

2
 at the end of a temporary result. 

Finally, a final result is (1
2
1̅01̅

2
01̅
2

1

2
)3 is equal to 107.            □ 

 

 
 

Fig. 2. An on-line finite automaton in base 𝛽 = 3 with 𝑚 = 2 and an on-line delay 𝑘 = 1. 
 

Example 7 Given a number 𝑋 = (37
2
 
3̅

2
4̅21

2
)3 where 𝑋 ∈ 𝐸∗. Find a result of a digit set conversion of 𝑋 from 

a digit set 𝐸 = {−4,… , 4} to a digit set 𝒟 = {−1,… ,1} in a rational digit number with a base 𝛽 = 3 by an 
on-line finite automaton. 

A number 𝑋 = (37
2
 
3̅

2
4̅21

2
)3 has a numerical value which is 942.5. A digit set conversion from a digit set 

𝐸 = {−4,… , 4} to a digit set 𝒟 = {−1,… , 1} in a rational digit number where 𝑚 = 4 in a base 𝛽 = 3 can 

be performed by an on-line finite automaton. An on-line delay 𝑘 can be calculated from Lemma 2 that is 

equal to 𝑘 = 2. We show briefly the way to construct an on-line finite automaton by Algorithm 3. An output 

digit 𝑧𝑗+𝑘 can be calculated from an incoming input digit 𝑥𝑗 with a current state 𝑞𝑗+𝑘 which can be 

demonstrated by a following inequality 

𝑧𝑗+𝑘 ≤
−5
2
+(𝑞𝑗+𝑘×3)+𝑥𝑗

9
 

The next state 𝑞𝑗+𝑘−1 can be derived from 

𝑞𝑗+𝑘−1 = ((𝑞𝑗+𝑘 × 3) + 𝑥𝑗) − (𝑧𝑗+𝑘 × 9) 

Hence, this digit set conversion by an on-line finite automaton with an on-line delay 𝑘 = 2 can be illustrated 
by a following directed labelled graph, 

0
 3 / 

1

2
  

→     
−3

2
 
  
7

2
 / 0 

→   − 1 

3̅

2
 / 
1̅

2
 

→   0 
4̅ / 

1̅

2
 

→    
1

2
 
2 / 

1

2
 

→  − 1 

1

2
 / 0 

→   
−5

2
 

After reading all input digits, a temporary result is 1
2
01̅
2
 
1̅

2
 
1

2
0. Since a final state 𝑞 = −5

2
 and an on-line delay  

𝑘 = 2 then we will define a terminal function 𝜔:𝑄 → 𝒟∗ such that 𝜔(−5
2
) = 1̅1

2
. Thus, the final result 

(1
2
01̅
2
 
1̅

2
 
1

2
01̅1

2
)3 gives a correct result.                                                       □ 

 

5. Conclusion 
 
In this work, we propose an on-line digit set conversion algorithm for a rational digit number system. This 

algorithm converts a digit set 𝐸 = {−𝛼 ×𝑚,… , 𝛼 × 𝑚} to a digit set 𝒟 = {−𝛼,… , 𝛼} with 𝛼 = 𝛽+(𝛽𝑚𝑜𝑑2)

4
 

in the same base 𝛽 ≥ 2. We show that an on-line digit set conversion can be illustrated by an on-line finite 
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automaton with an on-line delay  where 𝑘 ≥ log𝛽(
1+4𝛼𝑚−𝛽

1+4𝛼−𝛽
). In our future work, we will concentrate on 

non-classical bases such as a negative base and a complex base to work with our system. 
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