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Abstract. Rehabilitation robots usually provide trainings with a certain training modality 
and activity. The patient’s performance measure such as mechanical power is also derived 
for those specific trainings. This article aims to demonstrate the implementation of our 
lower limb rehabilitation robot in sitting position for providing the training with games and 
to propose the derivation of the human mechanical power as a performance measure. The 
control algorithm for active exercise and the integration of the related software and hardware 
are also developed to offer proper environment for a game session. The derivation of the 
mechanical power of a human subject in the training is verified with active and passive 
cycling exercises. Three healthy subjects participate in the game sessions provided by the 
robot. It is found that the game sessions can provide the movement training with sufficient 
intensity. Moreover, the mechanical power obtained from the proposed method is able to 
identify the intensity of training tasks, human performance, and human attention in the 
training.  
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1. Introduction 
 
In stroke rehabilitation, the training that facilitates effective recovery should consist of high intensity and 
repetition movements [1, 2]. In the meantime, the patient should be motivated to actively engage in the 
training over a long period [3]. A conventional training that requires physiotherapists to manually assist the 
movement of a patient is expensive, labor-intensive, and low repetitive while the duration of the training 
session is short. In addition, intervention and evaluation technique are also different depending on theories 
and experience of physiotherapists [1, 4]. Nowadays, robots have been developed for rehabilitation tasks 
extensively. The robots not only release physical burdens from physiotherapists so that intensity, repetition, 
and duration of the training could be increased, but also retrieve quantitative data during the therapy with 
equipped sensors [5] for objective evaluation of the patient’s status [6]. Furthermore, various training 
modalities and activities can be selected to suit with the condition of the patient [3, 7]. The robots can also 
be implemented with games and virtual reality systems to motivate the patient to actively participate in the 
training session [8-10].  Table 1 shows clinical results from trainings with games and virtual reality systems 
implemented by lower limb rehabilitation robots, namely, Rutgers Ankle [11], Anklebot [12], VRCTS [10]. 
Therefore, robots for stroke rehabilitation are promising tools to provide optimal recovery outcomes and 
enhance the productivity of physiotherapists [13]. 

To evaluate the ability of the patient, performance measures are obtained from multiple sensors equipped 
on the robots and the rehabilitation platforms. Mechanical power is one of performance measures widely 
used in research settings. It is usually derived specifically to a training activity. In cycling exercise, the 
mechanical power, which is used as one of the parameters to determine the cycling performance [14], is 
calculated from cadence and resistance torque applied to the motor of the ergometer. In sit-to-stand exercise, 
maximal power is determined from vertical ground reaction force with strain gauges installed under the 
rehabilitation platform during the rising phase. The sit-to-stand power is used to assess the muscle power of 
the patient [15]. During the exercise of the ankle joint with the Rutgers Ankle [16], data from force sensors 
mounted on the platform is used to indicate the patient’s power. It is found that the improvement in patient’s 
endurance corresponds to the power output of the affected ankle. In the trajectory tracking task with the 
MIT-MANUS [17], the power determined from interaction force in direction along and normal the target 
axis is obtained from torque sensors mounted on the motor shafts. It is used as a performance measure to 
quantify abilities to move and to aim the movement from the starting position towards the target. 

This article presents the development of the controller for active exercise, and the integration of software 
and hardware for implementing game-based trainings with our lower limb rehabilitation robot in sitting 
position. The technique to evaluate the patient’s performance is also devised so that the human mechanical 
power can be obtained regardless of training modality and activity. 

This article is organized as follows. The configuration of the lower limb rehabilitation robot is described 
in Section 2. The control algorithm for active exercise is presented in Section 3. The implementation of games 
and the robot is shown in Section 4. In Section 5, the human mechanical power is derived and verified. 
Section 6 reports results from training sessions with games by a healthy subject. The conclusion of the article 
is in Section 7. 
 

2. Robot Description 
 
For a post-stroke patient that suffers from severe lower limb muscle weakness and cannot participate in a 
gait training session in a safe manner, the movement training in the sitting position is preferred. It is found 
that the outcomes of the training in sitting position can reduce motor impairments and translate to into 
improved walking ability [10, 11, 18]. The lower limb rehabilitation robot in our research is developed to 
provide physical therapy to the patient with this stage. 
 
2.1. Components of the Robot 
 
In Fig. 1, the robot consists of an exoskeleton, a counterbalance mechanism, and a control unit. The 
exoskeleton has 3 degrees of freedom at hip, knee, and ankle joints. The range of motion of the hip joint is 
45o flexion and 0o extension. The movement of the knee joint is within 110o flexion and 0o extension. The 
ankle joint is able to move in the range of 20o dorsiflexion and 45o plantar flexion. There are mechanical 
stoppers at the ends of the joint movement range to ensure that the robot joints always stay within human’s 



DOI:10.4186/ej.2019.23.4.91 

ENGINEERING JOURNAL Volume 23 Issue 4, ISSN 0125-8281 (http://www.engj.org/) 93 

biological ranges of motion. Each joint of the exoskeleton is actuated by a brushless servo motor through a 
cable transmission mechanism. 400W motors are chosen as actuators for hip and knee joints while a 200W 
motor powers the ankle joint. The transmission ratios of the cable transmission mechanism are 57.8:1, 15:1, 
and 15:1 for hip, knee, and ankle joint respectively. The exoskeleton joint is designed so that it can provide 
enough assistive torque to a patient and still be backdrivable. The thigh, shank, and foot segments of the 
exoskeleton are telescopic so that the length can be adjusted to fit with a wearer’s leg. Velcro straps are used 
to fasten a human leg to the exoskeleton at each segment. The exoskeleton (excluding the hip joint 
transmission mechanism that is mounted on the control unit) weighs 4.96 kilograms. 
 
Table 1. Clinical results of lower limb robotic rehabilitation with games and virtual reality systems. 
 

Robot 
Training 
Modality 

Training Activity 
Movement 
Frequency 

(rpm) 

Training 
Period 

Clinical Outcome 

Rutgers 
Ankle 

Active 
resistive 

Ankle dorsiflexion/ 
plantar flexion,  

Ankle 
inversion/eversion 

6.53 
4 weeks 

(12 sessions) 

Improvements in 
muscle strength  

and walking speed 

Anklebot 
Active 

assistive 

Ankle dorsiflexion/ 
plantar flexion,  

Ankle 
inversion/eversion 

16 
6 weeks 

(18 sessions) 

Improvements in gait 
speed, endurance, 

and standing balance 

VRCTS Active Cycling 59.83 
4 weeks 

(10 sessions) 

Improvements in 
pedal force symmetry 
and standing balance 

 

 

 
 

Fig. 1. Lower limb rehabilitation robot for the training in sitting position. 
 

The counterbalance mechanism is designed to decrease the torque requirement of the actuator of the 
exoskeleton’s hip joint. The mechanism has a 12-kg counterweight with linear bearings that allows vertical 
movement along guide rods mounted on the control unit. The counterweight is linked to the thigh segment 
of the exoskeleton with a cable. The counterbalance moment about the hip joint, which is generated by the 
counterweight, changes according to the angular position of the thigh segment of the exoskeleton. With this 
design, the counterbalance torque can be generated up to 20.7 N.m. The reduction of torque requirement 
implies that the robot joint can be designed with a smaller motor and lower transmission ratio which leads 
to lower reflected inertia. Therefore, the hip joint of the exoskeleton has better backdrivability and safety in 
human-robot interaction [19]. However, there is no counterbalance mechanism to reduce the torque 
requirement of the actuators of knee and ankle joints for simplicity of the robot design. 
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The control unit is used as a platform for mounting the exoskeleton and the counterbalance mechanism. 
It also contain a DC power supply, a computer unit, a data acquisition card, motor drivers, an emergency 
stop button, and other electronic components. More details of the robot development are referred to our 
previous publication [20]. 
 
2.2. Dynamic Model of the Exoskeleton 
 
In Fig. 2(a), hip, knee, and ankle joints are linked by the exoskeleton segments. The structure can be simplified 
as a three-revolute-joint serial robot moving in the sagittal plane as shown in the schematics in Fig. 2(b). Point 
O represents the hip joint which is fixed on a stationary base (a control unit). Point A and B are the knee 
joint and the ankle joint whereas point C is the end of the foot segment. The coordinate frame has the origin 

at point O and the direction of frame axes are selected as shown in the figure. 
0L , 

1L , and 
2L    are the overall 

length of thigh, shank, and foot segments of the exoskeleton while 
0l , 

1l , and 
2l  are the distance between 

the center of gravity of each link and the proximal joint. 
0 ,

1 , and 
2  are angles of hip, knee and ankle joint 

measured with respect to the neutral sitting position (illustrated by dashed lines). Masses of the exoskeleton 

segments are abbreviated as 
0m , 

1m , and 
2m . The gravitational acceleration (g)  has the same direction as the 

positive y-axis.  According to [21], the dynamic model of the exoskeleton can be written as: 
 

    e e e e intB (θ)θ C (θ,θ)θ G (θ) τ τ  (1) 

 

where frictions are neglected. eB  is the inertia matrix of the exoskeleton. 
eC (θ,θ)θ  represents the matrix 

of torque due to Coriolis and centripetal effects while the matrix    
T

0 1 2θ  and      

T

0 1 2θ . 

eG   is the matrix of the gravitational load due to the exoskeleton weight. With known mass, length, and 

location of center of gravity of each segment, the matrices eB , eC , and eG  can be derived mathematically. 

eτ  is the actuator torque at the exoskeleton joints while intτ  is the torque generated from the interaction 

between the exoskeleton and the environment (which is a human subject in this case). 
 

3. Control Algorithm for Active Exercises 
 
This lower limb rehabilitation robot is able to perform various therapeutic exercises. Control algorithms for 
passive, active assistive, and active resistive exercises are referred to our previous publication [22]. In this 
article, the control algorithm of the active exercise is proposed to be implemented by the lower limb 
rehabilitation robot in game-based trainings. Active exercise is suitable for a patient with some muscle 
strength to move the paretic leg against gravity by himself [3]. Therefore, the control algorithm for active 
exercise aims to allow voluntary movement by a patient without any assistance or resistance by the robot. 

The control algorithm for active exercise as shown in Fig. 3 consists of 2 cascaded loops. In the outer 

control loop, the reference torque r( )  is the summation of the desired torque  d( ) and gravity compensation 

torque  g( ) as follows: 

 

r d g    . 

 
This implies that the actuator will only exert torque to compensate for gravitational load due to the 

exoskeleton weight.  With the counterbalance mechanism, the gravity compensation torque of the hip joint 
is reduced by the amount of the counterbalance moment generated by the mechanism. In the torque control 
loop, a PI controller is selected to minimize torque error. The output of this PI controller is the desired joint 

velocity  j,d( )  which is the reference signal for the inner control loop where the other PI controller is 

implemented in order to generate control signal to a motor driver. Motor position m( )  is measured by an 

encoder mounted on the motor shaft. The joint position  j( )  is then estimated by dividing motor position 

by transmission ratio (N) . Joint velocity  j( )  is the time derivative of the joint position. Joint torque of the 
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exoskeleton  e( )  is obtained from the motor torque, which is measured by a motor driver, multiplied by the 

transmission ratio. The proof of stability and passivity of the controller can be found in our publication [20]. 
 

 
(a)     (b) 

 
Fig. 2. The exoskeleton structure: (a) Joint location; (b) Simplified schematics. 
 

 
 
Fig. 3. Block diagram of control algorithm for active exercise. 
 

Unlike other training modalities, active exercise does not assist or resist the movement of a patient. 
The desired torque is set to zero: 
 

r g  . 

 

4. System Implementation 
 
4.1. Software and Hardware Communication 
 
The system is operated on a computer running Microsoft Windows. There are two applications for 
implementing a robot to play a game. Firstly, the robot control application is an executable application based 
on the Microsoft Foundation Class (MFC) Library. This application includes a user interface to set up 
operation mode, starts/stops the robot operation, display robot operating status, and implement the robot 
controller. The second application is for playing games. In this research, BlueStacks App Player is chosen. 
This free-downloadable software enables Android applications (including games) to run on a Windows-
operated computer. The applications run on BlueStacks can be controlled with a mouse click, a keyboard 
stroke, and an external touch pad input. Android applications can be downloaded and installed in the 
computer. Afterwards, they can be played on Bluestacks either online or offline. 

According to Fig. 4, the robot control application receives data from a data acquisition card installed in 
a computer. If the program detects the movement of the exoskeleton, it will synthesize a virtual keystroke to 

+
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BlueStacks (which runs as the foreground application). By setting a desired keystroke for controlling the game 
in the keyboard control user interface of BlueStacks as shown in Fig. 5, the user can move the exoskeleton 
to trigger an action in the game. 

 
4.2. Exoskeleton Movement for Triggering an Action in the Bluestacks 
 
Before the start of a game, the user must select the desired joint to send a virtual keystroke and trigger an 
action in the robot control application. Fig. 6 shows the joint movements that can be selected for sending a 
single command to a game: hip flexion, knee extension, or ankle dorsiflexion. During the game session, if the 
desired joint moves in the desired direction with velocity more than the desired threshold, the robot control 
application will determine that the movement occurs intentionally. On the contrary, the movement that 
occurs opposite to the preset direction or has the magnitude of velocity below the threshold is considered as 
an unintended action or noise that might originated from the differentiation of angular position with respect 
to time. The value of the threshold is obtained empirically to ensure that the noise is neglected and only 
intentional movements are detected. 
 

 
 
Fig. 4. Software and hardware communication. 
 

 
 
Fig. 5. Keyboard control user interface in BlueStacks. 
 

           
(a)     (b)    (c) 

Fig. 6. Movement of the exoskeleton for sending a virtual keystroke and triggering an action in a game in 
direction of (a) hip flexion; (b) knee extension; (c) ankle dorsiflexion. 
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5. Human Mechanical Power 
 
5.1. Human Mechanical Power Derivation 
 
To obtain simple mathematical model of a human leg, several assumptions are made. First of all, a human 
leg has three rigid segments (thigh, shank, and foot) and three simple hinge joints (hip, knee, and ankle joints). 
In addition, each segment of the exoskeleton is fastened to a human’s leg, so the movement of the human 
leg is restricted only on the sagittal plane and kinematic data (position, velocity, and acceleration) of a human 
leg and the exoskeleton is the same. Moreover, torque generated by elastic and damping properties of hip, 
knee, and ankle joints are neglected since the elastic torque becomes significant only near the end of the range 
of motion [23-24] while low damping coefficients [24] and joint velocities produce small amount of resistive 
torque. Taking these assumptions into consideration, the model of a human leg is similar to (1) but with the 

opposite direction of intτ  according to the Newton’s third law: 

 

   h h h h intB (θ)θ C (θ,θ)θ G (θ) τ +τ  (2) 

 

where hB  is the inertia matrix of the human leg, hC (θ,θ)θ  is the matrix of torque due to Coriolis and 

centripetal effects, hG  is the matrix of the gravitational load due to weight of the human leg, hτ  is the vector 

of joint torque generated by human, and intτ  is the vector of interaction torque between the exoskeleton and 

the human whose magnitude is the same as that in (1). With known height (H) and weight (W) of a human 
subject, parameters of each segment can be estimated from the anthropomorphic data [25] as shown in Table 

2. These data are used to derive hB , hC , and hG  in the same manner as those of the exoskeleton. 

The dynamic model of the whole system (the exoskeleton and a human leg) is derived from the 
summation of (1) and (2). The interaction torque is viewed as the internal torque which is not presented in 
the model of the overall system: 

 

      e e e h h h e hB (θ)θ C (θ,θ)θ G (θ) B (θ)θ C (θ,θ)θ G (θ) τ τ  
 

Therefore, the human torque can be calculated from the following equation: 
 

       .h e e e h h h eτ B (θ)θ C (θ,θ)θ G (θ) B (θ)θ C (θ,θ)θ G (θ) τ  

 
The mechanical power of the human subject at the ith joint is the product between the human torque and 

the joint velocity: 
 

  i i i

h hP  (3) 

For the mechanical power of the exoskeleton at the ith joint, it is calculated with measured joint torque 
and the joint velocity: 
 

  i i i

e eP . (4) 

 
Table 2. Anthropomorphic data of a human leg. 
 

Segment 
Segment 

Length (L) 
Segment 

Weight (W) 

Location of 
Center of 

Mass 

Radius of Gyration 
about the Center of 

Mass of the 
Segment 

Thigh 0.53H 0.1W 0.433L 0.475L 

Shank 0.246H 0.0465W 0.433L 0.302L 

Foot 0.039H 0.0145W 0.5L 0.323L 
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5.2. Validation of the Derived Mechanical Power with Active Assistive Training Modality 
 
The experiment is conducted in order to verify that the mechanical powers of human and the exoskeleton 
derived in the previous section are able to identify the amount of effort of each power source contributing 
to the movement. The cycling exercise by the robot is selected to train a subject with active assistive modality. 
With this training modality, the subject is instructed to move his lower limbs to track a predefined trajectory 
in sagittal plane. The active assistive control algorithm, proposed in our previous publication [20], allows the 
subject to dominate the movement if the position deviation is low while the exoskeleton provides assistance 
to the patient as much as needed to complete the movement. Ideally, if the patient is strong enough such that 
he can track the reference trajectory by himself, the exoskeleton will only follow the human movement 
without any intervention. Conversely, if the patient is too weak and cannot move on his own, the exoskeleton 
will provide assistive torque to move the subject’s leg along the reference trajectory. 

Three volunteered healthy subjects (without history of neurological disorder) participates in the 
experiment. Their demographic data are provided in Table 3. The subjects participated in two sessions of 
cycling exercise using active assistive training modality. Each session consists of ten movement repetitions. 
In the first training session, the subjects track the cycling movement actively so that the assistance provided 
by the exoskeleton is minimized. In another training session, the subjects act passively by relaxing their 
lower limbs so that the movement is achieved solely by the exoskeleton assistance. The mechanical powers 
of the subjects and the exoskeleton at each joint are calculated from (3) and (4). 

Computed mechanical powers of subject 2 and the exoskeleton are illustrated in Fig. 7. It can be seen 
that their mechanical powers are not constant in one movement cycle and different when compared to those 
in other cycles. Mechanical power can be positive, negative, or zero. According to (3) and (4), components 
of mechanical power are joint torque and joint velocity. If joint torque is applied in the same direction as the 
joint velocity, mechanical power becomes positive, and vice versa. Therefore, the subject and the exoskeleton 
always apply effort to affect the movement regardless of the sign of mechanical power. 

According to Fig. 7 (a), during active cycling, the mechanical powers of the subject are high whereas the 
exoskeleton exerts small amount of mechanical power. It can be implied that the subject put effort into 
tracking the reference trajectory while the exoskeleton only compensates for its dynamics and gravitational 
load. On the contrary, the mechanical powers of the subject in Fig. 7 (b) are lower than those of the 
exoskeleton in passive cycling and the subject in active cycling. This indicates that the subject has less effort 
in passive cycling while the exoskeleton generates more mechanical power in order to support the subject’s 
leg and track the reference trajectory. Therefore, the mechanical powers deriving from section 5.1 can reflect 
how much effort each power source (the subject and the exoskeleton) applies to influence the resultant 
movement. For further analysis, the root-mean-square (RMS) value is used to represent the mechanical power 
of the entire the training. 

Fig. 8 shows the RMS mechanical powers of the three subjects and the exoskeleton at each joint in active 
and passive cycling. In Fig. 8 (a), it can be seen that each subject exerts different amount of mechanical power 
during active and passive cycling. This implies that they track the reference trajectory by focusing on different 
joint, i.e., subject 1 has the RMS mechanical powers at hip and knee joints more than the exoskeleton while 
subject 2 exerts higher mechanical power compared with the exoskeleton only at the hip joint unlike subject 
3 that has the RMS mechanical power at the knee joint higher than that of the exoskeleton. However, 
according to the RMS mechanical power in passive cycling as shown in Fig. 8 (b), all subjects exert less effort 
than the exoskeleton at every joint. It can also be noticed that the RMS mechanical powers of the subjects in 
active cycling are higher than those in passive cycling. Therefore, the RMS mechanical power is able to 
quantify the performance of the subject 
 
Table 3. Demographic data of participants. 
 

Subject 1 2 3 

Gender Male Female Male 

Age (year) 30 45 25 

Height (cm) 168 165 171 

Weight (kg) 65 53 61 
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          (a)           (b) 

 
Fig. 7. Mechanical power of subject 2 during (a) active cycling; (b) passive cycling. 
 

6. Results from Game Sessions 
 
To demonstrate the operation of the system and human performance while playing games, two Android 
games are chosen to be played by healthy subjects in Table 3 with the exoskeleton as shown in Fig. 9. The 
first game as shown in Fig. 10 (a) is “Stack Jump” which is an arcade game developed by VOODOO. The 
goal of the game is to build a stack tower high enough to complete a level or to make a high score. The player 
must trigger an input to the game so that the cartoon character in the game could jump on a stack block that 
moves from left or right side towards the center of the screen with different speed. Next stack block move 
at higher height so that the character could jump on them and achieve a taller stack tower. The game ends if 
the character fails to jump and collides with the moving stack. The game is scored by the number of successful 
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jumps (the height of the stack tower). The second game is “Armor” which is an arcade game developed by 
Pixels On Fire Games. The goal of the game is to hit the target circle where multiple layers of armors orbit 
around it. A player must trigger an input to the game in order to shoot a ball from the bottom of the screen 
towards the target circle. Some armors are able to be smashed by the shooting balls while the others must be 
avoided otherwise the game ends. The player may need to shoot several balls to get rid of some blocking 
armors and then hit the target circle in order to proceed to the next level. 
 

 

 

 
         (a)            (b)  
 
Fig. 8. RMS mechanical power of subjects and the exoskeleton during (a) active cycling; (b) passive 
cycling. 
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Fig. 9. Game session by a healthy subject with the robot. 
 

          

 (a)      (b) 

 
Fig. 10. Android games (a) Stack Jump (b) Armor. 
 
6.1. Training with Different Games by the Same Joint  
 
In this experiment, the subjects play each game for 10 minutes. The ankle dorsiflexion movement and the 
velocity threshold of 0.3 rad/s are selected to produce a triggering signal to control the games. The detection 
of the desired ankle movement triggers the jumping of the character in “Stack Jump” and the shooting of a 
ball in “Armor”. If the game is over, the subjects continue the game until the game session ends. 

As noticed from Fig. 11, the amount of movement of every subject increases uniformly in “Stack Jump” 
as opposed to that in “Armor” which sometimes increases with lower or higher rate. There are several factors 
that might affect the frequency of the movement. Firstly, different nature of these games might force or 
prevent the subjects to move the ankle joint constantly. In “Stack Jumps”, the player is urged to move so that 
the character could jump on the incoming stack and avoid collision. However, in “Armor”, the player has to 
wait for a chance to shoot a ball into the target circle or smash breakable armors while avoiding shooting on 
forbidden armors. Therefore, the timing condition of these games influences the amount of movement in 
the game sessions. Another factor that might relate to the amount of movement of the subjects is their 
attention during the game sessions. The subject that feels excited while playing games tends to move 
frequently whereas the subject that has low interest in playing the games is prone to move slowly. Thus, when 
using the robot in clinical settings, the amount of movement could be used as an index to determine the 
attention of the subject during a training session. It also suggests whether a patient needs more motivation 
or the difficulty level of the game has to be adjusted to suit with the ability of the patient. 

According to Table 4, the total amount of movement is independent of games and subjects. Subject 1 
moves while playing “Armor” more than in “Stack Jump” whereas subject 2 plays “Stack Jump” with higher 
repetition than that in “Armor” and subject 3 has a similar amount of movement in both games.  
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         (a)           (b)           (c) 
 
Fig. 11. Amount of movement of the ankle joint during “Stack Jump” and “Armor” sessions of  
(a) subject 1; (b) subject 2; (c) subject 3 
 
Table 4. Results from playing “Stack Jump” and “Armor” with the ankle joint of the subjects. 
 

 
Total Amount 
of Movement 
(repetition) 

Movement 
Frequency 

(rpm) 

RMS 
Velocity 
(m/s) 

RMS 
Torque 
(N.m) 

RMS 
Mechanical 
Power (W) 

Subject1 
   - Stack Jump 
   - Armor 

 
300 
445 

 
30.0 
44.5 

 
0.200 
0.140 

 
0.170 
0.168 

 
0.043 
0.029 

Subject 2 
   - Stack Jump 
   - Armor 

 
464 
297 

 
46.4 
29.7 

 
0.389 
0.120 

 
0.152 
0.127 

 
0.074 
0.018 

Subject 3 
   - Stack Jump 
   - Armor 

 
372 
383 

 
37.2 
38.3 

 
0.278 
0.137 

 
0.168 
0.167 

 
0.061 
0.028 

 
It also found that no subject moves less than another. For example, subject 1 has the lowest amount of 

movement in “Stack Jump” session among the subjects but subject 1 moves with the highest repetition in 
“Armor” session. Moreover, movement frequencies, which are the averaged amount of movement in one 
minute, of every subject in all sessions are higher than those in the training with the Rutgers Ankle and the 
anklebot as shown in Table 1. In other words, playing games with the robot can help subjects to move their 
limbs with high repetitions. Therefore, the training with games by the robot might be applied to stroke 
patients to improve their clinical outcomes. Furthermore, it can be noticed from Table 4 that all subjects 
exert higher mechanical power in “Stack Jump” more than in “Armor”. The reason is that the subjects move 
the ankle joint each time in “Stack Jump” with higher velocity and torque than in “Armor”. Therefore, the 
nature of games not only affects the amount of movement and attention of the players but also the intensity 
of the movement. 

 
6.2. Training with the Same Game by Different Joints 
 
The subjects also plays “Armor” with the hip joint and the knee joint for 10 minutes in each session (with 
the velocity threshold of 0.3 rad/s). The result from the game session controlled with the ankle joint is 
obtained from the experiment in section 6.1 in order to compare how the controlling joint affects the training. 

As seen from Fig. 12, slopes of the amount of movement in each training session are not constant which 
corresponds to the findings from the section 6.1. This is due to the nature of the game that requires proper 
timing to trigger actions.  
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According to Table 5, even though each subject plays the game with different amount of movements. It 
can be noticed that each subject plays the game with hip, knee, or ankle joints with similar amount of 
movement in the training sessions. Therefore, the joint selected to trigger the signal to the game can be 
chosen arbitrarily since is does not influence the amount of movement in the training session. Moreover, it 
is found that the RMS mechanical power of each subject while playing the game with the hip joints is the 
highest followed by the knee joints and the ankle joints. By inspecting the components of the mechanical 
power, although the RMS velocities of the knee joint sessions are the highest, the RMS torque of the hip 
joints of the subjects are extremely high compared to those of the knee joints. As a result, their products 
(mechanical powers) have the highest values in the training sessions played with the hip joints. In the training 
sessions with the ankle joints, small magnitude of velocity and torque produce low mechanical power. This 
shows that for the movement trainings by using different joints, the RMS mechanical power is able to quantify 
the intensity of the tasks because it considers both velocity and torque. 
 

   

         (a)          (b)          (c) 
 
Fig. 12. Amount of movement of hip, knee, and ankle joints during “Armor” sessions of (a) subject 1;  
(b) subject 2; (c) subject 3. 
 
Table 5. Result from playing “Armor” with hip, knee, and ankle joints of the subjects. 
 

 
Total Amount 
of Movement 
(repetition) 

Movement 
Frequency 

(rpm) 

RMS 
Velocity 
(m/s) 

RMS 
Torque 
(N.m) 

RMS 
Mechanical 
Power (W) 

Subject1 
   - Hip 
   - Knee 
   - Ankle 

 
406 
413 
445 

 
40.6 
41.3 
44.5 

 
0.159 
0.355 
0.140 

 
31.276 
4.781 
0.168 

 
5.001 
2.041 
0.029 

Subject 2 
   - Hip 
   - Knee 
   - Ankle 

 
284 
281 
297 

 
28.4 
28.1 
29.7 

 
0.136 
0.334 
0.120 

 
23.764 
2.197 
0.127 

 
3.247 
1.025 
0.018 

Subject 3 
   - Hip 
   - Knee 
   - Ankle 

 
386 
357 
383 

 
38.6 
35.7 
38.3 

 
0.161 
0.289 
0.137 

 
28.246 
2.847 
0.167 

 
4.604 
1.152 
0.028 
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7. Conclusion 
 
Robotic trainings with games have shown the potential to recover stroke patients in clinical trials. In this 
article, the control algorithm for active exercise and the implementation of related software and hardware are 
developed so that the lower limb rehabilitation robot in sitting position could provide game training sessions. 
Moreover, the characteristics of the exoskeleton that moves together with the human’s leg is applied in order 
to obtain the human mechanical power at each joint for any training activity and modality. It is shown that 
the derived mechanical power is able to identify the performance of the human subject in active and passive 
cycling exercises. In the training sessions with games (“Stack Jump” and “Armor”) controlled by a single joint 
(hip, knee, or ankle joint), the movement frequencies are higher than those from some clinical tests reported 
in previous research. Therefore, the game-based training with the lower limb rehabilitation robot is promising 
to provide exercise with sufficient intensity for a patient to gain positive clinical outcomes. Moreover, it is 
found that the human mechanical power in these game sessions is able to identify the intensity of the tasks, 
the human performance at each joint, as well as, the attention of the subject during the training session. 
Therefore, the robot providing game sessions would help monitoring the progress of patient recovery and 
the evaluation of the performance of a patient. 

In the next stage of the research, other kinds of movement to trigger a signal to the game should be 
included in order to target on other aspects of the training, for example, triggering a signal when a human 
subject reaches the joint limit which is similar to active range of motion exercise. Other types of action in a 
game should also be investigated in order to diversify a variety of games and motivate a patient to participate 
in the training. 
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