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Abstract. This paper presents a review and evaluation of the AISC 360-16 and Eurocode 
4 strength prediction equations for concrete-filled steel tube (CFST) columns subjected to 
axial compression. A new experimental database of CFST column test results is compiled 
from the published technical literature from year 1988 to present. The database includes 
up-to-date research data of which column properties are outside the specification or code 
limitations. A total of 335 and 257 columns of different properties regarding the material 
strength, column size and slenderness, confinement factor, and steel tube fabrication 
method (only for square CFST) are used to evaluate the accuracy and conservativeness of 
the predictions for circular and square CFST columns. It is found that the AISC 360-16 
strength equations conservatively predict the compressive strength of circular CFST 
columns even the tube slenderness exceeds the current specification limit, while the 
simplified method of Eurocode 4 is not recommended for square CFST columns when 
the yield strength of steel tube or tube slenderness ratio exceeds the code limits. Based on 
the strength prediction equations, the effectiveness of circular over square CFST columns 
is more realized in Eurocode 4 than AISC360-16. The predicted circular-to-square column 
strength ratio increases as confinement factor increases, while it decreases as column 
length-to-depth ratio increases. Based on the experimental database, the effect of column 
sizes on the normalized strength of circular CFST columns is also investigated. The 
different tendency of the size effect is found when the confinement factor changes. 
 
Keywords: Concrete-filled steel tube columns, experimental database, code predictions, 
size effect, confinement factor. 
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1. Introduction 
 

Concrete-filled steel tube (CFST) columns have been 
widely used for bridges and high-rise buildings due to the 
advantage of combining steel tube and concrete. For 
CFST columns subjected to axial compression, concrete 
core improves the local buckling resistance of steel tube, 
while the steel tube enhances both strength and ductility 
of concrete core due to the confinement effect. In the 
design of CFST columns, AISC 360-16 [1] and Eurocode 
4 [2] provide different predicting equations for 
compressive strength of CFST columns with different 
limitations on material strength, steel ratio and 
slenderness of steel tube section. 

Based on numerous experimental studies on CFST 
columns, previous researchers have compiled the test 
results for different specific purposes. Kato (1996) [3] 
examined the column buckling curves of ISO standard 
1994 with 113 test results of circular and square CFST 
columns. A total 76 rectangular CFST columns were 
collected by Zhang and Shahrooz (1999) [4] to examine 
the applicability of ACI 1995 and AISC 1994. The 
examination indicated that neither design method is 
applicable for high-strength steel tube. Lu and Zhao 
(2010) [5] collected 250 experimental tests of circular 
CFST columns and proposed the empirical models for 
predicting the axial capacity of normal and high-strength 
circular CFST stub columns. Lai et al. (2014) [6] and Lai 
and Varma (2015) [7] compiled the experimental results 
of noncompact/slender circular and rectangular CFST 
sections to validate the developed benchmark finite 
element models and verify the conservativeness of AISC 
360-10 design equations. The result showed that AISC 
360-10 equations are appropriate when rectangular CFST 
columns are classified into compact, noncompact and 
slender section. Also, the design equations conservatively 
predict the compressive strength of CFST columns. 
Aslani et al. (2015) [8] examined the appropriateness of 
eight design codes for predicting the axial load capacity 
of CFST columns using high strength materials using the 
collected experimental results and indicated that 
Eurocode 4 is the most accurate for predicting the 
capacity of slender CFST experimental results. 
Ekmekyapar and AL-Eliwi (2016) [9] compiled 239 
experimental data of circular CFST columns from the 
literature to assess AISC360-10 and Eurocode 4 
equations and reported that predictions by Eurocode 4 
are in better agreement with the test results. In addition, 
comprehensive databases of experimental and analytical 
research work on CFST members have been developed 
by Shanmugam and Lakshmi (2001) [10], Kim (2005) 
[11], Gourley et al. (2008) [12] and Hajjar et al. (2019) 
[13].  

It has been recognized that the compressive strength 
of concrete is dependent on the size of concrete. This 
size effect causes the compressive strength of concrete to 
decrease when size of concrete increases [14]. As 
concrete core is an essential component of the CFST 
column, the size effect is possible in the CFST column. 

However, the size effect in CFST column of which 
concrete core is confined with the steel tube can be 
different from unconfined concrete. Yamamoto et al. 
(2002) [15] investigated the size effect in CFST columns 
from 21 circular and square CFST specimens under axial 
compression. The outer diameter of the steel tube and 
strength of concrete varied from 100 to 200 mm and 27 
to 50 MPa, respectively. The steel ratio was 13%. The 
results showed that the size effect in circular CFST 
columns was not clearly observed. Subsequently, Wang et 
al. (2017) [16] conducted the test on 36 short circular 
CFST columns with different diameters (from 150 to 469 
mm) and steel ratio (from 4 to 10%). The compressive 
strength of concrete was 62 MPa. The test results 
showed that the peak axial stress of circular CFST 
columns tended to decrease as diameter and steel ratio 
increased. However, the current design equations do not 
have specific provision regarding the size effect. 

The main objectives of this study are as follows: (1) 
to evaluate the accuracy and conservativeness of AISC 
360-16 and Eurocode 4 design equations based on the 
newly-developed experimental database; (2) to compare 
the effectiveness of circular over square CFST columns 
using the design equations; and (3) to investigate the 
influence of a confinement factor on the size effect of 
circular CFST columns based on the database. The 
confinement factor (  ), which is a ratio between the 

maximum capacities of steel tube and concrete 

( /s y c cA f A f  ), represents the combined effect of steel 

ratio and material strength on the CFST column. Han et 
al. (2005) [17] introduced this confinement factor to 
describe the composite action between steel tube and 
concrete in the developed model for calculating the 
sectional capacity of CFST columns. Guo et al. (2007) 
[18] used the confinement factor to account for the 
confinement effect of concrete in the proposed 
simplified model for determining the load capacity of 
rectangular CFST columns. Han et al (2014) [19] also 
reported that the confinement of concrete core increased 
as confinement factor increased. In this research the 
confinement factor (  ) is used in the investigation of 

column size effect. 
 

2. Description on New Experimental Database 
of CFST Columns 

 
To investigate the effects of column properties 

(material strength, column slenderness, fabrication 
method of steel tube in square CFST section) on 
accuracy and conservativeness of the strength equations, 
a new experimental database is developed by compiling 
the experimental results of circular and square CFST 
columns from the published literature from year 1988 to 
present. The database has the following scope: 

1. Normal weight concrete is filled in steel tube with 
no reinforcing steel rebar. 
2. Steel tube is fabricated from carbon steel. 
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3. Test configuration is clearly reported in the 
literature. 
4. Axial compressive load is applied on entire section 
(steel and concrete) with no eccentricity. 
5. For square CFST columns, the cold-formed and 
welded-box section are separately compiled in 
experimental database. 
 
In the calculation, the following assumptions are 

made: The cube compressive strength is converted into 
the cylinder compressive strength using the relationship 
proposed by Eurocode 2 [20]. The effective length factor 
( K ) is 0.5 and 1.0 for fixed end and pinned end supports, 
respectively. Also, no effect of loading rate and 
eccentricity in the test results is assumed.  

Tables 1 and 2 summarize column properties in the 
experimental database of circular (335 specimens) and 
square (257 specimens) CFST columns, respectively. 

Column parameters include the outer diameter of steel 
tube ( D  or B ), steel tube thickness ( t ), column length 

( L ), compressive strength of concrete cylinder ( cf  ), and 

yield strength of steel tube (
yf ). The ultimate 

compressive strengths of tested CFST columns, denoted 

by uP , from each reference, are also shown. 

Figures 1 and 2 show histograms of columns 
parameters for circular and square CFST columns in the 
new database, respectively. Table 3 lists the limitation for 
column parameters as specified in AISC 360-16 and 
Eurocode 4. These limits are also indicated in the figures. 
Therefore, the new database contains a significant 
number of test data of columns having properties outside 
the specification and code limits. In this study, the high-
strength material is denoted when material strengths 
exceed the AISC 360-16 limits specified in Table 3. 

 

 
 
Table 1. New experimental database of circular CFST columns. 

 

Ref. 
No. of 

columns 
𝑫 

(mm) 
𝒕 

(mm) 
𝑳 

(mm) 
𝒇𝒄
′  

(MPa) 

𝒇𝒚 

(MPa) 

𝑷𝒖 
(kN) 

[21] 12 174-179 3.0-9.0 360 22-46 248-283 1304-3217 
[22] 6 152 1.7 500-900 73-85 270-328 1458-1895 
[23] 6 165 4.5 661-4956 41 414 782-1563 
[24] 3 140 3.0-6.7 635 23-28 285-537 881-2715 
[25] 12 108-133 3.5 7.0 77-85 352-429 1518-3404 
[26] 15 165-190 0.9-2.8 577-664 41-108 186-363 1350-3360 
[27] 11 108 4.5 3510-4158 26-37 348 280-440 
[15] 13 101-318 3.0-10.4 304-956 23-53 331-452 649-8289 
[28] 6 110-165 1.9-4.7 2200-2475 27 350-355 355-1058 
[29] 8 114-115 3.7-5.0 300 26-90 343-265 948-1787 
[30] 36 108-450 3.0-6.5 324-1350 24-82 279-853 941-13776 
[31] 17 100-200 3.0 300-2000 48 303 708-2383 
[32] 15 160 5.0 2000-4000 40-106 270-283 1091-2000 
[33] 6 165-219 2.7-4.8 510-650 33-62 350 1560-3400 
[34] 6 89-112 2.7-2.9 340 23 360 620-822 
[35] 10 100 1.9 300-3000 104 404 288-1170 
[36] 16 114 3.3 343-800 31-101 287 737-1453 
[37] 2 300-360 6.0-12.0 1580-1760 31.5 479-498 6888-9823 
[38] 24 115-194 3.0-3.5 1000-2500 26-32 345-488 566-2000 
[39] 6 114-219 3.5-9.7 250-600 52-178 377-428 1550-6121 
[40] 3 159 6 2135 38-120 394-487 1414-2792 
[41] 3 558-559 16.5 995-997 26 546 28830-29590 
[9] 18 114 2.7-5.9 300-900 54-103 235-355 877-1990 
[42] 12 114-219 3.6-10.0 250-600 49-178 300-428 2340-9085 
[43] 2 219-273 10.0-16.0 4195 173-178 374-412 6402-8648 
[16] 36 153-477 1.5-11.4 306-954 62 290-345 1823-20462 
[44] 12 216-632 2.6-11.2 657-1890 50 260-590 4030-29463 
[45] 15 141-262 2.1-3.0 525-975 40-43 691-734 1550-4302 
[46] 4 209-211 2.0-3.0 1370-2170 28-36 256-297 1405-1606 
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Table 2. New experimental database of square CFST columns. 
 

Ref. 
No. of 

columns 
𝑩 

(mm) 
𝒕 

(mm) 
𝑳 

(mm) 
𝒇𝒄
′  

(MPa) 

𝒇𝒚 

(MPa) 

𝑷𝒖 
(kN) 

a. cold-formed steel section 

[47] 6 150 0.7-2.1 480-800 22-35 245 558-974 
[23] 6 150 4.3 599-4494 32 438 909-1598 
[24] 5 127 3.1-7.5 635 24-30 312-357 917-2069 
[48] 4 305 5.8-8.9 1200 110 259-660 11390-14116 
[15] 8 100-301 2.2-6.1 301-902 26-64 300-395 609-6496 
[30] 48 119-323 4.4-9.4 360-969 24-87 262-835 1153-10357 
[28] 6 100-140 2.0-5.0 2100-2500 27 240-366 342-1248 
[49] 27 60-150 3.0-4.5 1000-2700 26-29 335-528 105-1516 
[50] 6 200 6.1-10.3 600 20 382-438 2730-3980 

b. welded-box section 

[51] 4 100-120 2.9 300-360 49 228 760-1050 
[52] 4 65-75 3 1770 52-79 455-468 294-414 
[53] 6 100-183 4.2 300-540 57-67 550 1490-4210 
[54] 3 120 2.7 360-1400 16-29 340 640-816 
[55] 2 130 2.7 780 18 340 760-770 
[31] 11 200 3.0 600-2310 49 303 1986-2594 
[56] 4 120-270 5.0 430-880 20 761 1835-3950 
[57] 2 200 2.5 1190-2340 48 270 2260-2305 
[58] 6 150 2.9-4.9 1085-3101 79 317-319 1558-2597 
[35] 10 100 1.9 300-3000 105 404 466-1220 
[59] 4 410-500 10-16 1230-1500 42 358-389 12800-17900 
[60] 3 250-251 3.7 750 32 324 2677-3131 
[61] 12 80-200 5.0 210-570 21-54 701 1367-3882 
[62] 39 84-210 4.9 1512-3512 113 762 286-6329 
[63] 16 83-209 4.9 285-1514 100-113 762 1636-7506 
[42] 15 150 8.0-12.5 450 141-157 446-779 5911-8912 

 
Table 3. Limitation for column parameters specified in AISC360-16 and Eurocode 4. 
 

Limitation AISC 360-16 Eurocode 4 

Strength of concrete (MPa) 21 cf   69 20 cf   50 

Yield strength of steel (MPa) yf  525 235 yf 460 

Amount of steel /s gA A 0.01 0.2 ,/s y pl RdA f N  0.9 

Maximum /D t (circular) /D t 0.31 ( / )s yE f  /D t 90 ( / )yf235  

Maximum /b t (square) /b t 5.0 /s yE f  /b t 52 / yf235  

 

 
 (a) Steel tube slenderness ratio (b) Column slenderness ratio 
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 (c) Compressive strength of concrete (d) Yield strength of steel 
 
Fig 1. Histograms of parameters of circular CFST columns in database. 
 

 
 (a) Steel tube slenderness ratio (b) Column slenderness ratio 

 
 (c) Compressive strength of concrete (d) Yield strength of steel 
 
Fig. 2. Histograms of parameters of square CFST columns in database. 
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3. AISC 360-16 (2016) Provision for 
Compressive Strength of CFST Columns 

 
The AISC 360-16 specification provides an approach for 
predicting the compressive strength of CFST columns 
within the specified limitations (Table 3). The 
compressive strength of CFST columns is determined in 
accordance with the CFST section classification for local 
buckling, as shown in Fig. 3, where /p s yE f = 0.15 (for a 

circular section) and /s yE f2.26  (for a square section), 

/r s yE f = 0.19 (for a circular section) and /s yE f3.00  

(for a square section).  
For a compact section, the compressive strength of 

the CFST section ( noP ) is equal to the plastic strength of 

section (
pP ) as follows, 

 

 
2no p s y c cP P A f C A f = = +  (1) 

 

where 2C  is equal to 0.85 and 0.95 for square and 

circular CFST columns, respectively, due to the 
confinement effect of circular section. 

For a non-compact section, the compressive strength 
is determined by  
 

 

2

2
( )

( )

p y

no p p

r p

P P
P P  

 

−
= − −

−
 (2) 

 
 

where 
yP  is the yield strength of composite section 

given by 
 

 
0.7y s y c cP A f A f = +

 (3) 
 

Finally, the compressive strength of the slender 
section is determined by 
 

 
0.7no s cr c cP A F A f = +

 (4) 
 

where crF is the critical local buckling stress 

calculated from Eq. (5) and Eq. (6) for square and 
circular CFST, respectively. 

 
For a square section: 

 
2

9

( / )

s

cr

E
F

b t
=

 (5) 
 
For a circular section: 

 
0.2

0.72

(( / )( / ))

y

cr

y s

f
F

D t f E
=

 (6) 
 

Based on the column slenderness, the nominal 
compressive strength is determined as follows: 
 

When / 2.25no eP P  : 

 /(0.658 )no eP P

n noP P=  (7) 

 

When / 2.25no eP P  : 

 0.877n eP P=  (8) 

 

where eP  is the Euler critical buckling load (Eq. (9)). The 

effective stiffness of composite section (
effEI ) is 

determined from Eq. (10), and the coefficient 3C  is 

determined from Eq. (11).  
 

 
2 2( ) / ( )e effP EI KL=

 (9) 
 

 3eff s s c cEI E I C E I= +
 (10) 

 

 3 0.45 3( / )s gC A A= + 0.9  (11) 
 

where sE and cE  are the elastic moduli of steel and 

concrete, respectively; sI and cI  are the moment of 

inertia of steel tube and core concrete, respectively. In 
the LRFD method, the design compressive strength is 

c nP , where the strength reduction factor ( c ) is equal to 

0.75. In this study, the symbol AISC , which is /no eP P , 

denotes the relative slenderness for the normalized AISC 
column strength curves to be discussed in the following 
section. 

 

 
 
Fig. 3. AISC 360-16 procedure for determining compressive strength of CFST columns. 
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4. Eurocode 4 Simplified Method for 
Compressive Strength of CFST Columns 

 
For the doubly symmetrical and uniform cross-

section over the member length, the compressive 
strength of CFST columns can be determined by 
following the procedure in Fig. 4. Limitations on the 
column parameters are given in Table 3. The effect of 
local buckling can be neglected when slenderness of steel 
section is less than the specified limits. The Eurocode 4 

considers the fully plastic resistance of concrete ( c cA f  ) 

due to good curing conditions in CFST columns [64]. 

Therefore, the plastic resistance of CFST section (
,pl RdN ) 

is calculated as follows,  
 

 ,pl Rd s y c cN A f A f = +
 (12) 

 
To consider the confinement effect in circular CFST 

columns, the plastic resistance is calculated from Eq. (13) 

where the reduction factor of steel strength ( a ) and the 

amplification factor of concrete strength ( c ) are 

determined from Eqs. (14) and (15), respectively 
 

 
, (1 )

y

pl Rd a s y c c c

c

ft
N A f A f

D f
  = + +

 (13) 
 

 
0.25(3 2 )a = + 1.0  (14) 

 

 
24.9 18.5 17c  = − + 0  (15) 

 
However, the confinement effect is not considered 

when the relative slenderness (
, /pl Rd crN N = ) exceeds 

0.5, where crN  is the Euler critical load with the effective 

stiffness determined by 
 

 
0.6eff s s c cEI E I E I= +

 (16) 
 

Finally, the plastic resistance of CFST section is 
multiplied by the below reduction factor (  ), 

 

 
2 2

1



=
 +  − 1.0  (17) 

 
where parameter   can be determined from Eq. (18) 

for the CFST columns, 
 

 
20.5[1 0.21( 0.2) ]  = + − +

 (18) 
 
In the Eurocode 4, the partial safety factor is used to 

reduce the strength of materials. The design material 
strength is determined by dividing the nominal 
compressive strength of concrete and yield strength of 
steel by partial safety factors of 1.5 and 1.0, respectively. 

 
Fig. 4.  Eurocode 4 procedure for determining compressive strength of CFST columns. 
 

5. Accuracy of Specification and Code 
Predictions 

 
In the evaluation of specification and code predictions, 
the experimental data of CFST columns are classified 
into four groups based on the strength of constituent 
materials: (1) Normal-strength steel tube filled with 
normal-strength concrete (NS with NC), (2) Normal-
strength steel tube filled with high-strength concrete (NS 
with HC), (3) High-strength steel tube filled with normal-
strength concrete (HS with NC) and (4) High-strength 
steel tube filled with high-strength concrete (HS with 
HC). The high-strength material is denoted when the 
material strength exceeds the AISC 360-16 limits (Table 
3). 

Figures 5 to 10 show the normalized column 
buckling curves, i.e., column buckling curves normalized 
with the calculated cross-sectional strength. For a 
comparison purpose, the test data are also normalized 

and plotted in the corresponding figures. Tables 4 and 5 
summarize the average strength prediction ratios for 
circular and square CFST sections, respectively. The 

exp / AISCP P  or  exp 4/ ECP P  ratio denotes the ratio of 

experimental strength to calculated strength based on 
AISC360-16 or Eurocode 4. The effect of column 
parameters on the accuracy of strength equations for 
circular and square CFST sections will be discussed in 
the following subsections. 
 
5.1. Circular CFST Columns 
 
5.1.1. Effect of material strength 
 

AISC 360-16: As shown in Fig. 5, the AISC 
equations conservatively predict the strength of circular 
CFST for all groups of material strength, especially for 
HS with NC and HS with HC. All test data are plotted 
well above the AISC factored column strength curve. 
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The AISC curve with the reduction factor ( c nP ) is 

plotted with a dashed line. As shown in Fig. 5(a), the 
AISC strength prediction becomes less conservative for 
the compact sections of normal-strength steel tube filled 

with extra high strength concrete ( cf  = 178 MPa)  

Eurocode 4: As shown in Fig. 6, the Eurocode 4 
equations accurately predict the strength of NS with NC 
and NS with HC groups. In Table 4, the average strength 
prediction ratios (no partial safety factor) are close to 
1.00, except for HS with NC and HS with HC groups 

where 
exp 4/ ECP P  1.00. When the partial safety factor is 

considered (Fig. 7), the prediction is found to be 
unconservative for nine short CFST columns of normal-
strength steel tube filled with extra high strength 

concrete ( cf  = 178 MPa) or extra high strength steel tube 

(
yf = 853 MPa) filled with normal-strength concrete.  

 

5.1.2. Effect of column slenderness 
 

AISC 360-16: As shown in Fig. 5, the AISC 
equations are highly conservative for non-slender 
columns of all section classifications (compact, non-
compact and slender). On the other hand, the prediction 
is accurate for a compact section even when the relative 
slenderness of column is higher than 0.9. Also, the 
strength of short columns with section slenderness 

exceeding the maximum /D t  limit can be conservatively 
predicted with the current equations for a slender section. 

Eurocode 4: As shown in Fig. 7(a), the Eurocode 4 
equations overestimate the strength of some tested 
columns with the relative slenderness less than 0.43. The 
prediction is also unconservative for four short CFST 
columns with tube slenderness beyond the limit, as 
shown in Fig. 7(b). 

 

 
 (a) Compact section 

 
 (b) Non-compact section (c) Slender section 
 
Fig. 5. Normalized AISC360-16 column buckling curves for circular CFST columns. 
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 (a) Section slenderness within limitation (b) Section slenderness beyond limitation 
 
Fig. 6. Normalized Eurocode 4 column buckling curves for circular CFST columns.  

  
 (a) Section slenderness within limitation (b) Section slenderness beyond limitation 
 
Fig.7. Normalized Eurocode 4 column buckling curves for circular CFST columns (with partial safety factor). 
 
Table 4. Average strength prediction ratios for circular CFST columns (no safety factor used). 
 

Group 
(𝑷𝒆𝒙𝒑/𝑷𝑨𝑰𝑺𝑪)𝒂𝒗𝒈 (𝑷𝒆𝒙𝒑/𝑷𝑬𝑪𝟒)𝒂𝒗𝒈 

Compact Non-compact Slender In-limit Out-limit 

NS with NC 1.25 1.34 1.33 1.02 1.02 

NS with HC 1.16 1.04 1.40 1.01 1.01 
HS with NC 1.26 1.32 1.42 0.89 0.86 

HS with HC 1.22 - 1.36 0.90 0.89 

 
5.2. Square CFST Columns 
 
5.2.1. Effect of material strength 

 
AISC 360-16: As shown in Figs. 8(a) and 8(b), the 

AISC equations provide an accurate strength prediction 
for square CFST columns with compact and non-
compact sections. Table 5 shows that the average 
strength prediction ratios are close to 1.00 for all material 
strength groups. Using the strength reduction factor, the 
prediction becomes less conservative for some columns 

with extra high-strength materials ( cf  = 113 MPa, yf =

762 MPa) as shown in Fig. 8(a). 
Eurocode 4: As shown in Fig. 9(a), the Eurocode 4 

equations accurately predict the strength of all material 

strength groups of square CFST columns when the tube 
slenderness ratios are within the code limit. However, the 
prediction (with partial safety factor) over-estimates the 
strength of some columns with yield strength exceeding 

the limitation of steel tube ( yf = 460 MPa), as shown in 

Fig. 10. Therefore, the use of the strength equations for 
square CFST columns when yield strength of steel tube 
exceeds the code limit is not recommended. 

 
5.2.2. Effect of column slenderness 

 
AISC 360-16: As shown in Fig. 8(a), the AISC 

equations accurately predict the strength of compact-
section square CFST columns with relative slenderness 
greater than 1.0. For slender-section columns, the 
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predictions are conservative for short columns, as shown 
in Fig. 8(c).  

Eurocode 4: As shown in Figs. 9(a) and 9(b), more 
scatter of data is observed for columns with section 
slenderness beyond the code limitation, especially ones 
of high strength materials. Therefore, the use of strength 
equations for square CFST columns with tube 
slenderness ratio exceeding the code limit is not 
recommended. 

 
5.2.3. Effect of steel tube fabrication method 

 
In Figs. 9 and 10, two symbols are used to represent 

the fabrication methods of steel tube, namely, cold-
formed and welded-box tubes. Table 5 shows that both 
AISC 360-16 and Eurocode 4 accurately predict the 

strength of cold-formed and welded-box square CFST 
columns. The average strength prediction ratios are close 
to 1.00. To examine the degree of scatter of data, the 
coefficients of variation (COV) of the strength prediction 
ratios are calculated [COV = standard deviation (SD)/ 

the average of the data ( X )]. The COV values of AISC 

360-16 strength prediction ratios, 
exp / AISCP P , for cold-

formed and welded-box sections are 10.9% and 14.0%, 
respectively. While, the COV values of Eurocode 4 

strength prediction ratios, 
exp 4/ ECP P , are 9.2% and 14.4% 

for cold-formed and welded-box sections, respectively. 
Therefore, a slightly more scatter of data is observed for 
welded-box than cold-formed sections based on both 
predictions.  

 
 

 
 (a) Compact section 
 

 
 (b) Non-compact section (c) Slender section 
 
Fig. 8. Normalized AISC360-16 column buckling curves for square CFST columns (hollow markers represented 
welded-box section data). 
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 (a) Section slenderness within limitation (b) Section slenderness beyond limitation 
 
Fig. 9. Normalized Eurocode 4 column buckling curves for square CFST columns (Solid and hollow markers 
represent the data of cold-formed and welded-box sections, respectively.) 
 

 
 (a) Section slenderness within limitation (b) Section slenderness beyond limitation 

 
Fig. 10. Normalized Eurocode 4 column buckling curves for square CFST columns with partial safety factor (Solid 
and hollow markers represent the data of cold-formed and welded-box sections, respectively.) 
 
Table 5. Average strength prediction ratios for square CFST columns (no safety factor used). 
 

Group 
(𝑷𝒆𝒙𝒑/𝑷𝑨𝑰𝑺𝑪)𝒂𝒗𝒈 (𝑷𝒆𝒙𝒑/𝑷𝑬𝑪𝟒)𝒂𝒗𝒈 

Compact Non-compact Slender In-limit Out-limit 

NS with NC 1.07 (1.09) 1.06 (1.08) 1.51 1.01 (1.01) 0.99 (0.95) 

NS with HC 1.09 (1.15) 1.01 (1.03) - 0.97 (1.06) 0.87 (1.00) 
HS with NC 1.06 (1.07) 0.96 (1.01) (0.88) 1.04 (1.06) 0.92 (0.90) 

HS with HC 1.05 (1.11) 0.97 (1.04) - 0.99 (1.11) 0.89 (1.04) 

Remark: Numbers inside and outside the parenthesis indicate the average strength prediction ratios for 
welded-box and cold-formed sections, respectively. 

 

6. Prediction of Circular-to-Square Column 
Strength Ratio 

 
In design of CFST columns, square tube sections are 
often used because the design provision and structural 
connections for circular sections are not well defined [65]. 
However, the strength of square CFST columns is lower 
than circular ones due to the confinement effect. 
Currently, different strength equations are provided for 
circular and square CFST columns. In the Eurocode 4, 

Eq. (13) includes the confinement effect on concrete. In 
the AISC 360-16, the coefficient for concrete strength 

( 2C ) in Eq. (1) increases from 0.85 to 0.95 for circular 

cross-section. 
In this study, the predicted circular-to-square column 

strength ratio ( /cir sqrP P ) is computed to compare the 

predicted strengths of circular and square CFST columns 
with the same area of steel and concrete. The strengths 

of circular ( cirP ) and square (
sqrP ) CFST columns of 
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different length-to-depth (𝐿/𝐷) ratios are calculated by 
AISC 360-16 and Eurocode 4. The ratios are plotted in 
terms of the confinement factor (  ), as shown in Figs. 

11(a) and 11(b) for two different material strengths, i.e., 
lower-bound and upper-bound strength limits. It is 
found that the /cir sqrP P  ratio calculated by AISC 360-16 

slightly decreases when the confinement factor increases. 
The predicted strength of the circular CFST column 
becomes close to the strength of the square CFST 
column when the confinement factor increases. In 
contrast, the /cir sqrP P  ratio calculated by Eurocode 4 

increases when the confinement factor increases and 
slightly decreases when the confinement factor is higher 
than 3.0.  

While not significant on the /cir sqrP P  ratio calculated 

by AISC 360-16, the ratio /L D  governs the /cir sqrP P  

ratio calculated by Eurocode 4. According to the 
Eurocode 4 calculations, the  /cir sqrP P ratio increases as 

the /L D  ratio decreases. For short columns, the circular 
sections are predicted to be more effective than square 
sections. 
 

7. Size Effect in Short Circular CFST Columns 
 

The size effect of concrete is controlled by the 
development of micro-cracks [16]. In the CFST columns, 
the steel tube provides the confining pressure to the 
concrete core and reduces the micro-cracks in concrete. 

Because the size effect in the CFST columns can be 
influenced by both concrete and steel tube, the 
confinement factor is used to represent the combined 
effect of steel ratio and material strength. To investigate 

the size effect in circular CFST short columns ( /L D

≤3.5), three groups are chosen from the experimental 
database based on the confinement factor values ( = 0.2

 0.03, 0.5  0.03, 0.8  0.03). The test data are 

normalized with noP calculated from Eq. (12). An outer 

diameter of steel tube represents the size of column. Fig. 
12 shows the effect of column size on the normalized 
strength of circular CFST columns. At the confinement 
factor of 0.2, the normalized strength increases (8.6%) 
when the column size increases from 152 mm to 469 
mm. At the confinement factor of 0.5, the normalized 
strength remains constant when the column size 
increases from 133 mm to 477 mm. At the highest 
confinement factor of 0.8, however, a reduction in the 
normalized strength (-5.5%) was observed when the 
column size increases from 100 mm to 337 mm. Based 
on the observation at three different confinement factors 
(  =  0.2, 0.5, 0.8), the different tendency of the size 

effect is found when the confinement factor changes. 
Due to lack of test data of columns of the same 
confinement factor but different sizes, the influence of 
the confinement factor on the size effect of square CFST 
columns is not investigated. 

 

 
 (a) Lower bound-material strength (b) Upper bound-material strength 
 
Fig. 11. Predicted circular-to-square column strength ratios using AISC 360-16 and Eurocode 4. 
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 (a) =  0.2  0.03 

 
 (b) =  0.5  0.03 (c) =  0.8  0.03 

Fig. 12. Influence of confinement factor on size effect in circular CFST columns. 

 
8. Conclusions 
 
A new experimental database of CFST columns is 
compiled from the published literature including new 
experimental studies on the CFST columns with high-
strength materials beyond the limitations. The database is 
used to evaluate the AISC 360-16 and Eurocode 4 design 
strength equations. The database is also used to 
investigate the influence of confinement factor on the 
size effect in short circular CFST columns. In addition, a 
comparison between the circular-to-square column 
strength ratios calculated with the two design references 
is discussed. From the study, the following conclusions 
can be drawn: 

• The AISC 360-16 strength prediction is conservative 
for CFST columns, especially for short circular CFST 

columns ( AISC  0.9), of normal or high strength 

materials beyond specification limit ( cf   70 MPa, 

yf  525 MPa). Based on the database, the design 

equations is also applicable for circular CFST 
columns with a slender section, i.e., tube slenderness 

ratio is higher than the specification limit ( /D t 

0.31( /s yE f )). 

• The simplified method in Eurocode 4 accurately 
predicts the compressive strength for most circular 

CFST columns, except short columns (   0.3). 
However, it is not recommended for square CFST 

columns with steel tube strength exceeding the code 
limit (

yf  460 MPa) or ones with tube slenderness 

ratio beyond the code limit ( /b t  52 / yf235 ).  

• With the same amount of concrete and steel, the 
square CFST columns is less effective than circular 
ones in terms of the compressive strength. The 
benefit of circular tubes is realized in Eurocode 4. 
The predicted circular-to-square column strength 
ratio increases when the confinement factor increases. 
Such benefit decreases when the column length-to-
depth ratio increases.  

• The different tendency of the size effect is found 
when the confinement factor changes. At the 
confinement factor of 0.2, the normalized strength 
increases (8.6%) when the column size increases. At a 
higher confinement factor (  = 0.8), a reduction in 

the normalized strength (-5.5%) is observed when the 
column size increases. 
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List of symbols 
 

cA  Area of concrete core 

sA  Area of steel tube 

gA  Gross area of CFST columns 

B  Outer width of square steel tube 

b  Inner width of square steel tube ( 2B t− ) 

2C  Coefficient to account for the confinement of 

concrete of compact CFST sections 

3C  Coefficient for calculation of effective stiffness of 

CFST columns 
D  Outer diameter of circular steel tube 

effEI  Effective stiffness of CFST columns 

cE  Modulus of elasticity of concrete 

sE  Modulus of elasticity of steel 

crF  Critical buckling stress 

cf   Cylinder compressive strength of concrete 

cf  Characteristic value of compressive strength of 

concrete (without partial safety factor) 

yf  Yield strength of steel tube 

cI  Moment of inertia of concrete sections 

sI  Moment of inertia of steel sections 

K  Effective length factor 
L  Length of CFST columns 

eP and crN  Euler critical buckling load in AISC 360-

16 and Eurocode 4 

noP and ,pl RdN  Cross-sectional compressive strength of 

CFST column in AISC 360-16 and Eurocode 4 

uP and
expP  Experimental strength capacity of CFST 

columns 
cirP  Predicted strength of circular CFST columns 

sqrP  Predicted strength of square CFST columns 

nP  Nominal compressive strength of CFST columns 

pP  Plastic strength of CFST sections 

yP  Yield strength of CFST sections 

t  Thickness of steel tube wall 

p  Slenderness limit for compact/noncompact 

sections 

r  Slenderness limit for noncompact/slender sections 

  Relative slenderness for Eurocode 4 (
, /pl Rd crN N ) 

AISC  Relative slenderness for AISC 360-16 ( /no eP P ) 

  Confinement factor ( /s y c cA f A f  ) 

a  Reduction factor of steel strength 

c  Amplification factor of concrete strength 

c  Resistance factor for compression ( c = 0.75) 

  Value to determine the reduction factor   

  Reduction factor to account for column 

slenderness 
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