

Article

Synthesis of Light Hydrocarbons via Oxidative Coupling of Methane over Silica-supported Na₂WO₄-TiO₂ Catalyst

Anusorn Seubsai^{1,2,3}, Palida Tiencharoenwong¹, Phattaradit Kidamorn¹, and Chalida Niamnuy^{1,3,*}

1 Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand

2 Center of Excellence on Petrochemical and Materials Technology, Kasetsart University, Bangkok 10900, Thailand

3 Research Network of NANOTEC–KU on NanoCatalysts and NanoMaterials for Sustainable Energy and Environment, Kasetsart University, Bangkok 10900, Thailand *E-mail: fangedni@ku.ac.th (Corresponding author)

*E-mail: fengcdni@ku.ac.th (Corresponding author)

Abstract. Methane is of great interest for conversion into high-value hydrocarbons (C₂₊) and olefins, via oxidative coupling of methane (OCM) using catalysts. In this work, Na₂WO₄-TiO₂/SiO₂ catalyst, along with the single catalysts of its components (Na₂WO₄/SiO₂ and TiO₂/SiO₂), was investigated for OCM reaction to C₂₊. We found that 5 wt% Na₂WO₄+ 5 wt% TiO₂ on the SiO₂ support was a superior catalyst for OCM reaction compared to the single catalysts. The maximum C₂₊ formation of the Na₂WO₄-TiO₂/SiO₂ catalyst was found under test conditions of a N₂/(4CH₄:1O₂) feed gas ratio of 1:1, a reactor temperature of 700 °C, and gas hourly space velocity of 9,500 h⁻¹, exhibiting 71.7% C₂₊ selectivity, 6.8% CH₄ conversion, and 4.9% C₂₊ yield. Moreover, the activity of the catalyst had good stability over 24 h of on-stream testing. The characterizations of the Na₂WO₄-TiO₂/SiO₂ catalyst using XRD, FT-IR, XPS, FE-SEM, and TEM revealed that a crystalline structure of a cristobalite of SiO₂ was present along with TiO₂ crystals, substantially enhancing the activity of the catalyst for OCM reaction to C₂₊.

Keywords: Catalyst, light hydrocarbons, oxidative coupling of methane, sodium tungsten oxide, titanium oxide.

ENGINEERING JOURNAL Volume 23 Issue 5 Received 28 March 2019 Accepted 10 June 2019 Published 30 September 2019 Online at http://www.engj.org/ DOI:10.4186/ej.2019.23.5.169

This article is based on the presentation at The 8th International Thai Institute of Chemical Engineering and Applied Science Conference (ITIChE2018) in Chonburi, Thailand, 8th-9th November 2018.

1. Introduction

Methane (CH₄) is the main compound of biogas and natural gas that are plentiful on Earth. It is considered a greenhouse gas with an environmental impact more than 25 times greater than CO_2 if equal amounts of these two gases are released into the atmosphere. Since methane is an abundant compound on Earth, a process that can convert methane to high value-added chemicals is a highly attractive topic for many researchers. One of the challenging topics to be considered in catalysis is oxidative coupling of methane (OCM)—a gas-phase reaction that uses O_2 or air to directly react with CH₄ to produce useful hydrocarbons (C_{2+}) such as ethylene, ethane, propane, and propylene [1, 2]. The OCM reaction is an exothermic reaction in nature and normally takes place at reaction temperatures of 600–1,000 °C [3]. OCM can produce CO and CO₂ as byproducts. However, if a suitable catalyst is present, the reaction produces a selective product and extreme reaction temperatures can be reduced.

In the past several years, some potential catalysts have been reported, including MnO_x modified with different types of co-catalysts, supports and promotors, such as oxides of Mg, Na, and Ce. However, the C_{2+} yields and C_{2+} selectivities were quite low at approximately <16% and 25-78%, respectively [4-8]. Additionally, coke formation was found during the reaction, resulting in catalyst deactivation. Later, the coking formation was, however, prevented by introducing of chlorinated compounds with the reactant gases. Alternatively, a binary catalyst of Na₂WO₄-MnO_x has been widely investigated because this metal combination was identified as an active material for the OCM reaction. The modified Na₂WO₄-MnO_x catalysts reported include MO_x-Na₂WO₄-MnO_x/SiO₂ (M = Ni, Co, Fe, Li, Al, Ba, Ca, Na, and K) [9], TiO₂-Na₂WO₄/MnO_x/SiO₂ [10], and Ce₂O₃-MnO_x-Na₂WO₄/SiO₂ [7]. The C₂₊ yields and C₂₊ selectivities of those Na₂WO₄-MnO_x catalysts increased compared to the single catalysts of its component and the other metal combinations due to synergistic catalyst effects between Na₂WO₄ and MnO_x[11-14]. The additions of the promoters (e.g. TiO₂, Ce₂O₃) onto the Na₂WO₄-MnO_x catalysts resulted in improved activity of the catalysts, because the promoters could cooperate into the catalytic materials and/or the number of suitable strong basic sites increased [15, 16]. Normally, SiO₂ is used as a catalyst support because the SiO₂ support is stable under the test conditions and inert to the products [14].

Since previous results reported in the literatures showed that any catalysts containing Na₂WO₄, MnO_x, and/or SiO₂ are highly active for OCM reaction, it is of great interest and challenging to improve new catalysts that consist of any of those components and new active metal component (i.e co-active metal, promoter). In a catalyst screening for OCM reaction in our laboratory, we discovered that addition of TiO₂ onto the Na₂WO₄/SiO₂ catalyst without MnO_x can also substantially improve the C₂₊ yield. This combination of TiO₂ and Na₂WO₄ on SiO₂ has never been reported in detail. Herein, we report on various studies on the activity of Na₂WO₄ mixed with TiO₂ on SiO₂ support. The studies include catalyst optimization, catalyst stability, operating condition for the reaction, and catalyst characterization.

2. Experimental Section

2.1. Catalyst Preparation

All of the catalysts were synthesized using co-impregnation of predetermined weights of SiO₂ as follows. An aqueous solution of Na₂WO₄ (sodium tungstate dihydrate, 98.0~101.0%, Daejung) and Ti⁴⁺(titanium (IV) isopropoxide, 97+%, Alfa Aesar) in ethanol (99.9%, QREC) were determined and pipetted into amorphous fume silica (SiO₂, surface area of 85-115 m²/g, Alfa Aesar) to obtain a desired weight percentage of the metal components (TiO₂ and/or Na₂WO₄) on the SiO₂ support. Note that the weight percentage of TiO₂ or Na₂WO₄ on the support was determined on the basis of the mass of Ti(0) or Na₂WO₄, respectively. The mixture was continuously stirred at 120 °C until dry. The obtained powder was then taken to calcine in an air furnace at 800 °C for 4 h. After the calcination, a fine white powder was obtained.

2.2. Catalyst Activity Test

The activities of the prepared catalysts were evaluated for OCM reaction in a plug flow reactor at 1 atm and a reactor temperature range of 600–800 °C. A sample (8 mg) was packed in a quartz tubular reactor that had an inner diameter of 0.5 cm. The catalyst bed length was approximately 2 mm and the catalyst was

sandwiched between two layers of quartz wool. The feed gas consisted of nitrogen (N₂, 99.999% purity, Praxair), methane (CH₄, 99.999% purity, Praxair), and oxygen (O₂, 99.999% purity, Praxair) at a volume ratio of (N₂:CH₄:O₂) = (0–7.5):4:1 (i.e. fixing the volume ratio of CH₄:O₂ = 4:1) with a total feed flow rate of 50 mL/min, which corresponded to a gas hourly space velocity (GHSV) of 9,500 h⁻¹. The effluent gas was analysed using a gas chromatograph (Shimadzu, GC-14A) equipped with a thermal conductivity detector (TCD; for analyzing CO, CO₂, and CH₄) and a flame ionization detector (FID; for analysis of C₂H₄, C₂H₆, C₃H₆, C₃H₈ and C₄H₈, and C₄H₁₀). The catalytic activities are expressed in terms of %CH₄ conversion, %C₂₊ selectivity, %CO_x selectivity, and %C₂₊ yield, which are shown in Eq. (1)–(4). The data were collected after the system had reached the set point for 2h.

% CH₄ conversion=
$$\frac{\text{moles of CH}_4 \text{ input-moles of CH}_4 \text{ output}}{\text{moles of CH}_4 \text{ input}} \times 100$$
 (1)

% C₂₊ selectivity=
$$\frac{\text{moles of } C_{2+}}{\text{Total moles of products}} \times 100$$
 (2)

% CO_x selectivity=
$$\frac{\text{moles of CO}_x}{\text{Total moles of products}} \times 100$$
 (3)

% C₂₊ yield=
$$\frac{\% \text{ CH}_4 \text{ conversion} \times \% \text{ C}_{2+} \text{ selectivity}}{100}$$
 (4)

2.3. Catalyst Characterization

The patterns of powder X-ray diffraction (XRD) the samples were received using a powder X-ray diffractometer (PXRD; X-Pert, Philips and JDX-3530, JEOL) with using Cu- K_a radiation with 40 mA and 45 kV, 0.5 s step time, 0.02° step size.

The pore volumes, pore-sizes, and specific surface areas of the samples were evaluated using N_2 -physisorption with a Quantachrome Autosorp-1C instrument and Brunauer-Emmett-Teller (BET) procedure at a temperature of -196 °C.

The surface morphology of the samples was imaged using a field emission scanning electron microscope (FE-SEM, JSM7600F, JEOL) with an energy dispersive X-ray spectrometer (EDS), operated at 300 kV). Each sample was coated by gold (Au) using Au sputtering technique.

The particles at the nano-scale of the catalysts were characterized using a high-resolution transmission electron microscope (HR-TEM, JEM-3100F, JEOL) performed at 300 kV.

The Fourier-transform infrared (FT-IR) patterns of the samples were acquired using an FT-IR spectrometer (TENSOR2, Bruker, attenuated total reflection (ATR) mode). For the measurements, fine powder of each catalyst was mixed with potassium bromide (KBr), and then made into a KBr pellet.

The electronic states of sodium, tungsten, and titanium were analyzed using X-ray photoelectron spectroscope (XPS, Axis Ultra DLD, Kratos) with Al Ka for the X-ray source.

The metal-support and metal-metal interactions were analyzed using the H₂-temperature programmed reduction (H₂-TPR) technique. The H₂-TPR profiles of the samples were attained by carrying out the measurements in a tubular reactor (Inconel tube) in a temperature range of 50–900 °C with a heating rate of 5 °C/min. A gas mixture of 9.6% H₂ in Ar at a total feed flow rate of 30 mL/min was introduced into the sample bed. A TCD-equipped gas chromatography (GC-14, Shimadzu) was used to continuously monitor the H₂ consumption.

3. Results and Discussion

3.1. Activity of TiO₂/SiO₂, Na₂WO₄/SiO₂, and TiO₂-Na₂WO₄/SiO₂ Catalysts

The 10wt% TiO₂/SiO₂, 10wt% Na₂WO₄/SiO₂, and (5wt% TiO₂-5wt% Na₂WO₄)/SiO₂ catalysts were prepared and tested for OCM reaction, as presented in Fig. 1. The performance of each catalyst was described using the C_{2+} selectivity, CH₄ conversion, and C_{2+} yield. It should be noted that the C_{2+} yield is the criterion used to identify a superior catalyst when comparing the activities of catalysts. The C_{2+} yield of

the Na₂WO₄-TiO₂/SiO₂ catalyst was obtained at 2.7 %, clearly greater than that of the single TiO₂/SiO₂ or Na₂WO₄/SiO₂ catalysts, approximately 1.5 or 3.8 times the C₂₊ yield of the TiO₂/SiO₂ or Na₂WO₄/SiO₂ catalysts, respectively. However, the C₂₊ selectivity for these three catalysts was similar (approximately 39–42%) but the CH₄ conversion of the TiO₂/SiO₂ and Na₂WO₄/SiO₂ catalysts was lower than that of the Na₂WO₄-TiO₂/SiO₂ catalyst. The results indicated that the combination of TiO₂ and Na₂WO₄ on the SiO₂ support reveals a synergistic catalysis effect.

Fig. 1. C_{2+} selectivity, CH₄ conversion, and C_{2+} yield of 10wt% TiO₂/SiO₂, 10wt% Na₂WO₄/SiO₂, and TiO₂-Na₂WO₄/SiO₂ catalysts. Testing conditions: feeding gas ratio of CH₄:O₂ = 4:1 by volume, total feed flow rate = 50 mL/min (GHSV = 9,500 h⁻¹), and reactor temperature = 700 °C.

3.2. Effect of TiO₂ Loading on Na₂WO₄-TiO₂/SiO₂

The Na₂WO₄-TiO₂/SiO₂ catalyst was further studied by varying the amount of TiO₂. In a previous study, 5wt% Na₂WO₄ loaded on SiO₂ using incipient-wetness impregnation was reported to produce an optimum yield for the OCM reaction [17]. However, the effect of TiO₂ loading on Na₂WO₄/SiO₂ has never been studied. In the present study, different amounts of TiO₂ on Na₂WO₄/SiO₂ were studied by varying the amounts of TiO₂ from 0 to 30% on the catalyst and keeping the amount of Na₂WO₄ on every catalyst unchanged at 5 wt%, as plotted in Fig. 2. As increasing TiO₂ loading, the C₂₊ selectivities slowly increased from 38.0 to 44.9%, while the CH₄ conversion steadily decreased from 6.4 to 4.3%. Nevertheless, the C₂₊ yield had an optimum yield at 5 wt% loading (2.7% C₂₊ yield). This confirmed that the addition of TiO₂ into Na₂WO₄/SiO₂ enhances C₂₊ formation. However, TiO₂ loadings over 5 wt% decreased the C₂₊ yield of each catalyst. Thus, Na₂WO₄ -TiO₂/SiO₂ catalyst at a total metal loading of 10 wt% and a TiO₂:Na₂WO₄ weight ratio of 1:1 (i.e. 5 wt% Na₂WO₄ + 5 wt% TiO₂) was chosen for the optimum catalyst for further studies.

3.3. Effect of N₂/(4CH₄:1O₂) Feeding Gas Ratio and Reactor Temperature

The optimal catalyst was further investigated at various $N_2/(4CH_4:1O_2)$ feeding gas ratios ($N_2/(4CH_4:1O_2)$ = 0.0–1.5) and reactor temperatures (600–800 °C). For the previous studies in sections 3.1 and 3.2, the testing conditions were fixed at a CH₄:O₂ feeding gas ratio of 4:1 with a total feed flow rate of 50 mL/min (GHSV = 9,500 h⁻¹) without an inert gas at 700 °C and atmospheric pressure. In this section, N_2 gas (a diluent gas) was co-fed with CH₄:O₂ by fixing the volume ratio of CH₄:O₂ = 4:1 and varying the volume ratio of $N_2/CH_4:O_2$ from 0.0 to 1.5, and also varying the reactor temperature from 600 to 800 °C, while the

total feed flow rate was fixed at 50 mL/min. The C_{2+} yield, C_{2+} selectivity, and CH_4 conversion under each set of condition of the optimal catalyst are presented in Figs. 3(a), 3(b) and 3(c), respectively.

Fig. 2. TiO₂ loadings onto Na₂WO₄/SiO₂ from 0–30 wt% by fixing the amount of Na₂WO₄ onto each catalyst at 5 wt%; Testing conditions: feeding gas ratio of CH₄:O₂ = 4:1 by volume, total feed flow rate = 50 mL/min (GHSV = 9,500 h⁻¹), and reactor temperature = 700 °C.

Fig. 3. a) C_{2+} selectivity, b) CH₄ conversion, and c) C_{2+} yield of the optimum TiO₂-Na₂WO₄/SiO₂ catalyst at N₂/(4CH₄:1O₂) feeding gas ratios of 0.0–1.5 by volume, reactor temperatures of 600–800 °C, and total feed flow rate of 50 mL/min.

ENGINEERING JOURNAL Volume 23 Issue 5, ISSN 0125-8281 (http://www.engj.org/)

Comparing the C_{2+} selectivities at one reactor temperature (Fig. 3(a)), the C_{2+} selectivity mostly increased as the $N_2/(4CH_4:1O_2)$ feeding gas ratio increased. The maximum C_{2+} selectivity obtained was 91.5% with a $N_2/(4CH_4:1O_2)$ feeding gas ratio of 1.5 by volume and a reactor temperature of 650 °C but the CH₄ conversion and the C_{2+} yield were low at 1.9% and 1.7%, respectively. However, the C_{2+} yield at every testing temperature decreased when the $N_2/(4CH_4:1O_2)$ feeding gas ratio was over 1.0 by volume because the reactant gases (i.e. CH₄ and O₂) were too diluted. In other words, the reactants were not sufficient for the active sites of the catalyst. In contrast, the C_{2+} yield of the $N_2/(4CH4:1O_2)$ feeding gas ratio of 0.0 and 0.5 was lower than that of 1.0 because the reactant gases were much more than the active sites and the heat generated by the catalytic reaction in the catalyst's bed was high, so that the products can further combust in the hotspot zone. Thus, the C_{2+} yields for these two conditions were relatively low.

Considering the catalytic activities at one $N_2/(4CH_4:1O_2)$ feeding gas ratio; the catalytic activities increased when the reactor temperatures was increased from 600 to 700 °C. However, at reactor temperatures above 700 °C, the C₂₊ selectivities decreased with increasing CH₄ conversion, and thus the overall C₂₊ production (i.e. C₂₊ yields) decreased because the combustion of CH₄ to CO_x products is favored at high reaction temperature [3], as well as the C₂₊ products being able to further react with some active species of the catalyst or to react with O₂ gas in the gas phase to further produce CO_x [18]. As seen in Fig. 3(c), the optimal C₂₊ yield was achieved at 4.9% with 71.7% C₂₊ selectivity and 6.8% CH₄ conversion when the operating conditions were an N₂/(CH₄:O₂) feed gas ratio of 1.0 by volume and 700 °C. These conditions were then chosen for a further study on the stability of the catalyst.

3.4. Catalytic Stability of Na₂WO₄-TiO₂/SiO₂

The catalytic stability of the Na₂WO₄-TiO₂/SiO₂ catalyst was investigated under the optimal conditions found in section 3.3. The activities of the catalyst over 24 h are presented in Fig. 4. Promisingly, the C₂₊ selectivities were high at approximately 69–71% during the testing period. However, the overall selectivity reduced by approximately 3% within 24 h. Moreover, the CH₄ conversions slowly decreased from 6.8 to 5.9, leading to decreased C₂₊ yield during the test period. It was also noticed that the CO_x selectivities gradually increased from 29 to 31%. The results suggested that the stability of the Na₂WO₄-TiO₂/SiO₂ catalyst was quite good for over 24 h. The slow deactivation of the catalyst requires further study, which is not the focus of this report.

Fig. 4. Catalytic performance of Na₂WO₄-TiO₂/SiO₂ catalyst, testing conditions: N₂/(4CH₄:1O₂) feeding gas ratio of 1.0, reactor temperature of 700 °C, total feed flow rate of 50 mL/min, atmospheric pressure, and 24 h of testing.

3.5. Characterization of TiO₂/SiO₂, Na₂WO₄/SiO₂, and Na₂WO₄-TiO₂/SiO₂ Catalysts

The XRD pattern of the Na₂WO₄-TiO₂/SiO₂ catalysts compared with that of the TiO₂/SiO₂ and Na₂WO₄/SiO₂ catalysts are presented in Fig. 5. The TiO₂/SiO₂ catalyst exhibited two small peaks at 2 θ of 25.2 and 48.5, indicating the presence of crystalline TiO₂ (anatase). It was also noticed that the SiO₂ support was in the amorphous phase. For the Na₂WO₄/SiO₂ catalyst, two crystalline compounds were observed. The first one was the crystalline Na₂WO₄, showing the characteristic peaks at 2 θ of 7.16, 27.5, 32.4 and 48.4. The other was the presence of α -cristobalite (one of the crystalline forms of SiO₂), exhibiting the characteristic peaks at 2 θ of 21.9, 28.3, 31.3, 36.0, 47.8, and 56.9. It was surprising to observe the formation of α -cristobalite at low a calcination temperature (800 °C) in the presence of Na₂WO₄ because this crystalline form of SiO₂ normally occurs at calcination temperatures above 1,500 °C [19]. Similarly, the α -cristobalite phase was observed in the Na₂WO₄-TiO₂/SiO₂ catalyst as clearly indicated by the characteristic XRD pattern. It was more interesting to observe that the characteristic peaks of TiO₂ were clearly seen for the Na₂WO₄-TiO₂/SiO₂ catalyst compared to those peaks in the Na₂WO₄-TiO₂/SiO₂ catalyst. This suggested that the environment in this catalyst enhanced the crystallinity of TiO₂. Thus, the important factor that promotes the formation of C₂₊ products of the Na₂WO₄-TiO₂/SiO₂ catalyst was the formation of the crystalline components (α -cristobalite, Na₂WO₄, and TiO₂).

Fig. 5. XRD patterns of TiO₂/SiO₂, Na₂WO₄ /SiO₂, and Na₂WO₄-TiO₂/SiO₂.

The surface morphologies of the three catalysts imaged using FE-SEM were compared with the pure SiO₂ support and these are illustrated in Fig. 6(a)–Fig. 6(f). The SiO₂ support (Fig. 6(a)) and the TiO₂/SiO₂ catalyst (Fig. 6(b)) are similar, in that the particles are irregular in shape with sizes ranging from 20 to 50 nm. These particles were observed mostly in the amorphous SiO₂ support. The particles of the Na₂WO₄/SiO₂ catalyst (Fig. 6(c) and Fig. 6(d)) were also irregular in shape. Interestingly, the typical shape of the amorphous SiO₂ was completely transformed to a new shape, which was larger in size and possessed coral-reef like structures (approximately > 0.5 μ m in diameter). This new structure was the crystalline α -cristobalite as identified by the XRD pattern. The Na₂WO₄/SiO₂ catalyst (Fig. 6(e) and Fig. 6(f) had similar the size and shape to the particles of the Na₂WO₄/SiO₂ catalyst. However, some small particles (approximately 50-100 nm in diameter) were observed throughout the catalyst. These particles were identified as TiO₂ crystals.

The TEM images of the Na₂WO₄-TiO₂/SiO₂ catalyst compared with those of the TiO₂/SiO₂ and Na₂WO₄/SiO₂ catalysts are shown in Fig. 7. The shape and size of each catalyst corresponded to the observation in the FE-SEM images (Fig. 6). The TEM images of the Na₂WO₄/SiO₂ (Fig. 7(c) and 7(d)) and Na₂WO₄-TiO₂/SiO₂ (Fig. 7(e) and 7(f)) catalysts confirmed that the amorphous SiO₂ support transformed to α -cristobalite when adding Na₂WO₄, in agreement with a previous report [20]. For the Na₂WO₄-

 $\rm TiO_2/SiO_2$ catalyst, crystalline $\rm TiO_2$ particles were clearly observed with sizes ranging between 50 and 100 nm.

Fig. 6. SEM images of pure SiO₂ support (a), TiO₂/SiO₂ (b), Na₂WO₄/SiO₂ (c, d), and Na₂WO₄-TiO₂/SiO₂ (e, f).

Fig. 7. TEM images of TiO₂/SiO₂ (a, b), Na₂WO₄/SiO₂ (c, d), and Na₂WO₄-TiO₂/SiO₂ (e, f).

The BET surface areas, pore sizes, and pore volumes of the catalysts were measured using an N₂sorption analyzer. For comparison, the commercial SiO₂ support (surface area of 85–115 m²/g, amorphous fumed silica, Alfa Aesar) was also dried and calcined using the same method as the catalyst preparation without adding any metal precursors and conducting the BET measurement. As presented in Table 1 and Fig. 8, the isotherm plot of the SiO_2 support was similar to that of the TiO_2/SiO_2 catalyst, in which no hysteretic loop was observed. This indicated that the SiO2 support and the TiO2/SiO2 catalyst are nonporous material, and thus their porous sizes and volumes must have been created from the inter-particles. However, the surface area of the SiO₂ support was lower than that of the TiO₂/SiO₂ catalyst, suggesting that the TiO_2 particles potentially deposited on the surface of SiO_2 and create new surfaces, and thus the surface area of the TiO₂/SiO₂ catalyst increased. The surface areas of the Na₂WO₄/SiO₂ and Na₂WO₄-TiO₂/SiO₂ catalysts were much lower than those of the SiO₂ support and the TiO₂/SiO₂ catalyst. This was consistent with the observations from using the FE-SEM (Fig. 6.) & TEM (Fig. 7.) images, in which the particle sizes of the catalysts containing Na₂WO₄ were larger than those of the TiO₂ catalyst. The hysteretic loops of the Na2WO4/SiO2 and Na2WO4-TiO2/SiO2 catalysts were similar, in which the pore sizes and the pore volumes generated from the intra-particles and the pore sizes were classified as a meso-porous material. Although the Na₂WO₄-TiO₂/SiO₂ catalyst had a quite small specific surface area, this catalyst had the highest C_{2+} yield, indicating that the synergistic catalyst effect or the selected active components plays a significant role in the catalytic performance.

Table 1. BET surface area (S.A.), pore size, and pore volume of TiO₂/SiO₂, Na₂WO₄/SiO₂, and Na₂WO₄-TiO₂/SiO₂ compared with pure SiO₂ support.

Material	S.A.	Pore size	Pore volume
	(m ² /g)	(nm)	(cm ³ /g)
SiO ₂	86.5	22.2	0.480
Na ₂ WO ₄ / SiO ₂	6.5	9.1	0.015
TiO ₂ / SiO ₂	106.2	17.5	0.460
Na2WO4-TiO2/ SiO2	5.4	10.0	0.013

The FT-IR patterns of the catalysts are presented in Fig. 9. All three catalysts displayed the Si—O—Si rocking, the Si—O—Si bending, and the Si—O—Si stretching peaks appearing around 490, 800, and 1100 cm⁻¹, respectively. There was one different peak appearing at 621 cm⁻¹ for Na₂WO₄-TiO₂/SiO₂ and Na₂WO₄/SiO₂, specifying the existence of α -cristobalite [19] in these two catalysts, in good agreement with the findings in Fig. 5. As can be seen by the catalyst activities presented in Fig. 1, the Na₂WO₄-TiO₂/SiO₂ catalyst had a C₂₊ yield greater than those of the two single catalysts. Thus, one of the important keys that can be considered to improve the C₂₊ yield is to have a catalyst consisting of α -cristobalite interacting with an active crystalline metal oxide.

DOI:10.4186/ej.2019.23.5.169

Fig. 8. Isotherm plots of (a) Na_2WO_4/SiO_2 catalyst, (b) TiO_2/SiO_2 catalyst, (c) $Na_2WO_4-TiO_2/SiO_2$ catalyst, and (d) pure SiO_2 support.

Fig. 9. FT-IR spectra of Na₂WO₄-Ti/SiO₂, Na₂WO₄/SiO₂, and TiO₂/SiO₂ catalysts.

Figure 10 presents the XPS spectra of the catalysts. The XPS scans were carried out in the range of the Na, W, and Ti regions. The observed peaks corresponded to Na₂O (1s = 1071.5 eV) WO₄²⁻(4f_{5/2} = 37.6 eV, $4f_{7/2} = 35.3 \text{ eV}$) for Na₂WO₄/SiO₂ and ($4f_{5/2} = 37.8 \text{ eV}$, $4f_{7/2} = 35.3 \text{ eV}$) for Na₂WO₄-TiO₂/SiO₂, and TiO₂ (2p_{3/2} = 464.2 eV, $2p_{1/2} = 459.2 \text{ eV}$) for TiO₂/SiO₂ and ($2p_{3/2} = 464.5 \text{ eV}$, $2p_{1/2} = 458.8 \text{ eV}$) for Na₂WO₄-TiO₂/SiO₂. Of interest was that the peaks of WO₄²⁻and TiO₂ shifted toward a higher binding energy when Na₂WO₄ and TiO₂ were present in the same catalyst. This was because the Ti or W species are more likely to attach to WO₄⁻² or O²⁻ bonding with Ti, which is an electron withdrawing group. Thus, the oxidation state of Ti or W has a higher positive charge, and thus shifts in the binding energies can be observed.

Catalyst reducibility and the interaction between the active catalysts and the support were examined using the H₂-TPR technique (see Fig. 11). For the TiO₂/SiO₂ catalyst, no clear H₂ reduction peak could be seen in this temperature range, consistent with previous reports [21, 22]. For Na₂WO₄/SiO₂, a broad reduction peak starting from 450 °C to above 900 °C with a maximum H₂ consumption at about 800 °C was observed, indicating the reduction of W species [22]. The reduction behavior of the Na₂WO₄-TiO₂/SiO₂ catalyst was related to that of the Na₂WO₄/SiO₂ catalyst. However, the starting reduction temperature and the maximum temperature of the Na₂WO₄-TiO₂/SiO₂ catalyst shifted toward a higher temperature (approximately 50 °C greater than those of the Na₂WO₄/SiO₂ catalyst). This suggested that the redox properties of these metal species substantially change, probably because there is a strong interaction between the WO₄²- component and the TiO₂ crystals [22].

Fig. 10. XPS spectra of Na₂WO₄-Ti/SiO₂, Na₂WO₄/SiO₂, and TiO₂ /SiO₂ showing scanning in the (a) Na, (b) W, and (c) Ti ranges.

Fig. 11. H₂-TPR patterns of Na₂WO₄-TiO₂/SiO₂, Na₂WO₄/SiO₂, and TiO₂/SiO₂.

In previous reports on the activity of catalysts containing Na₂WO₄ and SiO₂ for OCM reaction, there have been some suggestions about the enhancement of those catalysts as follows. Ji, et al. stated that the existence of the α -cristobalite phase was a critical necessity for the C₂₊ formation of catalysts containing Na₂WO₄ and SiO₂ for OCM reaction [9]. Elkins, et al. claimed that the interaction between the α -cristobalite structure and the WO₄²⁻ tetrahedron structure was crucial in the generation of C₂₊ and the inter-phase between these two components was the active surface species. Moreover, the WO₄²⁻ tetrahedron could stabilize the Mn₂O₃ and Na₂WO₄ phases, so that the catalysts could maintain their high activity during the reaction [23]. Furthermore, Palermo, et al. suggested that Na played dual roles in promoting the activity of MnO_x-Na₂WO₄/SiO₂ catalysts by acting as both a chemical and a structural promoter [24, 25]. From these reports, it can be certainly claimed that the presence of the α -cristobalite structure, the crystalline Na₂WO₄, and the anatase-TiO₂ crystals in the Na₂WO₄-TiO₂/SiO₂ catalyst strongly enhances the activity of the catalyst and is crucial for the formation of C₂₊ in the reaction.

4. Conclusions

The combination of 5wt% TiO₂ and 5wt% Na₂WO₄ on SiO₂ support (i.e. Na₂WO₄-TiO₂), prepared using the co-impregnation method, was superior to the single catalysts of its component (i.e. Na₂WO₄/SiO₂, TiO₂/SiO₂). In studying the operating conditions by co-feeding N₂ gas as a diluent gas into the reactant

gases at different volume ratios and different temperatures, the maximum C_{2+} yield was found at an $N_2/(4CH_4:1O_2)$ feeding gas ratio 1:1 by volume and at 700 °C. The Na_2WO_4 -TiO₂ catalyst produced the highest C_{2+} yield at 4.9% with 71.7% C_{2+} selectivity and 6.8% CH₄ conversion under these optimal operating conditions. Furthermore, the activity of the catalyst had good stability over 24 h of testing. Characterization of the Na_2WO_4 -TiO₂ catalyst using XRD and FT-IR showed that α -cristobalite and crystalline anatase-TiO₂ were present. These two crystal components played a significant role in the formation of C_{2+} for the OCM reaction. The FE-SEM, TEM, and BET results were in good agreement with the findings of the XRD and FT-IR analyses. Of great interest for future study is the analysis of the kinetic mechanism of the catalyst for OCM reaction or improvement of the catalyst activity by adding promoters.

Acknowledgements

We would like to thanks the Thailand Research Fund and the Commission on Higher Education (grant numbers IRG5980004 & MRG6180232); the National Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology, Thailand, through its program of Research Network NANOTEC (RNN); the Center of Excellence on Petrochemical and Materials Technology; the Kasetsart University Research and Development Institute (KURDI); and the Department of Chemical Engineering and the Faculty of Engineering at Kasetsart University for financial supports. P. Kidamorn received funding through a scholarship from the Faculty of Engineering at Kasetsart University.

References

- [1] G. J. Hutchings, M. S. Scurrell, and J. R. Woodhouse, "Oxidative coupling of methane using oxide catalyst," *Chem. Soc. Rev.*, vol. 18, pp. 251-283, 1989.
- [2] M. Y. Sinev, Z. T. Fattakhova, V. I. Lomonosov, and Y. A. Fordienko, "Kinetics of oxidative coupling of methane: bridging the gap between comprehension and description," *J. Nat. Gas Chem.*, vol. 18, pp. 273-287, 2009.
- [3] K. Khammona, S. Assabumrungrat, and W. Wiyarath, "Reviews on coupling of methane over catalysts for application in C₂ hydrocarbon production," *J. Eng. Appl. Sci.*, vol. 7, pp. 447-455, 2012.
- [4] S. M. K. Shahri and A. N. Pour, "Ce-promoted Mn/Na₂WO₄/SiO₂ catalyst for oxidative coupling of methane at atmospheric pressure," *I. Nat. Gas Chem*, vol. 19, pp. 47-53, 2010.
- [5] R. Mariscal, M. A. Pena, and J. L. G. Fierro, "Promoter effects of dichloromethane on the oxidative coupling of methane over MnMgO catalysts," *Appl. Catal.*, *A*, vol. 131, pp. 243-261, 1995.
- [6] V. R. Choudhary, V. H. Rane, and S. T. Chaudhari, "Factors influencing activity/selectivity of Lapromoted MgO catalyst prepared from La- and Mg- acetates for oxidative coupling of methane," *Fuel*, vol. 79, pp. 1487-1491, 2000.
- [7] Z. Gholipour, A. Malekzadeh, R. Hatami, Y. Mortazavi, and A. Khodadadi,"Oxidative coupling of methane over (Na₂WO₄+Mn or Ce)/SiO₂ catalysts: In situ measurement of electrical conductivity," *J. Nat. Gas Chem*, vol. 19, pp. 35-42, 2010.
- [8] R. T. Yunarti, M. Lee, Y. J. Hwang, D. J. Suh, J. Lee, I. W. Kim, and J. M. Ha, "Transition metaldoped TiO₂ nanowire catalysts for the oxidative coupling of methane," *Catal. Commun*, vol. 50, pp. 54-58, 2014.
- [9] S. Ji, T. Xiao, S. Li, L. Chou, B. Zhang, C. Xu, R. Hou, A. P. E. York, and M. L. H Green, "Surface WO₄ tetrahedron: The essence of the oxidative coupling of methane over M-W-Mn/SiO₂ catalysts," *J. Catal.*, vol. 220, pp. 47-56, 2003.
- [10] J. Y. Lee, W. Jeon, J. W. Choi, Y. W. Suh, J. M. Ha, D. J. Suh, and Y. K. Park, "Scaled-up production of C₂ hydrocarbons by the oxidative coupling of methane over pelletized Na₂WO₄/Mn/SiO₂ catalysts: Observing hot spots for the selective process," *Fuel.*, vol. 106, pp. 851-857, 2013.
- [11] A. Malekzadeh, A. Khodadadi, A. K. Dalai, and M. Abedini, "Oxidative coupling of methane over Lithium doped (Mn+W)/SiO₂ catalysts," J. Nat. Gas Chem, vol. 16, pp. 121-129, 2007.
- [12] J. Wang, L. Chou, B. Zhang, H. Song, J. Zhao, J. Yang, and S. Li, "Comparative study on oxidation of methane to ethane and ethylene over Na₂WO₄-Mn/SiO₂ catalysts prepared by different methods," *J. Mol. Catal. Chem.*, vol. 245, pp. 272-277, 2006.

- [13] N. Hiyoshi and T. Ikeda, "Oxidative coupling of methane over alkali chloride-Mn-Na₂WO₄/SiO₂ catalysts: Promoting effect of molten alkali chloride," *Fuel Process. Technol.*, vol. 133, pp. 29-34, 2015.
- [14] T. W. Elkins and H. E. Hagelin-Weaver, "Characterization of Mn-Na₂WO₄/SiO₂ and Mn-Na₂WO₄/MgO catalysts for the oxidative coupling of methane," *Appl. Catal.*, A, vol. 497, pp. 96-106, 2015.
- [15] F. Papa, D. Gingasu, L. Patron, A. Miyazaki, and I. Balint, "On the nature of active sites and catalytic activity for OCM reaction of alkaline-earth oxides-neodymia catalytic systems," *Appl. Catal., A,* vol. 375, pp. 172-178, 2010.
- [16] V. H. Rane, S. T. Chaudhari, and V. R. Choudhary, "Oxidative coupling of methane over Lapromoted CaO catalysts: Influence of precursors and catalyst preparation method," J. Nat. Gas Chem., vol. 19, pp. 25-30, 2010.
- [17] D. J. Wang, M. P. Rosynek, and J. H. Lunsford, "Oxidative coupling of methane over oxidesupported sodium-manganese catalysts," J. Catal., vol. 155, pp. 390-402, 1995.
- [18] F. Basile, G. Fornasari, F. Trifiro, and A. Vaccari, "Partial oxidation of methane: Effect of reaction parameters and catalyst composition on the thermal profile and heat distribution," *Catal. Today*, vol. 64, pp. 21-30, 2001.
- [19] S. Ji, T. Xiao, S. Li, L. Chou, B. Zhang, C. Xu, R. Hou, A. P. E York, and M. L. H Green, "Surface WO₄ tetrahedron: the essence of the oxidative coupling of methane over M·W·Mn/SiO₂ catalysts," *J. Catal.*, vol. 220, pp. 47-56, 2003.
- [20] A. M. Venezia, F. Raimondi, V. La Parola, and G. Deganello, "Influence of sodium on the structure and HDS activity of Co-Mo catalysts supported on silica and aluminosilicate," *J. Catal.*, vol. 194, pp. 393-400, 2000.
- [21] T. Chukeaw, A. Seubsai, P. Phon-in, K. Charoen, T. Witoon, W. Donphai, P. Parpainainar, M. Chareonpanich, D. Noon, B. Zohour, and S. Senkan, "Multimetallic catalysts of RuO₂-CuO-Cs₂O-TiO₂/SiO₂ for direct gas-phase epoxidation of propylene to propylene oxide," *RSC Adv.*, vol. 6, pp. 56116-56126, 2016.
- [22] J. Li, G. Lu, G. Wu, D. Mao, Y. Guo, Y. Wang, and Y.Guo, "Effect of TiO₂ crystal structure on the catalytic performance of Co₃O₄/TiO₂ catalyst for low-temperature CO oxidation," *Catal. Sci. Technol.*, vol. 4, pp. 1268-1275, 2014.
- [23] T. W. Elkins, and H. E. Hagelin-Weaver, "Characterization of Mn-Na₂WO₄/SiO₂ and Mn-Na₂WO₄/MgO catalysts for the oxidative coupling of methane," *Appl. Catal.*, A, vol. 497, pp. 96-106, 2015.
- [24] A. Palermo, J. P. H Vazquez, A. F. Lee, M. S. Tikhov, and R. M. Lambert, "Critical influence of the amorphous silica-to-cristobalite phase transition on the performance of Mn/Na₂WO₄/SiO₂ catalysts for the oxidative coupling of methane," *J. Catal.*, vol. 177, pp. 259-266, 1998.
- [25] Y. T. Chua, A. R. Mohamed, and S. Bhatia, "Oxidative coupling of methane for the production of ethylene over sodium-tungsten-manganese-supported-silica catalyst (Na-W-Mn/SiO₂)," *Appl. Catal.*, *A*, vol. 343, pp. 142-148, 2008.