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Abstract. The estimation of concrete compressive strength is utmost important for the 
construction of a building. Organizations have a limited budget for mix design; therefore, 
proper estimation of concrete data has a significant impact on site operations and the 
construction of the building. In this paper, the prediction of concrete compressive strength 
is done by Multivariate Adaptive Regression Spline (MARS), Least Squares Support Vector 
Machine (LSSVM) and genetic programming (GP) which is a very new approach in the field 
of concrete technology.  MARS is a supervised technique, performs well for high 
dimensional data, interacts less with the input variables, whereas LSSVM is generally based 
on a statistical learning algorithm and GP builds equations that are generated for modeling. 
All the developed LSSVM, MARS and GP gives an equations for prediction of compressive 
strength which makes easy to predict the compressive strength of the concrete. The 
efficiency of the MARS, LSSVM and GP are measured by the comparative study of the 
statistical parameters and can be concluded that the all the models performed very well as 
the output results are very close to the desired value, while the MARS slightly outperformed 
the other two models. 
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1. Introduction 
 

The demand for predicting the compressive strength 
of concrete for building construction is high in the market. 
Most of the times, it is difficult to estimate the quality of 
the concrete [1]. Since organizations usually have a limited 
budget for the preparation of concrete mixtures, a good 
estimation of the compressive strength of the concrete 
would have a significant impact on the quality of the 
structure to be constructed. The estimation of the 
concrete compressive strength not only can be applied to 
new constructions, but also restoration undertakings, such 
as restoration of bridges, highways and buildings, etc. The 
relationship between the composition and the physical 
properties of the concrete is non-linear to a great extent, 
therefore it is difficult to build a mathematical model 
expressing that relationship between them. Prediction is 
the most important module for checking the estimation of 
the compressive strength, and that is the reason why 
machine learning techniques can be useful for estimating 
the final output of the concrete. In this work, we have 
adopted three of the most effective machine learning 
techniques, namely Multivariate Adaptive Regression 
Spline (MARS) [2]-[3], Least Squares Support Vector 
Machines (LSSVM) [4]–[6] and the Genetic Programming 
(GP) [7] separately to predict the final output parameter 
namely compressive strength of the concrete. Firstly, we 
apply the renowned MARS technique, developed by 
Friedman [2], which is an efficient and effective regression 
model for non-parametric estimations.  The MARS model 
uses hinge functions as its basic functions, which is 
responsible for overtaking linear regression models in 
performance measures [8]. MARS is a supervised 
technique, performs well for high dimensional data, 
interacts less with the input variables. In this work, we 
have obtained a fitting model on the training and test data 
of concrete, and shown a detail analysis of regression 
techniques, which has allowed us to predict the output 
parameter accurately. LSSVM is developed based on a 
statistical learning algorithm [5, 9]. Estimation of non-
linear and classification functions are determined by 
LSSVM with the combination of the kernel function for 
high dimensional space vector machines. GP is created 
based on a genetic algorithm [7]. The capability of Genetic 
Programming based prediction models, which fuses the 
genetic algorithm and the symbolic programming, was 
investigated by Chen and Wang [10]. We also obtained 
RMSE, MAPE, E, RSR, NMBE (%) and VAF values. 
Along with that, we obtained better performance of 
prediction on training and test data. In case of MARS 
model, we achieved prediction accuracy, using cross-
validation method. We validated our proposed model by 
correctly choosing the model parameters. All the three 
models were adopted to predict the compressive because 
it is a very new approach in the field of the concrete 
technology and also the Engineers always like an equation 
for predicting design parameters. The developed LSSVM, 
MARS and GP give an equations for prediction of 
compressive strength. Hence, practitioners and engineers 

can use the established equations for prediction of 
compressive strength of the concrete in practical purpose 
also. 
 

2. Theoretical Background and Development of 
the Predictive Models 

 
2.1. Multivariate Adaptive Regression Spline 
 

In this first proposed model, we have built a MARS 
model for the prediction of compressive strength of 
concrete. In the literature, MARS has been used to 
extensively demonstrate problems for prediction and 
classification problems [11]–[16]. The application of 
general regression models can be found in the literature 
[17]–[23]. The reader can also find details of MARS from 
the website maintained by Salford Systems 
(http://www.salford-systems.com/ MARSCITE.PDF). 
MARS can be useful for the data which has the high 
dimensions. The recursive partitioning approach towards 
regression model has influenced MARS model. It is based 
on a non-parametric approach. Limiting the maximum 
interaction among variable is an important aspect of 
MARS. Therefore, maximum interaction among variables 
should be a small number as it helps to make the resulting 
model more interpretable. Collinearity among the 
variables which are used for prediction is a major problem 
in MARS. Therefore to overcome this problem MARS 
does increase the order of interaction among variables. 
Also, by increasing the variable parsimony with a little 
penalty can overcome this situation. For choosing the 
basis function of the multivariate spline, any criteria can 
be chosen. The advantage of recursive partitioning in 
MARS model is that it reduces the outlier responses. With 
the use of local variables subset MARS can achieve 
adaptability, which is the main advantage of recursive 
partitioning. The adopted MARS method shapes the 
model with the help of two-sided truncated functions of 
the forecaster ‘x’ and that has the form as below.  
 

 (𝒙 − 𝒕)+ = {
𝒙 − 𝒕, 𝒙 > 𝒕

𝟎, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
} (1) 

 
The above expression works as basis functions to 

both nonlinear and linear extension and is used to 
approximate any fundamental function f(x). 

In multivariate adaptive regression spline model, the 
dependent variable (output), say as y and the following  
equation expresses the term M, 

 

 𝒚 = 𝒇(𝒙) = 𝜷𝟎 + ∑ 𝜷𝒎𝑯𝒌𝒎(𝒙𝒗(𝒌, 𝒎))𝑴
𝒎=𝟏  (2) 

 
Here, summation works over M term with the parameters 
β0, βm and known t.  

In this work, we have estimated the known value i.e. t 
from the model. The hinge function (H) can be expressed 
through the following equation: 
 

 𝐻𝑘𝑚(𝑥𝑣(𝑘,𝑚)) = ∏ −1𝑘ℎ𝑘𝑚𝑘  (3) 
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Here the product of kth of the mth term is, xv(k,m).With 

the value of K=1 and K=2, we are able to find pairwise 
and additive interaction. In this work, we have opted value 
of K=2. 

It is seen that the quantity of basis functions which is 
added to the proposed model during the forward stepwise 
based on the previously calculated maximum, which is 
actually higher than the best least squares fit (optimal). 

For the goodness of the fit, we also consider 20% of 
the training data as cross-validation data (GCV), which is 
given as, 
 

 𝐺𝐶𝑉 = ∑
(𝑦𝑖−𝑓(𝑥𝑖))2

(1−
𝐶

𝑁
)2

𝑁
𝑖=1  (4) 

 

where C = 1 + cd. Here, N = number of instances in the 
dataset, d = degrees of freedom, that is identical to the 
number of autonomous basis functions. The term c is used 
as the penalty because of adding a basis function. In this 
work, we have it has been observed that the best probable 
value of C can be obtained between 2 <d<3. 
 
2.2. Experimental Outcomes of MARS 
 

The dataset for regression modelling compressive 
strength has been obtained from the UCI machine 
learning repository. It has nine quantitative attributes [24]. 
We have considered the ninth attribute as dependent 
attribute and remaining are independent attributes. The 
data organization was done in two steps. We have split the 
data into 70%-30% training set and testing set. This 
dataset has 1030 numbers of instances. Concrete is the 
most vital material in structural designing; it has a high 
nonlinear function with the attributes of constituents and 
age. Also, for checking cross validations we take 20% of 
the train data named as CV, especially for MARS model. 
For the MARS implementation, we have considered R 
open source programming environment along with that 
for LSSVM and GP, we have adopted Matlab 
programming environment. Firstly, we have shown the 
importance of variety of attributes of train data, keeping 
the output parameter as the dependent variable. The graph 
we have obtained as follows: 
 

 
Fig. 1. Variable importance using MARS Model. 
 

Here in Fig. 1, rows of the training data sorted as 
subsets and it can be perceived that AGE is the foremost 
important variable followed by CEMENT and so on. The 
values of GCV (Generalized Cross-Validation) and RSS 
(Residual Sum of Squares) for the variable are normalized 
so the major clear decrease is 100. As mentioned above, 
for Cross-Validation (CV) consist of 20% of the training 
data, we obtained errors (GRsq and RSq) which have been 
shown in the following graph. 

 
Fig. 2. Cross-validation graph obtained by MARS. 
 

From Fig. 2, it can be observed that GCV would have 
picked 13 terms, but cross-validation picked 12 terms. The 
out of the fold R2 for every fold model which is 
represented as pink lines. The red line represents the mean 
out of the fold. Next figure (Fig. 3), we have shown all 
predictors that should participate as a linear predictor in 
its place of hinge function; It can be observed from Fig. 3 
attribute that ‘Cement’ is not as important as others. As it 
is almost linear by nature. 

In the following Fig. 4, we have elaborately shown 
residuals vs. fitted, cumulative distribution and normal 
quantile vs. residual quantile graphs, when MARS applied 
upon test data of concrete. 

The ‘actual vs predicted’ graph obtained from train 
data using ‘MARS’ model has been shown below in Fig. 5. 

The ‘actual vs. predicted’ graph obtained from test 
data set by ‘MARS’ model has been shown below in Fig. 6  
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Fig. 3. Participation of predictors obtained by MARS. 
 
 

 
 
Fig. 4. Details of Residuals applied on Test Data obtained by ‘MARS’ model. 
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Fig. 5. Actual vs Predicted graph obtained from Train Data using ‘MARS’ model. 
 
 
 
 

 
 
Fig. 6. Actual vs Predicted applied on Test Data. 
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The final equation of the output variable (i.e. 
maximum compressive strength) has been obtained as 
combinations of basis functions and is given below: 
 

𝑶𝒖𝒕𝒑𝒖𝒕(𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒄𝒐𝒎𝒑𝒓𝒆𝒔𝒔𝒊𝒗𝒆 𝒔𝒕𝒓𝒆𝒏𝒈𝒕𝒉)
= 103.0197
− 0.1495273 × 𝑚𝑎𝑥(0, 236 − 𝐶)
+ 0.1039996 × 𝑚𝑎𝑥(0, 𝐶 − 236)
− 0.1011699 × 𝑚𝑎𝑥(0, 42.1 − 𝐵)
+ 0.1092582 × 𝑚𝑎𝑥(0, 𝐵 − 42.1)
− 0.1073434 ×  𝑚𝑎𝑥(0,
𝐵 − 189)
− 0.05140282 × 𝑚𝑎𝑥(0,174.2 − 𝐹)
− 0.3996787 × 𝑚𝑎𝑥(0, 𝐹 − 174.2)
− 0.4039404 × 𝑚𝑎𝑥(0, 145.9 − 𝑊)
− 0.3215826 × 𝑚𝑎𝑥(0, 𝑊 − 145.9)
+ 0.7121183 × 𝑚𝑎𝑥(0, 𝑊 − 210)
− 1.630315 × 𝑚𝑎𝑥(0, 2 − 𝑆)
− 0.4188873 × 𝑚𝑎𝑥(0, 𝑆 − 2)
− 0.5888875 × 𝑚𝑎𝑥(0, 613.2 − 𝐹𝐴)
− 0.981171 × 𝑚𝑎𝑥(0, 𝐴𝑔𝑒 − 14)
− 1.341536 × 𝑚𝑎𝑥(0, 56 − 𝐴𝑔𝑒)
+ 0.9884349 × 𝑚𝑎𝑥(0, 𝐴𝑔𝑒 − 56)  

 
3. Basic Sketch of LSSVM and Model 

Development  
 

The second method used for concrete prediction is 
LSSVM which was developed by Suykens and Vapnik [4], 
[5]. This section will give a small description of the 
methodology of LSSVM. Estimation of non-linear and 
classification functions are determined by LSSVM with 
the combination of the kernel function for high 
dimensional space vector machines. Vapnik SVM 
classifiers have been modified to execute a set of linear 
equations which is related to various areas and it may be 
comparatively easier than solving quadratic programs. 
Properties of LS-SVM classifier are stated below. The 
below Fig. 7 has shown a generic comparison of SVM and 
LSSVM. 
 
i. Kernel function 
 

Mercer condition has to be satisfied and the positive 
value of the kernel function is chosen 
 
 
ii. Global and unique solution 
 

Unique solution is obtained by solving the two 
problems of nonlinear LSSVM to linear Karush –Kuhn-
Tucker model 
 
iii. Lack of Sparseness 
 

Values of every data points will be equal to zero in the 
case of LSSVM classifier. The above diagram shows the 
comparison between SM and LSSVM classifier with the 

absolute values and sorting the value in descending order. 
In the case of LSSVM the each and every data points 
contribute to the model. The data points that are larger are 
closer and far from the decision boundary. The following 
flowchart shows the basic steps of LLSVM in the below 
Fig. 8. 

 

 
 
Fig. 7. Comparison graph of SVM and LSSVM. 
 
Flowchart of LLSVM 

 
 
Fig. 8. Example of LSSVM Classifier to formulate grid 
search. 
 
The basic formula of LSSVM is shown below [4], [5]: 
 

 ( ) ( )= +Ty x w x b ; nw R b r  (5) 

 

where ( ) .  is the nonlinear mapping which plots the input 

data into a higher dimensional feature space; again w is 
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expressed as weight vector which is adjustable and b 
stands for scalar threshold. 

Now the following optimization problem helps to 
find the value of w and b: 
 

Minimize: 
=

+  2

1

1 1

2 2

N
T

k
k

w w e  (6) 

 

Subjected to: ( ) ( )= + +T
k ky x w x b e  , k=1,…,N. (7) 

 
where, ek is error variable and γ the regularization 
parameter which determines the trade-off between the 
minimization, smoothness and fitting error and ek denotes 
error [25]. 

By applying Lagrange multipliers, the above 
optimization problem is written in the following way.  
 

 ( )   
= =

= + − + + − 
2

1 1

1

2

N N
T

k i i k k
k k

L w e w x b e y  (8) 

 
where  
 

 
 
 =
 
 
 

1

2

i

N

y

y
y

y

, 

 
 
 =
 
 
 

1

2

i

N

e

e
e

e

 and 








 
 
 =
 
 
 

1

2

i

N

 

 
The optimum conditions are given by 
 

( ) 
=


=  =



1

0
N

k k
k

L
w x

w
 


=


=  =



1

0 0
N

k
k

L

b
 

 


=  =


0 k k

k

L
e

e
, k=1,…,N. 

( )



=  + + − =


0 0T

k k k

k

L
w x b e y , k=1,…,N.  

 
By putting value of w in Eq. (7) we get, 
 

 ( ) ( ) ( )  
=

= +
1

N
T

k k
k

y x x x b  (9) 

 

By substituting kernel function ( ) ( ) ( ) =, T
k kK x x x x  

in the above equation.  
 

 ( ) ( )
=

= + ,
1

N

k k
k

y x K x x b  (10) 

 
Below Fig. 9 is the graph which shows the change in 
training output with respect to α values in case of LLSVM 
when it is applied upon training data. 

Training dataset is used to build the model. Validation 
of the model is done by using testing dataset. This article 
uses 824 training instances and 206 datasets as test 
instances. The dataset is scaled between 0 and 1. In this 
study, radial basis function has been adopted as the kernel 
function. 
 

 
 

 
 

Fig. 9. α value with respect to training data set using LLSVM. 
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Fig. 10. Actual vs Predicted fc of training and test data set in LSSVM. 
 
 

 
 
Fig. 11. Flow Chart of operations of Genetic Programming. 
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Figure 10 shows the plot between actual fc and predicted 
fc for training and testing datasets obtained by LSSVM. 
Table 1 shows the value of RMSE, MAPE, E, RSR, 
NMBE and VAF of the developed LSSVM. The 
following equation has been presented based on the 
developed LSSVM (by putting N=824, b=-3.977, =20, 
and 
 

( )
( )( )



 − − −
 =
  

2
, exp

2

T

i i

i

x x x x
K x x  in Eq. (8).  

 

( )( )


=

 − − −
 = −
  


824

1

exp 3.977
800

T

i i

c i
i

x x x x
f  

 
4. Details of Genetic Programming and 

Formulation of Mathematical Equations 
 

The third method used for the estimation of 
compressive strength is Genetic Programming (GP). 
Koza has developed this method in the year of 1992 [7]. 
Genetic programming is the evolution computing (ie) a 
change of transformation exists from one generation to 
another generation by the iterative process. Similarly, a 
fresh program is generated by stimulating the operations 
of genetic process to the specified computer programs. In 
this work, while predicting the compressive strength of 

concrete simultaneously many equations are generated for 
the modelling. In the following Fig. 11, the steps of 
genetic programming have been shown. 
The performance of GP depends on population size, 
number of generations, mutation frequency and crossover 
frequency. After using GP technique on test data, the final 
expression of GP is given below:  
 

( )( )
( )

( )
( )

( ) ( )

( )( )

= + +

 
+ +   

 

 
+ +  

 

− − + +

+ + −

0.646 0.646 0.07

1
0.07exp exp 0.326cos

exp 8.624

1
0.840cos 0.646cos

exp 8.456

0.194exp 0.344 0.172

0.194exp 1.465

cf C B CA

w
FA

w
a

B S F S Ba

a F S

 

 
The value of fc has been foreseen by using the above 
equation for training and testing datasets. 

Figure 12 depicts the performance of GP in terms of 
actual vs predicted graph. The calculated values like 
RMSE, MAPE, E, RSR, NMBE (%) and VAF of GP for 
the adopted three methods have been produced in Table 
1.  

 

 
 

 
 
Fig. 12. Actual vs Predicted fc values of training and test set using GP. 
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5. Comparative Study and Performance Evaluation 
of the Adopted Models 

 
The performances of LSSVM depend on the proper 

choice of γ and σ. The best performance of LSSVM is 
obtained at γ =100 and σ =20. The performances of three 
proposed methods of MARS, LSSVM and GP have been 
assessed in terms of Mean absolute percentage error 
(MAPE), Root Mean Square Error (RMSE), Root means 
square error to observation’s standard deviation ratio 
(RSR), Coefficient of efficiency (E), normalized mean bias 
error (NMBE), and Variance account factor (VAF), which 
has been shown in Table 1. 

The expression of RMSE, MAPE, E, RSR, NMBE 
(%) and VAF is given below [1]. 
 

 𝑅𝑆𝑀𝐸 = √ 
1

𝑁
 ∑ (𝐴𝑖 − 𝑃𝑖)2𝑁

𝑖=1  (11) 

 MAPE =  
1

𝑁
 ∑

|𝐴𝑖−𝑃𝑖|

𝐴𝑖

𝑁
𝑖=1   × 100  (12) 

 E =  1−  
∑ (𝐴𝑖−𝑃𝑖)2𝑁

𝑖=1

∑ (𝐴𝑖−𝐴 ̅)2𝑁
𝑖=1

 (13) 

 RSR = 
RMSE

√ 
1

𝑁
 ∑ (𝐴𝑖−𝐴̅)2𝑁

𝑖=1

 (14) 

 NMBE =  
1

𝑁 ⁄ ∑ (𝑁
𝑖=1 𝑃𝑖−𝐴𝑖)

1
𝑁⁄  ∑ 𝐴𝑖

𝑁
𝑖=1

× 100  (15) 

 𝑉𝐴𝐹 = (1 − (𝑣𝑎𝑟 (𝐴𝑖 − 𝑃𝑖)/ 𝑣𝑎𝑟 𝐴𝑖 ) ) × 100 (16) 
 

where Ai and Pi represents the actual and predicted values 

respectively. N is the total number of dataset. A ̅ and P ̅are 

the average of actual and predicted values respectively. 
The comparative analysis shown in Table 1, shows the 

performance of training data and testing data of LSSVM, 
GP and MARS. The values of RMSE, MAPE, E, RSR, 
NMBE (%) and VAF signifies that all the models has 
given a decent result as the predicted value of compressive 
strength were very close to the measured value. The value 
of RMSE of training for LSSVM, GP and MARS is 6.3931, 
6.2436 and 6.1403 respectively, whereas the value RMSE 
for testing is 6.2775, 6.7797 and 6.6832, respectively. The 
value of MAPE and NMBE (%) for all the models for 
training and testing indicated very satisfied performance 
of the model. The value of E are very close to 1 for all the 
model, though for MARS model the value more close to 
1 comparatively to others. Similarly, VAF value indicated 
a very good result, but the MARS model slightly 
outperformed the remaining two models as the result is 
more close to 100. 

Hence the parameters used to evaluate the 
performance of the three models shows that all the model 
have performed very well and the results of the 
compressive strength are very close to the desired value. 
Whereas for overall comparison, it may be concluded that 
the MARS model very slightly out performed LSSVM and 
GP model results. 

 
Table 1. Comparative study of LSSVM, GP and MARS. 
 

 

6. Conclusion  
 

This article uses multivariate adaptive regression 
spline, least squares support vector machine and genetic 
programming for the prediction of concrete compressive 
strength. A database containing 1030 samples with eight 
variables is adopted to develop a prediction model of 
compressive Strength. To construct both models, the 
predictor data sets are selected randomly into 70% 
(training) and 30% (testing) subsets. The cement content, 

percentage replacement blast-furnace, percentage 
replacement of FA, water, superplasticizer, coarse 
aggregate, fine aggregate and the age of concrete are the 
eight independent input  variables used to the proposed 
model, whereas to authenticate the precision of the 
models RMSE, MAPE, E, RSR, NMBE (%) and VAF 
were obtained. The effectiveness of the MARS, LSSVM 
and GP are measured by the comparative study. From the 
results obtained experimentally, it can be easily established 
that MARS model performs slightly better than LLSVM 

Parameter 
LSSVM GP MARS 

Training Testing Training Testing Training Testing 

RMSE 6.3931 6.2775 6.2436 6.7797 6.1403 6.6832 

MAPE 17.7194 16.5784 19.5454 20.3483 16.9751 18.6039 

E 0.8557 0.8487 0.8623 0.8236 0.8678 0.8539 

RSR 0.3799 0.3889 0.3710 0.4200 0.3732 0.4396 

NMBE (%) 0.1482 -0.5301 0.0002 -0.1672 -0.0024 -0.0047 

VAF 85.5662 84.8874 86.2325 82.4264 87.1542 86.0142 
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and GP models as the algorithm of MARS produces 
flexible models with simple linear regression and it also 
requires stepwise search, addition, and pruning which 
makes it simpler to interpret.  

Though, all the model has provided satisfactory 
results. It can be concluded that the study suggests a very 
new technique in the field of civil engineering which can 
be utilized further to predict the value of compressive 
strength and the performance of all the models are 
promising. Also, Engineers like an equation for predicting 
design parameters. The developed LSSVM, MARS and 
GP give equations for prediction of compressive strength. 
Hence, researchers and engineers can use the established 
equations for prediction of compressive strength of the 
concrete. 
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