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Abstract. In recent years, a significant issue in classification is to handle a dataset containing imbal-
anced number of instances in each class. Classifier modification is one of the well-known techniques
to deal with this particular issue. In this paper, the effective classification model based on an oblique
decision tree is enhanced to work with an imbalanced dataset that is called oblique minority condensed
decision tree (OMCT). Initially, it selects the best axis-parallel hyperplane based on the decision tree
algorithm using the minority entropy of instances within the minority inner fence selection. Then it
perturbs this hyperplane along each axis to improve its minority entropy. Finally, it stochastically per-
turbs this hyperplane to escape the local solution. From the experimental results, OMCT significantly
outperforms six state-of-the-art decision tree algorithms that are CART, C4.5, OC1, AE, DCSM and
ME on 18 real-world datasets from UCI in term of precision, recall and F1 score. Moreover, the size of
a decision tree from OMCT is significantly smaller than others.
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1. Introduction

Creating an effective classification model plays the
important role in data mining and machine learning in
the past several years. However, there is a critical issue
that significantly affects the classifier performance oc-
curring when the number of instances in each class of
a dataset is extremely different. Most well-known clas-
sifiers, such as the neural network and the decision tree
which work well on a balanced dataset, deviate toward
a class having a large number of instances called the ma-
jority class and neglect the one with a small number of
instances called the minority class [1]. This problem is
known as a class imbalanced problem which appears in
many real world situations such as the fraud detection
[2, 3] and the diseases diagnosis [4, 5]. For the fraud de-
tection, the number of fraudulent transactions is very
small compared with non-fraudulent cases. To mini-
mize classification error, the built classifier mostly pre-
dicts unknown transactions to be non-fraudulent trans-
actions. It means that some fraudulent cases are an-
nounced to be non-fraudulent ones. According to this
behavior, this appears to have an undesirable outcome
because the fraud is not detected. Similarly, the classifier
for the diseases diagnosis may predict all patients normal
to achieve the highest accuracy. This will misclassify the
real patients causing them to loss an opportunity to re-
ceive the treatment. Furthermore, the class imbalanced
problem is also appeared in network intrusion detection
[6], sentiment analysis [7], protein/DNA identification
[8] and e-mail spam filtering [9]. Consequently, It is ab-
solutely necessary to handle this problem cautiously.

Several techniques for dealing with the class im-
balance problem can be divided into four categories
[10] which are (1) data-level approach, (2) algorithm-
level approach, (3) cost-sensitive learning approach, and
(4) ensemble-based approach. This research focuses on
algorithm-level approach which can handle the class im-
balanced problem without changing the original train-
ing dataset or assigning unrealistic cost for misclassi-
fying minority instances. A remarkable classification
model, oblique decision tree [11], is enhanced to make
it suitable for any imbalanced dataset.

Intelligibility, infallibility and efficiency of the deci-
sion tree algorithm make the decision tree to be one of
the successful classification models [12]. It recursively
partitions the training dataset in each node using the
axis-parallel hyperplane which gives the least impurity
measure. However, almost all impurity measures are
not designed for an imbalanced dataset because it treats
importance of each class equally. So it will bias toward
the class with a large number of instances. Establish-
ing the decision tree modification for solving a class im-
balanced problem has been a challenging concern with

numerous publications offering various improved im-
purity measures. Nonetheless, changing the impurity
measure is not sufficient due to insufficient information
appearing along each parallel axis. Hence building a de-
cision tree using an oblique hyperplane is more attrac-
tive, see [11]. Previous publications have been proposed
for building the oblique decision tree such as using opti-
mizations [13, 14, 11], using heuristics [15, 16], using fea-
ture extractions [17, 18] and applying genetic algorithm
[19]. Unfortunately, most of these did not address the
problem of imbalanced dataset. Until 2019, Chabbouh
et al. proposed a Multi-Objective Evolutionary Al-
gorithm (MOEA), called ODT-based-Θ-Nondominated
SortingGenetic Algorithm-III (ODT-Θ-NSGA-III) [20],
to optimize simultaneously both precision and recall
values providing an optimal Pareto concept in the pro-
cess of building oblique decision trees. It is the first
emerging algorithm to deal with the binary class im-
balanced problem after the construction of the oblique
decision tree.

Accordingly, this research proposes an oblique de-
cision tree for classifying imbalanced dataset called
oblique minority condensed decision tree (OMCT). It
reduces the influence of majority instances by limiting
the range of minority instances within the inner fence
of Tukey boxplot, along the axis of the hyperplane.

The contribution of this paper are threefold:

1. First, the enhancement of an existing oblique de-
cision tree algorithm is proposed to deal with the
class imbalanced problem.

2. Second, it introduces the strategy for defining the
boundary of minority instances within their clus-
ter to avoid excess range of minority instances.

3. Third, the proposed approach provides an em-
pirical and experimental results showing the im-
proved performance comparing with existing
methods.

The remaining of this paper is organized as follows.
A brief review on the oblique decision tree and the deci-
sion tree for an imbalanced dataset are shown in Section
2. Next, Section 3 introduces the proposed algorithm.
The results and discussions of the experiments are pre-
sented in Section 4. Finally, Section 5 offers the discus-
sion and conclusion of this research.

2. Related Works

This section reviews related works that are the core
of this research. It covers the solutions to solve a class
imbalanced problem, the decision tree algorithm, and
the oblique decision tree algorithm.
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All algorithms in this section will deal with a bi-
nary imbalanced classification problem. Let D =
{x⃗1, x⃗2, ..., x⃗n} ⊆ Rd be a d-dimensional imbal-
anced training dataset containing n instances x⃗i =
(xi1, x

i
2, ..., x

i
d) with respect to a set of class C =

{c1, c2, ..., cn} where ci ∈ {+1,−1} for i = 1, ..., n. D
is separated into two partitions which are a set of minor-
ity class or a positive class, D+ = {x⃗i ∈ D | ci = +1}
having size n+ and a set of majority class or a negative
class, D− = {x⃗i ∈ D | ci = −1} having size n−, where
n+ + n− = n and n+ ≪ n−.

2.1. Class Imbalanced Techniques

As discussed in the previous section, the solution
techniques used to handle the class imbalanced problem
can be divided into four categories.

• Firstly, data-level approach modifies a training
dataset before building a classifier. It attempts
to rebalance the training dataset using under-
sampling technique [21] and over-sampling tech-
nique [22] which eliminates themajority instances
and synthesizes the minority instances, respec-
tively.

• Secondly, algorithm-level approach [23] revises an
existingmodel to deal with an imbalanced dataset.
It also includes presenting a novel classifier that
addresses this issue directly. Their mechanisms
are biased toward identifying instances in the class
containing the tiny number of instances.

• Thirdly, cost-sensitive learning approach [24] in-
creases the importance of the minority class by
assigning the large misclassified cost to inaccurate
instances, while the lower cost is assigned to ma-
jority instances. Minimizing this total cost will
make the model bias toward identifying the mi-
nority class.

• Fourthly, ensemble-based approach [25] com-
bines one of the methods mentioned above with
the ensemble learning algorithm such as Bagging
and Boosting technique.

2.2. Decision Tree Algorithm

Decision tree algorithm is a recursive partitioning
algorithm based on a tree structure consisting of a set
of nodes connecting by branches. Each non-leaf node
presents a splitting condition by a hyperplaneH : a0 +
a⃗ · x⃗ = 0, where a⃗ = (a1, a2, ..., ad) is the normal vector
and a0 is the intercept. The leaf nodes represent the spe-
cific class of the instances. Traditionally, most decision
tree algorithms apply to the axis-parallel hyperplane for

splitting the set of instances. In order to select the axis-
parallel hyperplane, a greedy approach is used via im-
purity measures of all axis-parallel hyperplanes (see Fig.
1). The hyperplane that provides the least impurity is
chosen to be the splitting condition of the node. The
algorithm stops when all instances are in the same class
or user’s specified criteria are met.

Various impurity measures have been proposed for
evaluating the performance of the hyperplane such as
Gini [26] using in the well-known decision tree algo-
rithm, CART [14]. Another decision tree algorithm like
C4.5 [27] applies the Shannon’s entropy [28]. The Shan-
non’s entropy used in OMCT algorithm is defined by
(1). It equals to zero when all instances are in the same
class and equals to one when the number of instances in
all classes are identical.

Entropy(D) = −n+

n
log2

n+

n
− n−

n
log2

n−

n
(1)

2.2.1. Decision Tree for Imbalanced Dataset

Traditional decision tree algorithms work well on
the balanced datasets so they may not be appropriate
for dealing with the imbalanced ones. Various impurity
measures are proposed for improving the performance
of the decision tree on the imbalanced datasets. In 2010,
Chandra et al. presented the distinct class based splitting
measure (DCSM) [29]. In 2006, the asymmetric entropy
(AE)was proposed byMarcellin et al., [30]. The concept
of the skew impurity measure is used instead of the sym-
metric one such as Shannon’s entropy. The maximum
value is shifted by the skewness parameter θ between 0
and 1. Another skew impurity measure for the imbal-
anced dataset is off-centered entropy (OCE) [31] that is
suggested by Lenca et al., in 2008. In addition, the insen-
sitive impurity measures are introduced for solving the
class imbalanced problem such as DKM [32] andHDDT
[33]. They are not affected by the ratio of the number of
instances among all classes. Importantly, the technique
that is an inspiration of this research is minority entropy
(ME) [34]. It applies the concept of under-sampling in
each node of the decision tree algorithm which is ex-
plained below.

Minority Entropy

Minority entropy (ME) is proposed in 2016 by
Boonchuay et al. [34]. For each attribute j, the minor-
ity range minrangej is defined as the interval between
the smallest and the largest values within attribute j of
minority instances. Then, the splitting step will only be
examined within this rangeminrangej , i.e.

sprj(D) = {x⃗ ∈ D | minz⃗∈D+projj(z⃗)

≤ projj(x⃗) ≤ maxz⃗∈D+projj(z⃗)}
(2)
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Fig. 1. All axis-parallel hyperplanes (dash line) considering in a greedy approach.

Fig. 2. All axis-parallel hyperplanes (dash line) considering in ME.

where projj (⃗a) is the jth element of a⃗. It increases the
ratio of the minority instances for ensuring that the se-
lected hyperplane from ME will separate the datasets in
the region of the minority distribution, as shown in Fig.
2.

2.3. Oblique Decision Tree

For a small number of the distinct axis-parallel hy-
perplanes, the greedy approach in a decision tree algo-
rithm is practical. Nonetheless, the number of distinct
oblique hyperplanes is up to 2d ·

(
n

d

)
[13] having the ex-

ponential number of hyperplanes to explore. Precisely,
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this problem is proved to be NP-hard by Heath in 1993
[35]. Consequently, it is necessary to employ other tech-
niques for finding the best oblique hyperplane. The lin-
ear combination version of CART or CART-LC [14]
uses a deterministic hill-climbing algorithm for finding
the best oblique hyperplane. In 1993, Simulated An-
nealing Decision Tree (SADT) is proposed by Heath et
al. [11]. It applies the randomization of the simulated
annealing algorithm to search for the best oblique hy-
perplane. These two methodologies are combined to
obtain the well-known oblique decision tree algorithm
as Oblique Classifier 1 or OC1 [13] in 1994 which is the
core algorithm of this research. There are some other
effective techniques to solve this problem. The algo-
rithms based on heuristic arguments such as OC1-GA
and OC1-ES [19] use genetic algorithm and evolution-
ary strategy to find the best oblique hyperplane, respec-
tively. Using the feature extraction is another attractive
concept. It transforms the original space before apply-
ing the greedy approach to find the best axis-parallel hy-
perplane such as the Fisher’s decision tree [17] and HH-
CART [18].

Oblique Classifier 1

OC1 [13] is developed by Murthy et al. in 1994 for
finding a multivariate split at each node of the decision
tree algorithm. Two methodologies that are determinis-
tic hill-climbing and randomization are used in selecting
the split of the OC1 algorithm. It begins with the best
axis-parallel hyperplane H : a0 + a⃗ · x⃗ = 0. Then,
this hyperplane is perturbed along each axis using deter-
ministic hill-climbing. The greedy approach is applied
on a set Uj , see (3), for finding the best new value of
coefficient aj . Geometrically, when replacing aj with
uij , the jth-intercept is shifted that will pass through the
instance x⃗i. Fig. 3a shows all hyperplanes that are con-
sidered in deterministic hill-climbing with attribute 1.

Uj =

{
uij =

−a⃗ · x⃗i + aj · xij − a0

xij
| i = 1, ..., n

}
(3)

However, the best hyperplane obtaining by this deter-
ministic hill-climbing may get trap in the local solution.
The randomization is offered to escape this local mini-
mum. A random hyperplane R : r0 + r⃗ · x⃗ = 0 is
generated by perturbing H with α, i.e. H + αR. The
optimal value of α is searched by the greedy approach
on a set V defining by (4). Geometrically, each vj gives a
hyperplane that passes through instance x⃗i and the inter-
section ofH andR. All hyperplanes that are considered
in randomization are shown in Fig. 3b.

V =

{
vi =

−a⃗ · x⃗i − a0
r⃗ · x⃗i + r0

| i = 1, ..., n

}
(4)

3. ObliqueMinority Condensed Decision Tree

In this section, a novel oblique decision tree called
minority condensed oblique decision tree or OMCT is
proposed for handling the class imbalanced problem. It
combines the oblique decision tree with the minority
condensation.

3.1. Motivations

Although the axis-parallel decision tree algorithm
based on minority entropy (ME) [34] shows the effec-
tiveness of the decision tree algorithm for the class im-
balanced problem. Nevertheless, class distribution of
the real world datasets may not lie perfectly on any
parallel axis so the best decision tree may not classify
minority instances correctly. On the other hand, the
oblique decision tree algorithm such as oblique classi-
fier 1 (OC1) [13] uses a hyperplane that can deal with
the oblique distribution. Oblique minority condensed
decision tree (OMCT) integrates the advantages of ME
and OC1 together. Furthermore, the disadvantage of
each method is improved by the essence of one another.
The minority condensation of minority instances is an
essential ingredient of the OMCT algorithm. It is ap-
plied for condensing the minority instances before ap-
plying the greedy approach in each step of OMCT: de-
termining the best axis-parallel hyperplane, improving
the minority entropy using deterministic hill-climbing
on each axis, and improving the minority entropy by
randomization. Moreover, extra caution to treat some
minority instances that extremely deviate from the oth-
ers, called outliers [36], is applied. The interquartile
range rule [37] is deployed to discard the minority out-
liers before applying the minority entropy. Values out-
side the minority inner fence computed by [Q1 − 1.5 ∗
IQR,Q3+1.5∗ IQR] of minority instances are treated
as the outliers and will be included after the partitioning
step is done. The demonstration of the minority con-
densation is shown by Fig. 4 with the Tukey boxplot of
the minority instances in dataset X . It defines left mar-
gin ml and right margin mr by the largest and smallest
values of the minority instances within the minority in-
ner fence of the current round. A set of instances within
ml andmr is denoted byMCX .

3.2. Minority Condensation

The formal definition of the minority condensation
with some related formulae are defined in this section.
Each instance both in minority and majority class is as-
signed a score. The minority condensation keeps in-
stances inside the inner fence of the Tukey boxplot ac-
cording this score, see Definition 1.
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(a) (b)

Fig. 3. Mechanism of perturbing the initial hyperplane H (solid line) in each step of OC1 algorithm. (a) All hy-
perplanes (dash line) considering in deterministic hill-climbing with attribute 1. (b) All hyperplanes (dash line)
considering in randomization with random hyperplane R (solid-dash line).

Fig. 4. The overview of the minority condensation.

Definition 1. Let X+ ⊂ R be a set of scores of the
minority class. IQR is the interquartile range com-
puted from the third quartile Q3 subtracting with the
first quartileQ1. DefineX+

wo ⊆ X+ without outliers as
follows:

X+
wo = {x ∈ X+ |Q1−1.5∗IQR ≤ x ≤ Q3+1.5∗IQR}

The core definition of this research, a set of scores
with the minority condensation, is presented in Defini-

tion 2. It combines scores in X+
wo with the scores cor-

responding to the majority instances where their values
lie within the range of X+

wo.
Definition 2. Let X = X+ ∪X− be a set of scores of
all instances. A set X with the minority condensation
is defined as follows:

MCX = {x ∈ X | ml ≤ x ≤ mr}

where the left margin ml and the right margin mr are
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(a) (b)

Fig. 5. Applying the minority condensation to each step of the oblique decision tree algorithm, i.e. determinis-
tic hill-climbing (a) and randomization (b).

the minimum and maximum values of X+
wo, respec-

tively.
The set of scores from Definition 2 is constricted

to intensify the importance of the instances in the mi-
nority class. It is used in three steps of the OMCT al-
gorithm. In the process of determining the best axis-
parallel hyperplane, the minority condensation is ap-
plied on each attribute of dataset D before the greedy
approach. Minority instances that are discarded will be
reconsidered in the next step. Due to the reduced range
from the minority condensation, the number of discard
majority instances is far more thanME. In the determin-
istic hill-climbing, for each jth the minority condensa-
tion is applied on X where X is defined as Uj (3). It
reduces the number of considered hyperplanes by a a⃗
without jth component, see Fig. 5a. For improving the
minority entropy by randomization, the minority con-
densation is applied on X where X is defined as V (4).
It also reduces the number of considered hyperplanes at
the intersection of given hyperplaneH and the random
hyperplane, see Fig. 5b.

3.3. OMCT Algorithm

The OMCT algorithm is constructed in a top-down
fashion [38]. It separates the instances into two parti-
tions using the oblique hyperplane as a criterion. Then,
it recursively repeats on each partition until only one
class instances are left in the partition or other specified
stopping criteria are met.

The steps of the OMCT algorithm, which employs
to search for an optimal oblique hyperplane, is illus-
trated by Fig. 6. It starts with calling the Axis Parallel
Hyperplane step to generate the initial axis parallel hy-
perplane. The deterministic hill climbing step is applied

to each attribute, which is restricted to the region of mi-
nority class by using the minority condensation. Then,
it perturbs the hyperplane using the deterministic hill
climbing step and the randomization step respectively.
The use of theminority condensation is embedded in all
steps to reduce the set of considered instances. They are
repeated in a loop until the obtained oblique hyperplane
cannot be improved.

Time Complexity of the Minority Condensation

The time complexity analysis of the minority con-
densation is shown in this section. There are three parts
for applying the minority condensation to the set of
scoresX of size n. First, separating the class of instances
inX to the minority or majority classes usesO(n) time
complexity. Second, determining the set X+

wo by Defi-
nition 1 takes O(n log n) running time using the merge
sort for calculating the minority inner fence. Third,
defining the set MCX by Definition 2 spends O(n) for
considering that each instance is either inside or outside
the interval betweenml andmr. In summary, the over-
all time complexity is O(n) + O(n log n) + O(n) =
O(n log n) running time.

4. Experiments

This section purposes performance comparisons in
classifying the imbalance datasets of OMCT with other
effective decision tree algorithms in two aspects, the per-
formance of classification and the size of a decision tree.
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Fig. 6. Brief pseudo codes and basic iterations of the OMCT algorithm.

4.1. Datasets

In order to evaluate the performance of OMCT
comparing with other decision tree algorithms, the real-
world datasets from UCI repository [39] are used as ex-
perimental benchmark. Table 1 shows the summary of
each dataset using in the experiments. The number and
the name of each dataset appear in the first and the sec-
ond columns, while the third and the fourth columns
show the number of instances and the number of at-
tributes. The fifth column presents the selected class
for labeling as the minority class and the majority class.
For the last three columns, they contain the percentage
of the minority class, the majority class and the ratio
of them called the imbalanced ratio, respectively. Each

dataset applies the five-fold cross-validation and repeats
it 20 times. Hence, one hundred experiments are per-
formed on each dataset.

4.2. Comparative Methods and Evaluation

The performance of OMCT is evaluated compar-
ing with six decision tree algorithms. Two out of six
are well-known axis-parallel decision tree algorithms,
CART [14] and C4.5 [27]. Others are the most famous
oblique decision tree algorithm as OC1 [13], and three
state-of-art decision tree algorithms for an imbalanced
dataset, i.e. AE [30], DCSM [29] and ME [34].

There are two aspects to report in this paper which
are (1) classification performances and (2) tree sizes. Due
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Table 1. Summary of experimental datasets.

No. Datasets #Inst. #Att. Minor./Major. Class %Minor. %Major. I.R.
1 Pima 768 8 1 / 0 34.90 65.10 1.87
2 Wine 178 13 3 / the rest 26.97 73.03 2.71
3 Haberman 306 3 2 / 1 26.47 73.53 2.78
4 Vehicle 846 18 bus / the rest 25.77 74.23 2.88
5 Glass 214 9 5,6,7 / the rest 23.83 76.17 3.20
6 Shuttle 58000 9 the rest / 1 21.40 78.60 3.67
7 Yeast 1484 8 VAC / the rest 20.49 79.51 3.88
8 Libras 360 90 1,2,3 / the rest 20.00 80.00 4.00
9 NewThyroid 215 5 2 / the rest 16.28 83.72 5.14
10 SatImage 2310 19 5 / the rest 14.29 85.71 6.00
11 Ecoli 336 7 imU / the rest 10.42 89.58 8.60
12 OpticDigits 5620 64 4 / the rest 10.11 89.89 8.89
13 Abalone 431 7 18 / 9 9.74 90.26 9.26
14 Landsat 6435 36 4 / the rest 9.73 90.27 9.28
15 PenDigits 10992 16 5 / the rest 9.60 90.40 9.42
16 Vowel 990 10 0 / the rest 9.09 90.91 10.00
17 PageBlocks 5473 10 2 / the rest 6.01 93.99 15.64
18 Letter 20000 16 A / the rest 3.95 96.06 24.35

to the extreme difference number of instances in each
class, the traditional measure like accuracy is not suit-
able to evaluate the performance of classifying imbal-
anced datasets. It shows the detection rate of a whole
dataset that has the minimum affect when the instances
in the minority class are misclassified. In considering
the binary class imbalanced problem, two performance
aspects need to be evaluated, i.e., the percentage of in-
stances correctly predicted to be the minority class and
the percentage of the minority instances that are cor-
rectly classified. They are represented by two widely
used measures which are precision and recall defined by
equations (5) and (6), respectively [40]. Moreover, their
harmonicmean, represented by F1 score in equation (7),
summarizes the overall performance of each classifier.
For the size of each decision tree, it is measured by the
number of leaf nodes referring to the number of parti-
tions. The smaller the number of nodes in a decision
tree, the smaller the number of partitions.

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 = 2 · Precision ·Recall

Precision+Recall
(7)

where
• TP is the number of true predicted of minority
instances.

• FP is the number of false predicted of minority
instances.

• TN is the number of true predicted of majority
instances.

• FN is the number of false predicted of majority
instances.

In addition, the non-parametric statistical hypothe-
sis test as Wilcoxon signed-rank test with 0.01 and 0.05
significance level (α) is applied for testing the perfor-
mance difference of OMCT comparing with other al-
gorithms. The null hypothesis (H0) and the alternative
hypothesis (H1) of Wilcoxon signed-rank test are indi-
cated as follows.

H0 : The performance of OMCT and the comparative
method are not different.

H1 : The performance of OMCT and the comparative
method are different.

4.3. Results and Discussions

The experimental results are demonstrated in this
section. Each table shows the experimental results with
different measurements. Each row of the table reports
the performance of each decision tree algorithm work-
ing on the specific dataset.

4.3.1. Classification Performances

In the first experimental result, the precision of each
decision tree algorithm is shown in Table 2. OMCT
yields the least average ranking over other methods that
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means OMCT has the highest percentage of true pre-
dicted minority instances, while other trees predict ma-
jority instances as the minority instance more. Espe-
cially, the traditional decision tree algorithms such as
CART and C4.5 show the poor precision performance.
This happens because they give the importance to each
class equally causing the boundary of partitioning set-
ting in the region of the majority class.

In the second experimental result, the recall of each
decision tree algorithm is shown in Table 3. It shows
that OMCT yields the least average ranking over other
trees. That is, OMCT has the highest percentage of
minority instances predicting correctly, while there are
more minority instances predicted as the majority in-
stances by other algorithms. Especially, the decision
tree algorithms designing for the imbalanced datasets
such as AE and DCSM show the poor recall. This
happens because that they focus on the minority in-
stances excessively causing the boundary of partitioning
to overfit the minority class.

The performance of each decision tree algorithm for
handling the class imbalanced problem is represented
by F1 score as in Table 4. Since OMCT has the low-
est ranking in both precision and recall, it provides the
best ranking in F1 score also. Statistically, the F1 score
of OMCT is significantly better than CART, C4.5 and
OC1 with a 99% confidence level. Note that those
decision tree algorithms show poor performance since
they are not designed for imbalanced datasets. For the
decision tree algorithms inventing for the imbalanced
dataset specifically such as AE, DCSM and ME, they
have the lower performances than OMCT significantly
as well at a 95% confidence level.

All experiments in this paper confirm that the pro-
posed decision tree algorithm, OMCT, offers the im-
provement over other decision tree algorithms. Espe-
cially, it outperforms OC1 and ME which originate the
concept of OMCT. Although OC1 shows the improve-
ment over the traditional decision tree in both preci-
sion and recall, neglecting the importance of the mi-
nority class causes OC1 to misclassify a lot of minority
instances, resulting in a low precision. ME shows the
outstanding ability to discover the minority instances
which is observed by the recall. Nevertheless, it gives
low precision due to the unnecessarily broad range of
minority instances. It results in the partitioning bound-
ary of minority instances locates within the region of
the majority class. OMCT integrates the advantages of
both concepts, which consists of applying the oblique
hyperplane to capture the distribution of the dataset,
concentrating on the minority instances like ME to in-
crease the chance of classifying minority instances, and
avoiding outliers to reduce the affect of the broader
range.

There are some datasets that OMCT exhibits lower
rank such as Glass dataset, Letter dataset than six other
decision tree classifiers. However, only 2 significant dig-
its can be observed which may cause by sampling error.

4.3.2. Tree Size

The size of the decision tree from each method is
represented by the number of leaf nodes indicating in
Table 5. Ostensibly, OMCT provides the smallest size
of the decision tree. The number of leaf nodes from
OMCT is significantly less than other decision tree al-
gorithms with a 99% confidence level. This causes by a
smaller number of hyperplanes and a smaller number of
partitions of OMCT than other methods. The reason
is due to the ability in capturing the distribution of the
minority class via the minority condensation and the
flexibility of the oblique hyperplane. For the same rea-
sons, applying the minority range of ME and using the
oblique hyperplane of OC1 make tree size comparison
to be within the second or the third ranks in this ex-
periment. They have the similar number of leaf nodes,
which are less than other methods, but they are still
larger than OMCT significantly.

5. Conclusions

A novel oblique decision tree for handling the class
imbalanced problem called oblique minority condensed
decision tree or OMCT is introduced in this paper,
which is an enhancement of the well-known oblique
decision tree like OC1. The proposed minority con-
densation is embedded in the greedy approach for defin-
ing the boundary of minority instances within their
cluster using the inner fence selection. OMCT is able
to handle the class imbalanced problem by recursive
partitioning the dataset using the combination of at-
tributes, which concentrates on the region of the mi-
nority class. Although it requires additional process
for determining the minority condensation. However,
it takes O(nlog(n)) time complexity indistinguishable
with the greedy approach without theminority conden-
sation. Moreover, the number of splitting values that
need to be considered is decreased when applying the
minority condensation. At each node of the oblique de-
cision tree algorithm, the greedy approach with the mi-
nority condensation is applied in three steps of building
decision tree, i.e. to find the best axis-parallel hyper-
plane, to perturb the hyperplane along each axis with
deterministic hill-climbing and to avoid the local solu-
tion with randomization.

The experimental results show that OMCT signif-
icantly outperforms CART, C4.5, OC1, AE, DCSM
and ME in term of F1 score on eighteen real-world im-
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Table 2. The performance comparison of precision on imbalanced datasets including with the rank which is
shown in the parentheses.

No. Datasets CART C4.5 OC1 AE DCSM ME OMCT
1 Pima 0.5712 (3) 0.5708 (4) 0.5683 (6) 0.5739 (2) 0.5707 (5) 0.5681 (7) 0.5808 (1)
2 Wine 0.9293 (6) 0.9302 (5) 0.9387 (4) 0.9673 (1) 0.9291 (7) 0.9460 (3) 0.9485 (2)
3 Haberman 0.3343 (7) 0.3569 (3) 0.3446 (6) 0.3504 (5) 0.3678 (1) 0.3543 (4) 0.3666 (2)
4 Vehicle 0.9179 (5) 0.9041 (7) 0.9116 (6) 0.9211 (3) 0.9360 (1) 0.9232 (2) 0.9195 (4)
5 Glass 0.8556 (5) 0.8705 (2) 0.8662 (3) 0.8747 (1) 0.8652 (4) 0.8381 (7) 0.8493 (6)
6 Shuttle 0.9997 (6) 0.9996 (7) 0.9997 (5) 0.9998 (3) 0.9999 (1) 0.9998 (4) 0.9998 (2)
7 Yeast 0.6391 (6) 0.6182 (7) 0.6567 (3) 0.6756 (1) 0.6486 (5) 0.6553 (4) 0.6595 (2)
8 Libras 0.7553 (6) 0.6205 (7) 0.7765 (4) 0.8067 (1) 0.7892 (2) 0.7841 (3) 0.7554 (5)
9 NewThyroid 0.8948 (6) 0.8819 (7) 0.9107 (5) 0.9288 (2) 0.9500 (1) 0.9215 (4) 0.9275 (3)
10 SatImage 0.8929 (3) 0.8611 (7) 0.8805 (4) 0.8939 (1) 0.8780 (5) 0.8765 (6) 0.8930 (2)
11 Ecoli 0.5893 (4) 0.5570 (7) 0.6065 (3) 0.5666 (5) 0.5641 (6) 0.6164 (1) 0.6079 (2)
12 OpticDigits 0.9148 (6) 0.8655 (7) 0.9321 (2) 0.9240 (4) 0.9173 (5) 0.9293 (3) 0.9512 (1)
13 Abalone 0.3277 (4) 0.3064 (6) 0.3031 (7) 0.3169 (5) 0.3417 (3) 0.3434 (2) 0.3820 (1)
14 Landsat 0.5374 (6) 0.5073 (7) 0.5428 (5) 0.5661 (2) 0.5792 (1) 0.5556 (4) 0.5608 (3)
15 PenDigits 0.9446 (6) 0.9310 (7) 0.9480 (5) 0.9639 (2) 0.9587 (4) 0.9616 (3) 0.9691 (1)
16 Vowel 0.9135 (5) 0.9260 (3) 0.9063 (6) 0.8918 (7) 0.9400 (1) 0.9344 (2) 0.9247 (4)
17 PageBlocks 0.8634 (6) 0.8622 (7) 0.8758 (4) 0.8785 (2) 0.8654 (5) 0.8781 (3) 0.8830 (1)
18 Letter 0.9362 (5) 0.9320 (6) 0.9307 (7) 0.9508 (2) 0.9528 (1) 0.9467 (4) 0.9477 (3)

Average rank 5.28 5.89 4.72 2.72 3.22 3.67 2.50

Table 3. The performance comparison of recall on imbalanced datasets including with the rank which is shown
in the parentheses.

No. Datasets CART C4.5 OC1 AE DCSM ME OMCT
1 Pima 0.5738 (4) 0.5790 (2) 0.5765 (3) 0.5392 (7) 0.5560 (6) 0.5846 (1) 0.5653 (5)
2 Wine 0.9522 (4) 0.9447 (6) 0.9416 (7) 0.9584 (1) 0.9502 (5) 0.9558 (2) 0.9547 (3)
3 Haberman 0.3509 (5) 0.3530 (4) 0.3415 (6) 0.3163 (7) 0.3613 (3) 0.3630 (2) 0.3741 (1)
4 Vehicle 0.9175 (3) 0.8995 (7) 0.9055 (6) 0.9110 (5) 0.9220 (1) 0.9193 (2) 0.9166 (4)
5 Glass 0.8113 (7) 0.8609 (1) 0.8235 (5) 0.8162 (6) 0.8425 (2) 0.8395 (3) 0.8355 (4)
6 Shuttle 0.9997 (6) 0.9997 (4) 0.9997 (5) 0.9997 (1) 0.9992 (7) 0.9997 (3) 0.9997 (2)
7 Yeast 0.6530 (3) 0.6372 (7) 0.6517 (4) 0.6382 (6) 0.6435 (5) 0.6586 (1) 0.6537 (2)
8 Libras 0.6866 (3) 0.6247 (7) 0.6995 (2) 0.6377 (6) 0.6531 (5) 0.6760 (4) 0.7213 (1)
9 NewThyroid 0.8886 (2) 0.8543 (7) 0.8800 (4) 0.8857 (3) 0.9314 (1) 0.8800 (4) 0.8800 (4)
10 SatImage 0.8721 (5) 0.8561 (7) 0.8718 (6) 0.8836 (2) 0.8818 (3) 0.8779 (4) 0.8845 (1)
11 Ecoli 0.5943 (2) 0.5771 (5) 0.5829 (4) 0.5400 (6) 0.5114 (7) 0.5914 (3) 0.6086 (1)
12 OpticDigits 0.8993 (6) 0.8817 (7) 0.9389 (2) 0.9121 (4) 0.9011 (5) 0.9174 (3) 0.9484 (1)
13 Abalone 0.3583 (1) 0.3214 (5) 0.3042 (7) 0.3106 (6) 0.3286 (3) 0.3531 (2) 0.3261 (4)
14 Landsat 0.5596 (3) 0.5321 (7) 0.5508 (5) 0.5458 (6) 0.5592 (4) 0.5757 (1) 0.5636 (2)
15 PenDigits 0.9395 (5) 0.9264 (7) 0.9482 (2) 0.9428 (4) 0.9324 (6) 0.9464 (3) 0.9564 (1)
16 Vowel 0.9344 (4) 0.9611 (1) 0.9300 (5) 0.9133 (6) 0.8744 (7) 0.9400 (3) 0.9522 (2)
17 PageBlocks 0.8417 (5) 0.8496 (3) 0.8559 (2) 0.8332 (7) 0.8338 (6) 0.8432 (4) 0.8620 (1)
18 Letter 0.9441 (3) 0.9402 (4) 0.9283 (7) 0.9492 (2) 0.9380 (5) 0.9540 (1) 0.9346 (6)

Average rank 3.94 5.06 4.56 4.72 4.50 2.56 2.50

balanced datasets from UCI. It shows the precision im-
provement in classifying theminority instances over the
traditional decision tree algorithms. For the recall, it
fixes the overfitting problem found in the decision tree

algorithms for class imbalanced datasets. In addition,
OMCT offers the smallest size of the decision tree in
term of the number of leaf nodes which implies that the
decision tree from OMCT is more general than other
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Table 4. The performance comparison of F1 score on imbalanced datasets including with the rank which is
shown in the parentheses.

No. Datasets CART C4.5 OC1 AE DCSM ME OMCT
1 Pima 0.5701 (5) 0.5732 (2) 0.5707 (4) 0.5545 (7) 0.5618 (6) 0.5745 (1) 0.5715 (3)
2 Wine 0.9371 (4) 0.9330 (7) 0.9364 (6) 0.9610 (1) 0.9371 (5) 0.9483 (3) 0.9490 (2)
3 Haberman 0.3390 (5) 0.3510 (4) 0.3375 (6) 0.3281 (7) 0.3600 (2) 0.3537 (3) 0.3662 (1)
4 Vehicle 0.9164 (4) 0.9004 (7) 0.9073 (6) 0.9149 (5) 0.9282 (1) 0.9201 (2) 0.9172 (3)
5 Glass 0.8247 (7) 0.8586 (1) 0.8377 (3) 0.8371 (4) 0.8480 (2) 0.8292 (6) 0.8346 (5)
6 Shuttle 0.9997 (5) 0.9996 (6) 0.9997 (4) 0.9997 (2) 0.9996 (7) 0.9997 (3) 0.9998 (1)
7 Yeast 0.6434 (6) 0.6257 (7) 0.6525 (4) 0.6543 (3) 0.6436 (5) 0.6553 (2) 0.6556 (1)
8 Libras 0.7127 (4) 0.6143 (7) 0.7281 (2) 0.7042 (6) 0.7057 (5) 0.7187 (3) 0.7329 (1)
9 NewThyroid 0.8842 (6) 0.8606 (7) 0.8889 (5) 0.8996 (2) 0.9363 (1) 0.8947 (4) 0.8989 (3)
10 SatImage 0.8816 (3) 0.8578 (7) 0.8754 (6) 0.8880 (2) 0.8790 (4) 0.8762 (5) 0.8881 (1)
11 Ecoli 0.5648 (4) 0.5477 (5) 0.5774 (3) 0.5360 (6) 0.5167 (7) 0.5837 (2) 0.5964 (1)
12 OpticDigits 0.9066 (6) 0.8731 (7) 0.9353 (2) 0.9177 (4) 0.9087 (5) 0.9230 (3) 0.9495 (1)
13 Abalone 0.3348 (3) 0.3031 (6) 0.2937 (7) 0.3054 (5) 0.3242 (4) 0.3391 (2) 0.3422 (1)
14 Landsat 0.5471 (5) 0.5182 (7) 0.5460 (6) 0.5547 (4) 0.5677 (1) 0.5642 (2) 0.5611 (3)
15 PenDigits 0.9419 (6) 0.9285 (7) 0.9480 (4) 0.9531 (3) 0.9453 (5) 0.9538 (2) 0.9626 (1)
16 Vowel 0.9215 (4) 0.9410 (1) 0.9157 (5) 0.8991 (7) 0.9022 (6) 0.9348 (3) 0.9363 (2)
17 PageBlocks 0.8515 (6) 0.8549 (4) 0.8651 (2) 0.8539 (5) 0.8485 (7) 0.8593 (3) 0.8715 (1)
18 Letter 0.9398 (5) 0.9358 (6) 0.9293 (7) 0.9497 (2) 0.9451 (3) 0.9502 (1) 0.9409 (4)

Average rank 4.89 5.44 4.56 4.17 4.22 2.78 1.94

Table 5. The comparison of tree size on imbalanced datasets including with the rank which is shown in the
parentheses.

No. Datasets CART C4.5 OC1 AE DCSM ME OMCT
1 Pima 110.64 (4) 146.62 (7) 83.98 (2) 125.12 (5) 145.10 (6) 104.48 (3) 75.02 (1)
2 Wine 4.56 (6) 4.56 (6) 4.32 (5) 3.70 (1) 4.10 (4) 3.96 (3) 3.78 (2)
3 Haberman 79.68 (3) 87.22 (7) 58.14 (2) 81.78 (5) 86.52 (6) 79.74 (4) 54.22 (1)
4 Vehicle 25.62 (5) 34.34 (7) 25.26 (4) 27.08 (6) 23.68 (3) 22.10 (2) 18.62 (1)
5 Glass 10.10 (5) 10.48 (6) 9.74 (3) 10.84 (7) 9.86 (4) 9.60 (2) 9.28 (1)
6 Shuttle 22.14 (5) 29.02 (7) 22.24 (6) 19.34 (4) 16.20 (2) 16.60 (3) 16.10 (1)
7 Yeast 132.56 (4) 155.34 (6) 109.02 (2) 142.96 (5) 167.24 (7) 124.44 (3) 99.94 (1)
8 Libras 21.48 (5) 38.44 (7) 20.90 (4) 21.70 (6) 18.84 (3) 17.58 (2) 16.14 (1)
9 NewThyroid 6.52 (5) 8.30 (7) 6.36 (4) 7.14 (6) 5.20 (1) 5.96 (3) 5.62 (2)
10 SatImage 54.46 (5) 70.26 (7) 51.26 (3) 55.82 (6) 53.18 (4) 48.54 (2) 40.82 (1)
11 Ecoli 20.12 (4) 22.42 (6) 17.36 (2) 21.12 (5) 23.42 (7) 18.18 (3) 16.02 (1)
12 OpticDigits 65.58 (5) 101.86 (7) 19.74 (2) 55.24 (4) 73.58 (6) 48.34 (3) 13.76 (1)
13 Abalone 36.14 (4) 43.16 (6) 33.48 (3) 36.76 (5) 44.90 (7) 33.08 (2) 29.86 (1)
14 Landsat 252.50 (4) 368.84 (7) 204.74 (2) 267.54 (5) 322.00 (6) 218.50 (3) 171.32 (1)
15 PenDigits 95.26 (6) 123.46 (7) 51.76 (2) 73.12 (4) 92.22 (5) 66.62 (3) 31.48 (1)
16 Vowel 13.40 (6) 13.26 (5) 12.02 (3) 16.18 (7) 13.16 (4) 9.58 (2) 9.32 (1)
17 PageBlocks 67.56 (4) 77.54 (6) 48.80 (2) 69.56 (5) 86.34 (7) 61.72 (3) 44.16 (1)
18 Letter 87.30 (5) 106.30 (6) 68.96 (2) 80.84 (4) 117.76 (7) 71.26 (3) 48.88 (1)

Average rank 4.72 6.50 2.94 5.00 4.94 2.72 1.11

methods.

For some imbalance datasets such as Glass and Let-
ter, OMCT has lower rank than other decision tree al-
gorithms. It is conceivable that the local best split at the

current step may not lead to the optimal decision tree
[41]. Inducing the tree with an imperfect split at the be-
ginning may result in the lower misclassified tree at the
end. Furthermore, the use of oblique hyperplane may
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not handle the minority instances having spherical dis-
tribution perfectly since any oblique hyperplanes can be
used to split this dataset.

Due to the complexity of finding the best oblique
hyperplane, the algorithms for constructing OMCT
takes long time to converge. Some improvements are
needed for handling this situation. Moreover, the mul-
ticlass imbalanced problem with the nominal attributes
should be investigated using OMCT technique.
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Appendix

Algorithm 1 OMCT (D,C,J )

Require: Dataset D = {x⃗1, x⃗2, ..., x⃗n} with respect to the set of classes C = {c1, c2, ..., cn} and the number of
using randomization J .
1: Creating a node of the tree.
if All instances are in the same class. then
return The node labeled as that class.

end if
2: H : a0 + a⃗ · x⃗ = 0 = ObliqueHyperplane (D,C,J )
3: Dl = ∅
4: Cl = ∅
5: Dr = ∅
6: Cr = ∅
for i = 1, ..., n do
if a0 + a⃗ · x⃗i ≤ 0 then
7: Dl = Dl ∪ {x⃗i}
8: Cl = Cl ∪ {ci}

else
9: Dr = Dr ∪ {x⃗i}
10: Cr = Cr ∪ {ci}

end if
end for
11: OMCT (Dl,Cl,J )
12: OMCT (Dr,Cr,J )

Algorithm 2 ObliqueHyperplane (D,C,J )

Require: The set of instances D with respect to the set of classes C and the number of using randomization J .
1: H, I = AxisParallelHyperplane (D,C)
2: H, I = DeterministicHillClimbing (D,C,H ,I)
3: count = 1

while count ≤ 5 do
4: H ′, I ′ = Randomization (D,C,H ,I)
if I ′ < I then
5: I = I ′

6: H = H ′

7: H, I = DeterministicHillClimbing (D,C,H ,I)
8: count = 0

end if
9: count + = 1

end while
return H
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Algorithm 3 AxisParallelHyperplane (D,C)

Require: The set of instances D with respect to the set of classes C.
1: SelectedAttr = None
2: SelectedV alue = None
3: I = 1

for j = 1, ..., d do
4: Dj = {xij | i = 1, ..., n}
5: MCDj =MinorityCondensation(Dj ,C)
6: Let BestSplit ∈ MCDj be the best splitting value for attribute j obtaining from the greedy approach on
MCDj .
7: Let I ′ be the Shannon’s entropy of partitioning D with BestSplit for attribute j.
if I ′ < I then
8: I = I ′

9: SelectedAttr = j

10: SelectedV alue = BestSplit

end if
end for
11: Defining hyperplaneH : a0+ a⃗ · x⃗ = 0, where all coefficients of a⃗ are 0, except for SelectedAttrth element
is 1, and a0 = −SelectedV alue.
return H , I

Algorithm 4 DeterministicHillClimbing (D,C,H ,I)

Require: The set of instances D with respect to the set of classes C, the hyperplane H and the impurity I .
for j = 1, ..., d do
1: Computing Uj using (3)
2: MCU =MinorityCondensation(Uj ,C)
3: LetBestSplit ∈ MCU be the best splitting value ofMCU obtaining from the greedy approach onMCU .
4: Let I ′ be the Shannon’s entropy of partitioningMCU with BestSplit.
if I ′ < I then
5: I = I ′

6: aj = BestSplit

end if
end for
return H , I

Algorithm 5 Randomization (D,C,H)

Require: The set of instances D with respect to the set of classes C and the hyperplane H .
1: Randomly hyperplane R : r0 + a⃗ · r⃗ = 0

2: Computing V using (4)
3: MCV =MinorityCondensation(V ,C)
4: Let α ∈ MCV be the best splitting value ofMCV obtaining from the greedy approach onMCV .
5: Let I ′ be the Shannon’s entropy of partitioningMCV with α.
6: Defining hyperplane H ′ : H + αR

return H ′, I ′
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Algorithm 6 MinorityCondensation (X ,C)

Require: The set of score X = {x1, x2, ..., xk} with respect to the set of classes C = {c1, c2, ..., ck} where
ci ∈ {+1,−1}.
1: X+ = {xi ∈ D | ci = +1}
2: LetMinPos be the minimum value of X+.
3: Let Q1Pos be the first quartile of X+.
4: Let Q3Pos be the third quartile of X+.
5: LetMaxPos be the maximum value of X+.
6: IQR = Q3Pos−Q1Pos

7: X+
wo = {xi ∈ X+ | Q1Pos− 1.5 ∗ IQR ≤ xi ≤ Q3Pos+ 1.5 ∗ IQR} (Definition 1)

8: Letml be the minimum value of X+
wo.

9: Letmr be the maximum value of X+
wo.

11: MCX = {xi ∈ X | ml ≤ xi ≤ mr} (Definition 2)
return MCX
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