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Abstract. This paper develops a two-phase LP-based heuristic for the Capacitated Vehicle 
Routing Problem (CVRP). It considers three objectives: (1) minimizing the total costs of 
fuel consumption and overtime, (2) maximizing the total personal relationships between 
customers and drivers, and (3) balancing the delivery weights of vehicles. The two-phase 
LP-based heuristic (cluster-first route-second) is proposed. First, in the clustering stage, 
three LP-based clustering models (denoted by C1, C2, and C3) are developed. Customers 
are grouped into clusters based on real distances between the customers for C1, personal 
relationships between the customers and drivers for C2, and the delivery weights of vehicles 
for C3. Second, in the routing stage, an LP-based traveling salesman problem model is used 
to form a route for each cluster, to minimize the total costs of fuel consumption and 
overtime labor. The experimental results from a case study of Thai SMEs show that when 
the C2 clustering model is applied, the performances are the best. Significant contributions 
of this paper include: (1) it is an original paper that proposes the C2 clustering model, and 
it has the best performances based on the experimental results, and (2) the proposed two-
phase LP-based heuristic methods are suitable for practical use by SMEs since the required 
computational time is short, and it has multiple models with different objectives that can be 
selected to match a user's requirements. 
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1. Introduction 
 
The Capacitated Vehicle Routing Problem (CVRP) is 

a combinatorial optimization problem that aims to find 
the optimal set of routes for a fleet of vehicles from a 
central depot to supply goods to a set of customers with 
known demand such that the capacity of vehicles is not 
violated [1, 2]. Moreover, each customer is served exactly 
once by only one vehicle. Each vehicle should start and 
end its route at the depot. The literature related to the 
CVRP is rich due to its usefulness in real-life situations, 
especially for transportation and logistics (T&L) 
companies, such as logistics service providers and 
suppliers that own a fleet of vehicles. The objective of the 
classical CVRP is to minimize the total distance or time 
traveled by the vehicles [3, 4]. 

More objectives are introduced into the classical 
CVRP to handle real-life issues of T&L companies. In 
recent CVRP research, the objectives include economic, 
customer, and driver perspectives. The real-life issues are 
as follows. An economic issue is that T&L companies 
want to minimize fuel and overtime costs. Note that the 
salary is an irrelevant cost since all drivers are permanent 
employees and a fixed salary must be paid. Most 
customers need the driver to carry goods from the vehicle 
to storage spaces. Therefore, weight balancing among 
vehicles is important. Unbalanced weight means unfair 
and uneven workload allocation to the drivers. This issue 
affects the satisfaction of drivers. Customers prefer the 
same driver for the delivery because the driver already 
knows the special requirements of the customers and they 
have good relationships. This issue affects the satisfaction 
of customers. The classical CVRP can be modified into 
new CVRP variants with different objectives, to solve the 
real-life issues of T&L companies.  

This paper is motivated by the needs of a Thai small- 
to medium-sized enterprise (SME) from a case study. The 
Thai SME considers three objectives for delivery route 
planning. First, since the Thai SME owns a fleet of pickup 
trucks and hires permanent drivers to operate the fleet, the 
company wants to minimize the total relevant costs for 
delivery route planning, including the fuel consumption 
cost and overtime cost, to satisfy the economic 
perspective. Second, the company considers relationships 
between customers and drivers. The company assigns 
customers to drivers who have good relationships with 
them, to satisfy the customer perspective. Third, when the 
drivers are permanent employees, the company needs to 
balance delivery weights assigned to vehicles to evenly 
distribute workloads to the drivers, to satisfy the driver 
perspective. This can also increase the lifespan of vehicles 
and is beneficial for the long-term use of vehicles. Besides 
considering different objectives, the company is also 
concerned about the computational time of planning. The 
company prefers a reasonable time that is not more than 
10 minutes, to plan delivery routes for small- to medium-
sized problems (i.e., a problem size of 30 customers and 4 
vehicles). 

This paper focuses on the three objectives that are 
considered by the Thai SME. The objectives include (1) 
minimizing the total costs of fuel consumption and 
overtime, (2) maximizing the total personal relationships 
between customers and drivers, and (3) balancing the 
delivery weights of vehicles, which are related to the 
economic, customer, and driver perspectives, respectively. 
This paper develops a route planning method that is 
suitable for Thai SMEs, to solve CVRPs with different 
objectives. This method can provide a high-quality 
solution within a reasonable time.  

Since the classical CVRP is NP-hard [5], CVRP 
variants with new objectives that are extensions of the 
classical CVRP are also NP-hard. Optimal solutions from 
exact algorithms cannot be obtained within a reasonable 
time. Using heuristic approaches is necessary to obtain a 
near-optimal solution within a reasonable time. The 
Cluster-First Route-Second (CFRS) heuristic is a two-
phase heuristic that is among several categories of classical 
heuristics [6, 7]. First, customers are grouped into clusters, 
and each cluster is assigned to a different vehicle. Then, 
the customers in each cluster are sequenced to form a 
route by solving the corresponding Traveling Salesman 
Problem (TSP). The main advantage of the CFRS heuristic 
is that problem sizes and computational times are 
significantly reduced, to obtain a near-optimal solution in 
a reasonable time. 

This paper proposes Linear Programming-based (LP-
based) CFRS heuristic methods for the CVRP variants 
with the objectives related to the satisfaction of the 
economic, customer, and driver perspectives. Based on 
the nature of the clustering technique, by assigning 
customers to vehicles, the total personal relationships 
between customers and drivers and the delivery weight of 
each vehicle can be directly considered. However, the total 
costs of fuel consumption and overtime can only be 
directly considered when the delivery routes are 
constructed using the routing technique. In this paper, the 
total personal relationships between customers and 
drivers are maximized, and the maximum delivery weight 
of vehicles is minimized in the clustering stage, to satisfy 
the customer and driver perspectives, respectively. Two 
LP-based clustering models are proposed for the two 
objectives. However, the total costs of fuel consumption 
and overtime that are the objective of the economic 
perspective cannot be directly minimized in the clustering 
stage. Therefore, another LP-based clustering model is 
used to minimize the maximum distance between any pair 
of customers in the same clusters, which indirectly 
minimizes the total cost in the clustering stage. Then, in 
the routing stage, a route is constructed by using an LP-
based Traveling Salesman Problem (TSP) model to 
minimize the total costs of fuel consumption and overtime 
for each cluster. A branch-and-bound exact algorithm 
using ILOG CPLEX software is used to solve for the 
optimal solution of each model. The LP-based CFRS 
heuristic methods are combinations of three LP-based 
clustering models and an LP-based TSP model. 
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The three LP-based clustering models and the LP-
based TSP model are described as follows. 

• LP-based clustering model 1 clusters customers 
based on real distances (along an available road 
network) between customers. It minimizes the 
maximum distance between any pair of customers 
in the same clusters. This model is used to 
indirectly minimize the total costs of fuel 
consumption and overtime, which cannot be 
directly minimized in the clustering stage. Note 
that the fuel cost and overtime cost can be directly 
minimized during the routing stage. 

• LP-based clustering model 2 clusters customers 
based on personal relationships between 
customers and drivers, to maximize the total 
personal relationships. The objective of this 
model is to satisfy the customer perspective. 

• LP-based clustering model 3 clusters customers 
based on delivery weights carried by vehicles, 
balancing the delivery weights among the vehicles, 
to satisfy the driver perspective. 

• LP-based TSP model sequences the customers to 
form a route, to minimize the total costs of fuel 
consumption and overtime. The objective is 
directly related to the economic perspective. 

The three objectives, including the total costs of fuel 
consumption and overtime, total personal relationships 
between customers and drivers, and maximum delivery 
weight of vehicles, are the performance measures of the 
proposed heuristic methods for the economic, customer, 
and driver perspectives, respectively. However, they have 
different units/scales and cannot be directly compared. 
Therefore, the objective values are normalized into 
satisfaction levels with values from 0.0 to 1.0, for 
comparison. 

The remainder of this paper is organized as follows. 
Related studies are reviewed in Section 2. Then, the 
characteristics of the CVRP variants with new objectives 
and the proposed two-phase LP-based heuristic are 
presented in Sections 3 and 4, respectively. Next, a real 
case study of a T&L company in Thailand is conducted in 
Section 5. After that, experimental results and discussion 
are provided in Section 6. Finally, conclusions and 
recommendations are presented in Section 7. 

2. Relations between this Paper and Past Works 

The relationships between this paper and past works 
focus on two main points. The first one involves the 
decision objectives related to the economic, customer, and 
driver perspectives. The second involves the solution 
methods for CVRPs. 

Among the three perspectives, the objectives of the 
economic perspective are commonly found in the 
literature, as shown in Table 1. Note that Table 1 contains 
only closely related papers to this paper (not all cited 
papers appear in Table 1). In addition to the classical 
objective, the minimization of the total distance traveled 
by vehicles [1, 3, 8, 9], there are objectives related to 

routing costs. For the routing cost objectives, one 
objective is the minimization of the total fuel consumption 
of vehicles [10–12]. This objective is directly related to the 
additional cost to operate vehicles. Another routing cost 
objective is the minimization of the total routing costs, 
including the fuel consumption cost and fixed operating 
cost of vehicles [2, 13]. This objective is suitable when the 
total capacity of the internal vehicles is not enough, and 
the T&L companies have to rent and manage external 
vehicles to fulfill the capacity gap. It is also applied for 
heavy-load delivery when the drivers may require 
additional workers to help them in loading and unloading. 
In the study of [14], the fuel consumption cost, fixed 
operating cost, and carbon emission cost of vehicles are 
combined as a total cost objective for a low-carbon 
routing problem. When a company fully relies on external 
vehicles, the transportation unit cost is minimized [15]. 
The sum of depot opening cost and routing cost is 
minimized for the capacitated location-routing problem 
[16]. The sum of routing and handling costs is minimized 
for the two-echelon CVRP [17]. Overall cost (including 
facility opening cost, facility closing cost, and 
transportation cost) is minimized for the redesign of three-
echelon multi-commodity distribution network [18]. This 
paper assumes that T&L companies own a fleet of vehicles 
with enough resources for distribution. For them, the fuel 
consumption and overtime costs are the only additional 
costs for route planning. Since the carbon emission is 
directly proportional to the amount of fuel consumption 
of the vehicles, the carbon emission cost is also reduced. 
Therefore, this paper considers the total routing costs that 
include only the fuel consumption cost and the overtime 
cost of drivers, for the economic perspective. 

For the customer perspective, different objectives are 
proposed for different real-life situations. The total travel 
time to customers is minimized to provide a quick 
response to demands. It is crucial that rescuers arrive 
quickly in order to save lives and provide emergency 
supplies to survivors when natural disasters strike [19]. 
The total or average satisfaction of customers based on 
customer time windows is maximized while other cost 
objectives are minimized, to maintain customer 
satisfaction with delivery services [20–22]. The response 
time of ambulances is reduced to improve the emergency 
service [23]. In [24–26], the time window violations are 
converted into penalty costs incurred due to earliness and 
lateness of arrivals. Total costs of penalty and 
transportation are minimized. To the best of our 
knowledge, personal relationships between customers and 
drivers have never been considered for route planning. 
This paper introduces an objective based on the personal 
relationships between customers and drivers. The 
objective is to maximize the total personal relationships 
between customers and drivers, to satisfy the customer 
perspective. 

For the driver perspective, the importance of 
workload balancing among vehicles is high, when the 
drivers are permanent employees. There are three 
categories of workload balancing: balancing the 
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distances/durations of vehicles, balancing the delivery 
weights of vehicles, and balancing the numbers of 
customers of vehicles [27]. Normally, the objectives of 
workload balancing are considered in multi-objective 
problems together with other objectives. The total 
distance traveled by vehicles and the difference between 
the longest and the shortest route lengths are minimized 
for the CVRP with route balancing [28, 29]. The total 
routing cost and the difference between the largest and 
smallest route costs are minimized [30, 31]. The total 
routing cost and the maximum duration of routes are 
minimized [32]. In [33], the total distance traveled by 
vehicles is minimized and the imbalances of workloads in 
terms of distances traveled and weights carried by vehicles 
are also minimized. In real-life situations, however, 
overtime payments can compensate the driver of a vehicle 
with a long operation duration. Some customers are in the 
same area, but others are dispersed over a large area. 
Therefore, balancing the distances/durations and 
balancing the numbers of customers may be ineffective. 
This paper considers only balancing the delivery weights 
of vehicles, for the driver perspective. The maximum 
delivery weight of vehicles is minimized, to balance the 
delivery weights of vehicles. 

For CVRPs, there are two groups of solution methods, 
including exact algorithms and approximate algorithms [6]. 
Branch-and-Bound Algorithm (BBA) and Branch-and-
Cut-and-Price Algorithm (BCPA) are two exact 
algorithms that can find optimal solutions for CVRPs. In 
[2], Mixed Integer Linear Programming (MILP) models 
are formulated for a multiple-route Vehicle Routing 
Problem (VRP). The MILP models are solved by using 
ILOG CPLEX software with the BBA. The BCPA is a 
hybrid of the BBA, cut generation, and column generation. 
The BCPA is applied to solve different variants of CVRPs, 
including the VRP with stochastic demands [34], the 
cumulative CVRP [19], the energy minimization VRP [35], 
and the two-echelon CVRP [36]. However, the exact 
algorithms have a drawback. They can only solve small-
sized problems and take long computational time for 
large-sized problems. 

In contrast, the approximate algorithms that include 
classic heuristics and metaheuristics, can find near-optimal 
solutions for large-sized problems within a reasonable 
time. A popular classical heuristic is a two-phase algorithm, 
the CFRS heuristic [8, 11], that divides the CVRPs into 
two stages: clustering and routing. For clustering, 
customers are assigned to clusters, and each cluster is 
assigned to a different vehicle. For routing, a route is 
constructed for the customers in each cluster. This can 
significantly reduce problem sizes and computational 
times. In [37], a two-phase heuristic, route construction 
and vehicle dispatch, is developed for a dynamic vehicle 
routing problem with multiple depots. However, only the 
first phase, route construction, is considered as a static 
problem that is related to this paper. In the route 
construction phase, first, a modified Nearest Neighbor 
Procedure (NNP) is used to cluster a customer to a depot 
and assign the customer to a vehicle. Then, Sweeping and 

Reordering Procedures (SRPs) are applied to sequence the 
customers of the vehicle, to construct a feasible route. The 
NNP and SRPs are jointly iterated, to generate a good 
feasible route (i.e., initial route). Finally, an Insertion 
Procedure (IP) is applied to improve the initial route. A 
two-phase algorithm is also applied to solved large-sized 
general lot-sizing and scheduling problem that is 
commonly found in continuous production planning [38]. 

The metaheuristics are further categorized into two 
main types: local search and population search. Local 
search-based methods keep exploring the solution space 
by iteratively moving from the current solution to another 
promising solution in its neighborhood. In contrast, 
population search-based methods maintain a pool of good 
parent solutions by continually selecting parent solutions 
to produce promising offspring, so as to update the pool 
[6]. Two popular local search-based methods are Tabu 
Search Algorithms (TSAs) [4, 14, 24] and Simulated 
Annealing Algorithms (SAAs) [10, 13]. Population search-
based methods include Genetic Algorithms (GAs) [20], 
Ant Colony Optimization Algorithms (ACOAs) [21], and 
Evolutionary Algorithms (EAs) [28, 31, 33]. 

In this paper, the CFRS heuristic methods are used to 
solve the CVRPs with three different objectives because 
of CFRS's advantage in reducing problem sizes and 
computational times, as well as its simplicity for 
implementation. Unlike [8, 11, 37] that use heuristic 
algorithms to find near-optimal solutions at the clustering 
stage, this paper uses ILOG CPLEX software with the 
BBA to solve the LP-models at both the clustering and 
routing stages. The proposed CFRS heuristic method can 
find the optimal solution for each stage. However, the 
decomposition of the entire problem into two sub-
problems results in a suboptimal solution to the entire 
problem. 

3. Characteristics of the CVRP Variant 

In this paper, the characteristics of the CVRP variant 
are as follows. There is a set of customers supplied by  
a fleet of vehicles from a depot. Each customer has  
a known demand. Each vehicle has the same limited 
capacity. The travel time and distance between any pair of 
nodes (including the depot and the set of customers) are 
given according to actual road conditions provided by 
Google Maps. The personal relationships between 
customers and drivers are considered, based on how well 
they know each other. The customers prefer the drivers 
who have good personal relationships with them for 
delivery and assistance. There is a service time for the 
driver to finish a delivery task at each customer. 
Additionally, each customer is supplied exactly once by 
only one vehicle. Each vehicle starts and ends its route at 
the depot. When a vehicle is utilized for delivery, there is 
a fuel consumption cost of the vehicle. It depends on the 
unit fuel cost, fuel consumption rates for an empty vehicle 
and delivery weight, and the travel distance of the vehicle. 
Normally, the driver of a vehicle works from the morning 
to  the evening  (normal working hours),  and during   this
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Table 1. Summary of relevant CVRP research subjected to the objective aspect. 
 

Authors  Perspectives  Solution methods 

 Economic Customer Driver  

2007 Dondo and Cerdá [7] Total routing cost 
  

Three-phase hybrid approach 

2010 Kuo [10] Fuel consumption 
  

SAA 

2012 Xiao et al. [13] Fixed vehicle & fuel 
consumption costs 

  
String-model-based SAA 

2013 Baños et al. [33] Travel distance 
 

Travel distance & delivery 
weight of each vehicle 

Pareto-based hybrid EA 

2013 Gajanand and Narendran  
[2] 

Fixed operating & fuel 
consumption costs 

  
Exact algorithm: MILP model & 
BBA 

2013 Yu et al. [3] Travel distance 
  

Three-phase hybrid approach 

2014 Lysgaard and Wøhlk [19]   Total travel time 
 

Exact algorithm: BCPA 

2015 Zhang et al. [14] Fixed vehicle, fuel 
consumption, & emission 
costs 

  
Route splitting TSA 

2016 Cinar et al. [11] Fuel consumption 
  

Two-phase algorithm: CFRS 

2016 Halvorsen-Weare and  
Savelsbergh [29] 

Total travel distance  Travel distance of each  
vehicle 

Pareto optimal solutions: combine  
ε-constraint & lexicographic 
methods 

2018 Comert et al. [8] Travel distance 
  

Two-phase heuristic: CFRS 

2019 Ghannadpour and Zarrabi  
[20] 

Travel distance, energy 
consumption, & number of 
vehicles 

Total satisfaction 
 

Pareto-based hybrid GA 

2019 Zhang et al. [21] Travel distance & fixed 
vehicle costs 

Average satisfaction 
 

Pareto-based hybrid ACOA 

2020 Lehuédé et al. [32] Total routing cost  Duration of each vehicle Pareto optimal solutions: 
lexicographic minimax approach 

This paper Fuel consumption & 
overtime costs 

Personal relationships Delivery weight of each 
vehicle 

Two-phase LP-based heuristic: 
CFRS 

Notes: SAA = Simulated annealing algorithm. EA = Evolutionary algorithm. MILP = Mixed integer linear programming. BBA = Branch and bound algorithm. 
BCPA = Branch-and-cut-and-price algorithm. TSA = Tabu search algorithm. CFRS = Cluster-first route-second. GA = Genetic algorithm. ACOA = Ant colony 
optimization algorithm. 
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period the driver has a lunch break. When the driver works 
more than the normal working hours, there is an overtime 
cost of the driver. It depends on the unit overtime cost 
and the overtime duration. 

Three objectives are considered for the economic, 
customer, and driver perspectives as follows. First, the 
total routing cost, including the fuel consumption cost and 
the overtime cost, is minimized, to satisfy the economic 
perspective. Second, the total personal relationships 
between customers and drivers are maximized, to satisfy 
the customer perspective. Third, the maximum delivery 
weight of vehicles is minimized to balance delivery weights 
among vehicles, to satisfy the driver perspective. 

The notations used for model formulation are 
presented in the following subsections. 

 
3.1. Indices and Sets 

 
,i j  Index of nodes 

k  Index of vehicles 

C  Set of customers;  1,2,..,C n=  

K  Set of vehicles;  1,2,..,K m=  

N  Set of nodes (including a depot denoted by 0 and the 

set of customers);  0,1,2,..,N n=  

 
3.2. Parameters 

 
m  Number of vehicles (vehicles) 
n  Number of customers (customers) 

fc  Unit fuel cost (THB/L) 
oc  Unit overtime cost (THB/h) 
mD  Maximum distance between source and destination 

(km) 

M  Large positive time (min) 

kL  Lunch duration for driver of vehicle k  (min) 

T  Timespan (normal working hours) for delivery (h) 

Q  Capacity of vehicle (kg) 
e

kf  Fuel consumption rate for empty vehicle k  (L/km) 
wf  Fuel consumption rate for carried weight (L/km•kg) 

iq  Demand of customer i  (kg) 

is  Service time at customer i  (min) 

ikr  Personal relationship between customer i  and 

driver of vehicle k  (unitless) 

ijd  Travel distance from node i  to node j  (km) 

ijt  Travel time from node i  to node j  (min) 

 
3.3. Variables 

ijkx  = 1, if vehicle k  travels from node i  to node j ; 0 

otherwise (binary) 

iky  = 1, if vehicle k  visits node i ; 0 otherwise (binary) 

ijw  Delivery weight carried by a vehicle from node i  to 

node j  (kg) 
t

kW  Total delivery weight assigned to vehicle k  (kg) 
t

kC  Total number of customers assigned to vehicle k  

(customers) 

ikA  Arrival time of vehicle k  at node i  (min) 

ikD  Departure time of vehicle k  at node i  (min) 

kO  Overtime of vehicle k  (h) 

1Z  Maximum distance between any pair of customers in 

the same cluster (km) 

2Z  Total personal relationships between customers and 

drivers (unitless) 

2 2/Z Z+ −
 Maximum and minimum values of 2Z  (unitless) 

3Z  Maximum delivery weight of vehicles (kg) 

3 3/Z Z+ −
 Maximum and minimum values of 3Z  (kg) 

4Z  Total travel distance of vehicles (km) 

5Z  Total routing cost, including fuel consumption and 

overtime costs (THB) 

5 5/Z Z+ −
 Maximum and minimum values of 5Z  (THB) 

( )SL E  Satisfaction level of economic perspective 

(unitless) 

( )SL C  Satisfaction level of customer perspective (unitless) 

( )SL D  Satisfaction level of driver perspective (unitless) 

 

4. Two-phase LP-based Heuristic 
 
The two-phase LP-based heuristic used in this paper 

is the Cluster-First Route-Second (CFRS) heuristic that is 
divided into two stages: clustering and routing. In the 
clustering stage, customers are grouped into clusters, and 
each cluster is assigned to a vehicle. In the routing stage, 
the customers in each cluster are sequenced to form a 
route that starts and ends at the depot. Three LP-based 
clustering models and an LP-based TSP model are 
proposed for the clustering stage and routing stage, 
respectively. The first clustering model indirectly 
minimizes the objective of the economic perspective 
because the objective cannot be directly minimized in the 
clustering stage. The second clustering model directly 
maximizes the objective of the customer perspective. The 
third clustering model directly minimizes the objective of 
the driver perspective. The LP-based TSP model 
constructs a route for the customers in each cluster, and 
its objective is to minimize the total costs of fuel 
consumption and overtime for each cluster. 

 
4.1. Clustering Stage 

 
In the clustering stage, three LP-based clustering 

models are proposed. They are described as follows. 

• LP-based clustering model 1, denoted by C1, 
groups customers into clusters based on real 
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distances between the customers. The customers 
that have a relatively close distance to each other 
are assigned to the same cluster. The objective of 
C1 is to minimize the maximum distance between 
any pair of customers in the same cluster (see 
objective function (1) and inequality (2)). Because 
the total costs of fuel consumption and overtime 
cannot be directly minimized in the clustering 
stage, C1 is used to indirectly minimize the total 
cost (economic perspective). 

• LP-based clustering model 2, denoted by C2, 
groups customers into clusters based on the 
personal relationships between customers and 
drivers. Customers are assigned to the vehicle that 
the driver has relatively good personal 
relationships with them. The objective of C2 is to 
maximize the total personal relationships between 
customers and drivers, as shown in objective 
function (3) and Eq. (4), to enhance customer 
satisfaction (customer perspective). 

• LP-based clustering model 3, denoted by C3, 
groups customers by considering the delivery 
weights of vehicles. The objective of C3 is to 
minimize the maximum delivery weight of the 
vehicles, as shown in objective function (5) and 
inequality (6), to balance the delivery weights of 
vehicles (driver perspective). The concept of the 
min-max objective function in [39] is adapted for 
C1 and C3.  

C1 is used to indirectly optimize the objective of the 
economic perspective. C2 and C3 are used to directly 
optimize the objectives of the customer and driver 
perspectives, respectively. The LP-based clustering 
models have common constraints, as shown in 
Constraints (7 to 11). Constraint (7) limits the total 
delivery weight assigned to each vehicle by the capacity of 
vehicles. Constraint (8) assigns each customer to only one 
vehicle to fulfill the demand. Constraint (9) calculates the 
maximum distance between customers (for all customers) 
as an input parameter, especially for C1. Constraints (10) 
and (11) compute the total delivery weight and the total 
number of customers assigned to each vehicle, 
respectively. 

 

1minimizeZ  (1) 

 

1 ( 2) ;

, ,

m

ij ik jkZ d y y D

i C j C k K

 + + − 

     
 (2) 

 

2maximizeZ  (3) 

 

2 ik iki C k K
Z r y

 
=    (4) 

 

3minimizeZ  (5) 

 

3 ;i iki C
Z q y k K


     (6) 

 

;i iki C
q y Q k K


     (7) 

 

1;ikk K
y i C


=    (8) 

; ,m

ijD d i C j C      (9) 

 

;t

k i iki C
W q y k K


=     (10) 

 

;t

k iki C
C y k K


=    (11) 

 
4.2. Routing Stage 

 
In the routing stage, an LP-based TSP model with a 

cost objective is proposed, to sequence the customers in 
each cluster to form a route. The proposed LP-based TSP 
model is compared to the classical TSP model with the 
distance objective, to show the proposed model's 
superiority over the classical TSP model. Therefore, two 
LP-based TSP models are formulated and solved for 
optimal routes. They are described as follows. 

• Classical LP-based TSP model, denoted by R1, 
sequences the customers in each cluster to form a 
route, to minimize the total travel distance of 
vehicles (see objective function (12) and Eq. (13)). 

• Proposed LP-based TSP model, denoted by R2, 
sequences the customers in each cluster, to 
minimize the total costs of fuel consumption and 
overtime, as shown in objective function (14) and 
Eq. (15). In Eq. (15), the first and second terms 
are the fuel consumption costs of vehicles 
determined by the travel distance and delivery 
weight of the vehicle, and the third term is the 
overtime cost of drivers. Note that the fuel 
consumption formula is adapted from [13]. 

The two LP-based TSP models have common 
constraints, as shown in Constraints (16 to 28). Constraint 
(16) allows a vehicle visit only once at each customer to 
fulfil its demand. Constraint (17) controls the path-flow of 
each vehicle. This ensures that the vehicle that visits a 
node, must depart from the node. Constraint (18) 
indicates the delivery weight reduction of the vehicle after 
it visits a customer, equaling to the demand of the 
customer. This also eliminate any illegal sub-tours to 
ensures that each vehicle route starts and ends at the depot 
[13]. Constraint (19) limits the delivery weight carried by 
each vehicle between two nodes by its capacity. 
Constraints (20 and 21) calculate the arrival time of each 
vehicle at each node. Constraint (22) calculates the 
departure time of each vehicle at each customer. This 
means that a vehicle can only depart from a customer after 
the driver finishes the delivery tasks at the customer. 
Constraint (23) calculates the overtime of the driver of 
each vehicle. Constraints (24 to 28) are binary and non-
negativity constraints. 

 

4minimizeZ  (12) 
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( )0 / 60 / 60 ;k k kO A T L k K − −    (23) 

 

 0,1 ; , ,ijkx i N j N k K        (24) 

 

 0,1 ; ,iky i N k K      (25) 

 

0; ,ijw i N j N      (26) 
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, , 0;t t
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In this paper, there are three LP-based clustering 

models and two LP-based TSP models. A summary of the 
formulation for the five models is presented in Table 2. 
Thus, by combining the three and two models, there are 
six LP-based CFRS heuristic methods, including C1R1, 

C1R2, C2R1, C2R2, C3R1, and C3R2. Note that, only 
three methods (i.e., C1R2, C2R2, and C3R2) are proposed 
by this paper. Other three methods (including C1R1, 
C2R1, and C3R1) are used for comparison, to show the 
proposed TSP model's superiority over the classical TSP 
model for routing. 

 
Table 2. Summary of three LP-based clustering models 
and two LP-based TSP models. 
 

Models Descriptions 

C1 LP-based clustering model 1 
- Objective function (1) 
- Subject to: Constraints (2, 7 – 11). 

C2 LP-based clustering model 2 
- Objective function (3) 
- Subject to: Constraints (4, 7 – 11). 

C3 LP-based clustering model 3 
- Objective function (5) 
- Subject to: Constraints (6 – 11). 

R1 Classical LP-based TSP model 
- Objective function (12) 
- Subject to: Constraints (13, 16 – 28). 

R2 Proposed LP-based TSP model 
- Objective function (14) 
- Subject to Constraints (15 – 28). 

 
4.3. Performance Measures 

 
Three objectives related to the economic, customer, 

and driver perspectives are used to evaluate the 
performances of the proposed LP-based CFRS heuristic 
methods. However, they cannot be directly used to 
compare the performances of the proposed methods 
because they have different units and scales. Thus, the 
objectives should be normalized into a common scale 
from 0.0 to 1.0, which is called a satisfaction level, for ease 
of comparison. The satisfaction levels of the three 
objectives are presented as follows. 

• Satisfaction level of the economic perspective, 

denoted by ( )SL E , is the satisfaction level of the 

total costs of fuel consumption and overtime (see 
Eq. (29)). 

• Satisfaction level of the customer perspective, 

denoted by ( )SL C , is the satisfaction level of the 

total personal relationships between customers 
and drivers (as shown in Eq. (30)). 

• Satisfaction level of the driver perspective, 

denoted by ( )SL D , is the satisfaction level of the 

maximum delivery weight of vehicles          (as 
presented in Eq. (3)1). 

 

( ) ( )5 5 5 5( ) /SL E Z Z Z Z+ + −= − −  (29) 

 

( ) ( )2 2 2 2( ) /SL C Z Z Z Z− + −= − −  (30) 
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( ) ( )3 3 3 3( ) /SL D Z Z Z Z+ + −= − −  (31) 

 
For a given problem instance, there are six values of 

each objective from applying the six LP-based CFRS 
heuristic methods. The maximum and minimum values of 
each objective are determined from the set of six values. 
If the six values of an objective are the same, the value = 
1 is given to the satisfaction level of the objective. 

 

5. A Real Case Study in Thai SMEs 
 
This section presents a real case study of applying the 

proposed two-phase LP-based heuristic to plan delivery 
routes for a fleet of vehicles of a Thai Small- to Medium-
sized Enterprise (SME) located in Bangkok. The Thai 
SME produces adhesive products for construction and 
industrial uses. 

The Thai SME owns a fleet of four pickup trucks with 
the same capacity (2,500 kg), to deliver products to 
customers located in Bangkok and the vicinity. Real travel 
times and distances between nodes are retrieved from a 
Google Maps API database. Based on historical delivery 
data, the service time at each customer is set to be 15 
minutes (i.e., the average of historical service times). 

The personal relationships between customers and 
drivers are divided into three types as follows. First, value 
= 0 is given when the customer is new for the driver. This 
means that they do not know each other. Second, value = 
0.5 is given when the customer is familiar and has been 
served by the driver, but not frequently. Third, value = 1 
is given when the customer and driver have a good 
relationship with each other. 

The fuel consumption rate function presented by [13], 
Y = 0.0000793X – 0.026, is used to determine the fuel 
consumption rates for fuel consumption cost calculations. 
In this function, X is the weight (kg) of the vehicles 
including goods, and Y is the fuel consumption rate 
(L/km). Based on this function, the fuel consumption rate 
for the empty pickup trucks (with a curb weight of 2,000 
kg) is approximately 0.1326 L/km, and the fuel 
consumption rate for the carried (additional) weight is 
0.0000793 L/km•kg. The unit fuel cost is set to be 28 
THB/L. 

The overtime cost of drivers is calculated based on the 
following conditions. The drivers work from 8:00 AM to 
5:00 PM and have a lunch break for 30 minutes. The 
system starts calculating the overtime cost after the drivers 
perform delivery tasks for 8 hours and 30 minutes. The 
unit overtime cost is 1.5 times the regular time labor cost, 
and it is approximately 130 THB/h. 

To evaluate the performances of the proposed two-
phase LP-based heuristic, six LP-based CFRS heuristic 
methods are tested with five datasets of 30 customers that 
are randomly selected from a set of 530 customers. The 
demand of each customer is randomly generated, based on 
a normal distribution with a mean of 200 kg and a standard 
deviation of 100 kg. When the generated weight is less 
than zero, it is assumed to be zero. When the delivery 

weight is zero, it is equivalent to a cheque collection from 
the customers (no delivery goods). 

The LP-based clustering and routing models for the 
case study are solved by using IBM ILOG CPLEX 12.4 
on a laptop computer with a 2.90 GHz Intel(R) Core(TM) 
i7-7500U CPU and 8.00 GB RAM, running on 64-bit 
Windows 10. 

 

6. Experimental Results and Discussions 
 
In this section, the experimental results are presented 

and discussed. Table 3 presents a part of data from a 
selected dataset of 30 customers that is used to evaluate 
the performances of the proposed LP-based CFRS 
heuristic methods. According to confidential policy of the 
company, real names of the Thai SME company and its 
customers are not disclosed. Therefore, the Thai SME 
company that produces and supplies adhesive products, is 
denoted by Depot. The set of 30 customers that place 
orders for adhesive products from the Thai SME 
company, are denoted by Customers 1 to 30. Note that 
the demands of Customers 1, 25, and 30 are 0. This means 
that the task is to collect cheques from these customers. 

Table 4 presents a part of the results from the selected 
dataset of the six LP-based CFRS heuristic methods and 
the general CVRP model that minimizes the total travel 
distance. The results of the general CVRP model are 
provided by the IBM ILOG CPLEX solver with the time 
limit of 3600 seconds (1 hour). The total travel distance is 
768.6 km, and it is 6.85% above the lower bound of the 
total travel distance. From this table, there are interesting 
points as follows. 

First, the general CVRP model that directly minimizes 
the total travel distance (minimize TD) in a single stage, 
results in the lowest total travel distance (TD) compared 
with the six LP-based CFRS heuristic methods. However, 
the general CVRP model provides the lowest total 
personal relationship (PR) and the highest variation of 
delivery weights among vehicles (dW value is the highest). 
It provides higher total routing cost (TC) than C1R1, 
C1R2, C2R1, and C2R2 methods. This numerical example 
shows that the general CVRP model is inferior to the six 
LP-based CFRS heuristic methods in terms of 
computational time and quality of solutions when the 
economic, customer, and driver (employee) perspectives 
are considered. Therefore, only the six LP-based CFRS 
heuristic methods are further discussed.  

Second, the clustering model C1, which minimizes the 
maximum distance between customers in the same cluster 
(minimize CD), results in the lowest total routing cost (TC) 
among the three clustering models. Thus, C1 is a 
clustering model that indirectly minimizes the total costs 
of fuel consumption and overtime. However, C1 has the 
highest variation of delivery weights among vehicles (the 
highest dW value among the three clustering models). 

Third, the clustering model C2 that maximizes the 
total personal relationships between customers and 
drivers (maximize PR) results in the highest PR value 
among all clustering models. However, the total routing 
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cost (TC) is higher than that of the C1 model. Note that 
the total travel distance (TD) and the total routing cost 
(TC) are calculated by using Eqs. (13) and (15), 
respectively. TC depends on travel distances, delivery 
weights, and durations of routes. This means that when 
TD is minimized, TC is not guaranteed minimum. For 
example, the TD and TC of C1R1 are 941 km and 5082.62 
THB, respectively. The TD and TC of C2R1 are 926 km 
and 5252.05 THB, respectively. C2R1 has shorter TD but 
higher TC than those of C1R1. 

Fourth, when the clustering model C3 that minimizes 
the maximum delivery weight of vehicles (minimize MW) 
is applied, the maximum delivery weight (MW) is the least 
among all clustering models, and weights are equally 
assigned to vehicles. However, the total personal 
relationships (PR) and the total routing cost (TC) are the 
worst, compared to the other clustering models. These 
interesting points indicate that all proposed clustering 
models are effective, to determine the optimal solutions 
based on their objectives. The clustering models have 
strong and weak points. A model may be good at an aspect 
but bad at other aspects. 

Fifth, considering TSP (routing) models, when the R1 
routing model is used with any clustering model, the total 
travel distance (TD) is lower than that of the R2 model. 
However, the R2 model has a lower total routing cost (TC), 
including fuel consumption and overtime costs. This 
indicates that the classical TSP model that minimizes the 
total travel distance (R1) is not suitable when users focus 
on the total costs of fuel consumption and overtime. 

From the results in Table 4, the C2R2 method has 
relatively good performances since PR (personal 
relationship between drivers and customers) is the highest, 
TC (total cost) is the second best, and dW (difference 
between maximum and minimum weights) is moderate. 
Therefore, the delivery routes of the C2R2 method are 
selected to illustrate with graphical routes as shown in Fig. 
1. There are four routes. The number of customers, 
delivery weight, total travel distance, and sequence of each 
route are also given (as shown in Figs. 1a, 1b, 1c, and 1d). 
From Fig. 1 and data in Table 3, it is possible to show that 
the solution of C2R2 method is good because of the 
reasons as follows.  First, all routes have short distances 
since there is no backtracking and unnecessary U-turn. 
Second, each truck tends to visit customers that need 
products with relatively high weight as soon as possible to 
reduce carried weights and fuel consumption of the truck. 
The first and second points are occurred since the R2 
routing model is effective. Third, from Table 4, the total 
personal relationships between customers and drivers (PR) 
of the C2R2 method is the highest, which is directly 
affected by the C2 clustering model that maximizes PR. 

The objective values from five datasets are normalized 
into satisfaction levels to evaluate the performances of the 
six LP-based CFRS heuristic methods. The satisfaction 
levels of the economic, customer, and driver perspectives 
are averaged from the five datasets, and they are shown in 
Table 5. From this table, there is no clustering model that 
is the best for all performance measures. However, the 

methods that use the R2 routing model outperform the 
methods that use the R1 routing model for all perspectives. 
Thus, the R2 routing model is superior to the R1 routing 
model and should be selected for further analysis.  

When the less-effective methods are eliminated, there 
are three methods left, which are C1R2, C2R2, and C3R2. 
The performances of these methods are plotted in a radar 
chart, as shown in Fig. 2. From this figure, C1R2 and 
C3R2 methods have a high satisfaction level for one 
perspective but low satisfaction levels for two perspectives. 
The C2R2 method has high satisfaction levels for two 

perspectives, which are ( )SL E  and ( )SL C , but a low 

satisfaction level for ( )SL D . The company of this case 

study prefers the C2R2 method over the other methods 
since it has high satisfaction levels for two important 
perspectives, which are economic and customer 
perspectives. However, the C2R2 method has a low 
satisfaction level for the driver perspective, which is less 
important than the other two perspectives. 

The mean and standard deviation of computational 
times (in seconds) of the proposed LP-based CFRS 
heuristic methods for 30 customers and 4 vehicles are 
presented in Table 6. The mean computational times of all 
methods are less than 5 minutes, which can practically be 
used by SMEs which have a medium (not too large) 
number of customers and fleet size.  

From Table 6, C1R2 method has much higher mean 
and standard deviation of computational time than other 
methods because of the following reasons. First, R2 model 
that minimizes the total costs of fuel consumption and 
overtime is more complicated that R1 model that 
minimizes the total travel distance. Thus, any method that 
use the R2 model tends to have longer computational time 
than the method that uses the R1 model. Second, for some 
instances C1 model results in 14 customers in a cluster, 
which is the highest when compared with C2 and C3 
models. Larger problems (the number of customers is 
higher) tend to have much longer computational times for 
the LP-based TSP model. Therefore, when C1 and R2 
models are used together, the C1R2 method has much 
higher mean computational times than other methods. 
Third, when the MILP models are solved by branch-and-
bound based algorithm using ILOG CPLEX software, 
more complicated and larger models (the R2 model that 
solve the routing problem with relatively high number of 
customers in a cluster that is obtained from C1 model) will 
have more variations of the computational times by nature 
of the branch-and-bound algorithm. 

It is useful to discuss practical situations that are 
suitable for applications of the proposed LP-based CFRS 
heuristic methods (i.e., C1R2, C2R2, and C3R2) based on 
the results presented in Table 5. The C1R2 method is 
suitable for single-objective problems that T&L 
companies are interested in minimizing the total routing 
costs of fuel consumption and overtime (economic). 
However, the C2R2 and C3R2 methods are suitable for bi-
objective problems, but one objective is more important 
than another. The C2R2 method is suitable for T&L 
companies that are concerned about maximizing the total 
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personal relationships (customer) and minimizing the total 
routing costs (economic), and the customer perspective is 
more important than the economic perspective. The C3R2 
method is applicable for T&L companies that focus on 

minimize the total routing costs (economic) and balancing 
delivery weights of vehicles (driver), and the driver 
perspective is more important than the economic 
perspective. 

Table 3. Part of data from a selected dataset of 30 customers. 
 

Nodes Names Latitudes Longitudes 𝒒𝒊 𝒔𝒊 𝒓𝒊𝒌 (unitless) 

    (kg) (min) k=1 k=2 k=3 k=4 

0 Depot 13.843356 100.335792       

1 Customer 1 13.743923 100.399120 0 15 0 0 0 1 

2 Customer 2 13.679702 100.528160 151 15 0 0 0 0.5 

3 Customer 3 13.628968 100.360535 29 15 0 0 0 1 

4 Customer 4 13.774270 100.364815 317 15 0 0 0 1 

5 Customer 5 13.581803 100.763901 55 15 0 0 1 0 

6 Customer 6 13.615710 100.641800 130 15 0.5 0.5 1 1 

7 Customer 7 13.685065 100.442530 256 15 0 0 0.5 1 

8 Customer 8 13.791658 100.080130 252 15 0.5 0 0 0.5 

9 Customer 9 13.851172 100.620804 230 15 1 1 0.5 0.5 

10 Customer 10 13.655090 100.545540 259 15 0 0 1 1 

11 Customer 11 13.824422 100.553510 385 15 0 1 0 0 

12 Customer 12 13.684373 100.403496 247 15 0 0 0 1 

13 Customer 13 13.478756 101.003247 209 15 0 0 1 0 

14 Customer 14 13.802288 100.449460 386 15 0 0 0 1 

15 Customer 15 13.846124 100.708830 136 15 0 1 1 0 

16 Customer 16 13.762935 100.689130 288 15 0 0 1 0 

17 Customer 17 14.048130 100.743010 169 15 0 1 0 0 

18 Customer 18 13.917327 100.543600 370 15 1 1 0.5 0 

19 Customer 19 13.768828 100.808304 308 15 0 0 1 0 

20 Customer 20 13.545637 100.158745 197 15 0 0 0 1 

21 Customer 21 13.680292 100.719400 293 15 0 0 1 0 

22 Customer 22 13.787612 100.312670 305 15 0.5 0 0 1 

23 Customer 23 13.570677 100.794850 245 15 0 0 1 0 

24 Customer 24 13.834238 100.413100 276 15 1 0 0 1 

25 Customer 25 13.632894 100.430090 0 15 0 0 0 1 

26 Customer 26 14.270525 101.119530 238 15 0 1 0 0 

27 Customer 27 13.924322 100.393060 165 15 0 0 1 0 

28 Customer 28 13.620698 100.653220 81 15 0 0 1 0 

29 Customer 29 13.827508 100.538022 241 15 0.5 0.5 0.5 0.5 

30 Customer 30 13.701434 100.524221 0 15 0.5 0.5 1 1 

Notes: 
iq  = demand of customer i  (kg). 

is  = service time at customer i  (min). 
ikr  = personal relationship between 

customer i  and driver of vehicle k  (unitless).   
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Table 4. Part of results for six LP-based CFRS heuristic methods and general CVRP model from the selected dataset of 
30 customers. 
 

Methods CD PR MW mW dW TD TC CPU 

 (km) - (kg) (kg) (kg) (km) (THB) (sec) 

General CVRP model: minimize TD 126.9 7 2421 305 2116 * 768.60 5341.47 3600.00 

C1R1: minimize CD + minimize TD 66.7 18 2477 407 2070 941.00 5082.62 32.25 

C1R2: minimize CD + minimize TC 66.7 18 2477 407 2070 964.30 4913.12 45.58 

C2R1: maximize PR + minimize TD 113 28.5 2151 758 1393 926.00 5252.05 33.50 

C2R2: maximize PR + minimize TC 113 28.5 2151 758 1393 947.70 4970.23 67.68 

C3R1: minimize MW + minimize TD 144 10 1555 1553 2 1143.20 6396.85 34.16 

C3R2: minimize MW + minimize TC 144 10 1555 1553 2 1179.70 5915.23 41.93 

Notes: CD = maximum distance between customers in the same cluster. PR = total personal relationships between 
customers and drivers. MW/mW/dW = maximum/minimum/difference of delivery weight of vehicles. TD = total 
travel distance. TC = total routing costs (total costs of fuel and overtime). CPU = CPU time of the IBM ILOG CPLEX 
solver for solving the problem instance. * = total travel distance that is 6.85% above the lower bound of the total travel 
distance. 
 
 

 
a) Truck 1’s route: 3 customers, 758 kg, 160.5 km, 
Depot-24-9-8-Depot. 

 

 
b) Truck 2’s route: 4 customers, 1162 kg, 268.1 km, 
Depot-18-11-26-17-Depot. 

 

 
c) Truck 3’s route: 12 customers, 2151 kg, 310.9 km, 
Depot-27-29-15-16-19-21-13-23-5-28-6-30-Depot. 

 
d) Truck 4’s route: 11 customers, 2147 kg, 208.2 km, 
Depot-22-4-1-14-2-10-7-25-12-3-20-Depot. 

 
Fig. 1. Delivery routes of trucks for C2R2 method from the selected dataset of 30 customers. 
 
 
 
 
 



DOI:10.4186/ej.2020.24.5.145 

ENGINEERING JOURNAL Volume 24 Issue 5, ISSN 0125-8281 (https://engj.org/) 157 

Table 5. Average satisfaction levels of economic, customer, 
and driver perspectives of five datasets. 
 

Method ( )SL E  ( )SL C  ( )SL D  

C1R1 0.857 0.106 0.141 

C1R2 0.956 0.106 0.141 

C2R1 0.818 1.000 0.292 

C2R2 0.946 1.000 0.292 

C3R1 0.000 0.104 1.000 

C3R2 0.233 0.104 1.000 

 

 
Fig. 2. Radar chart for three methods that use the total 
routing cost objective for the TSP models. 
 
Table 6. Computational times of proposed LP-based 
CFRS heuristic methods for 30 customers and 4 vehicles. 
 

Methods Computational times (sec)  

 Mean SD 

C1R1 34.84 2.77 

C1R2 273.57 519.70 

C2R1 33.20 2.26 

C2R2 43.21 14.05 

C3R1 33.82 1.78 

C3R2 39.05 2.39 

  

7. Conclusions and recommendations 
 
This paper proposes an LP-based cluster-first route-

second heuristic to solve the CVRPs with different 
objectives. Three objectives related to the economic, 
customer, and driver perspectives are considered for route 
planning. They include the minimization of the total costs 
of fuel consumption and overtime (economic), the 
maximization of the total personal relationships between 
customers and drivers (customer), and the minimization 
of the maximum delivery weight of vehicles (driver). 

Three LP-based clustering models are proposed to 
group customers into clusters. LP-based clustering model 
1 indirectly minimizes the total costs of fuel consumption 
and overtime. LP-based clustering models 2 and 3 directly 
maximize the total personal relationships between 
customers and drivers and minimize the maximum 
delivery weight of vehicles, respectively. Then, an LP-
based TSP (routing) model that minimizes the total costs 

of fuel consumption and overtime sequences the customer 
in each cluster to form a route. 

The proposed two-phase heuristic methods are tested, 
and their performances are evaluated by using five datasets 
of 30 customers from a real case study of a Thai SME. 
Based on the experimental results, there is no clustering 
model that performs well for all perspectives. However, 
the clustering model based on personal relationships 
between the customers and drivers provides better 
performances among the three clustering models. The LP-
based routing model that minimizes the total routing costs 
(fuel and overtime costs) is better than the model that 
minimizes the total travel distance. 

This paper has significant contributions as follows. 
First, it is an original paper that considers personal 
relationships between customers and drivers for route 
planning. Second, the proposed LP-based CFRS heuristic 
methods are suitable for practical use by SMEs since the 
required computational time is short enough and it has 
multiple models with different objectives to be selected, 
matching the user requirements. Third, the proposed 
methods are tested using a real case study in a Thai SME 
with real data, for example, the locations of the depot and 
all customers, truck capacity, service time, fuel 
consumption rate, unit fuel cost, and overtime cost. 
Moreover, the travel distance and time between nodes are 
retrieved from a Google Maps API database, which is 
more accurate than a Euclidean distance. Fourth, the 
experimental results indicate that among the three LP-
based clustering models, there is no model that can 
achieve good performances for all perspectives. There is a 
strong need to develop a clustering model that 
compromises among conflicting perspectives. 

This paper has some limitations as follows. First, each 
proposed clustering model is good for one perspective but 
inadequate for other perspectives. The models cannot 
compromise among all perspectives. Second, 
environmental awareness of climate change and global 
warming caused by excessive carbon dioxide emission may 
inspire further research on environmental issues for route 
planning. However, these issues are not included in this 
paper. 

Further research is recommended as follows. The 
environmental issues related to carbon dioxide emissions 
should be considered. A compromise-solution method, 
such as maximizing the weighted average of satisfaction 
levels for all perspectives, should be used for a trade-off 
among the objectives, for route planning. Moreover, 
Pareto-based approaches should be considered for multi-
objective optimization to determine Pareto-optimal 
solutions. 
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