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Abstract. Near infrared spectroscopy is a susceptible technique which can be affected by 
various factors including the surface of samples. According to the Lambertian reflection, 
the uneven and matte surface of fruits will provide Lambertian light or diffuse reflectance 
where the light enters the sample tissues and that uniformly reflects out in all orientations. 
Bunch of researches were carried out using near infrared diffuse reflection mode in non-
destructive soluble solids content (SSC) prediction whereas fewer of them studying about 
the geometrical effects of uneven surface of samples. Thus, this study aims to investigate 
the parameters that affect the near infrared diffuse reflection signals in non-destructive 
SSC prediction using intact pineapples. The relationship among the reflectance intensity, 
measurement positions, and the SSC value was studied. Next, three independent artificial 
neural networks were separately trained to investigate the geometrical effects on three 
different measurement positions. Results show that the concave surface of top and bottom 
parts of pineapples would affect the reflectance of light and consequently deteriorate the 
predictive model performance. The predictive model of middle part of pineapples 
achieved the best performance, i.e. root mean square error of prediction (RMSEP) and 
correlation coefficient of prediction (Rp) of 1.2104 °Brix and 0.7301 respectively. 
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1. Introduction 
 
Since the pioneer work of determining the moisture 

content in agricultural products [1], near-infrared 
spectroscopy (NIRS), a rapid and non-invasive technique 
in qualitative and quantitative analysis, has been widely 
implemented and applied in various fields i.e. agriculture 
[2]–[8], medical [9], [10], drug [11], and textiles [12]. 
NIRS is using the near infrared (NIR) region, a part of 
electromagnetic radiation, which will be partially 
absorbed by molecular bond consisted hydrogen atom 
e.g. C-H and O-H to provide the molecular overtone and 
vibrations information [13]. The near infrared spectra 
intertwined with the specific information about the 
composition of examined samples. Using machine 
learning technology, the hidden information can be 
extracted and used in discrimination or quality and 
composition prediction of samples. The initial step in 
applying NIRS for specific discrimination and prediction 
is using one of the three spectral data acquisition modes 
(i.e. transmittance, reflectance, and interactance) [14]. 
Different samples may contain different compositions, 
density, volume, and geometrical effects. Thus, a suitable 
sensing method should be characterized and implemented 
according to the sample properties. 

A typical NIRS set-up contains a NIR light source 
(e.g. halogen lamp or tungsten lamp), a NIR detector or 
sensing element, and optical accessories (e.g. slit, optic 
lens, and grating). The NIR light source plays a vital role 
in providing NIR energy towards on a sample. 
Conventionally, due to the ability in covering wide NIR 
region (780 to 2500nm), halogen tungsten lamp was 
reported in most studies. However, this NIR energy 
source has some unavoidable shortcomings which might 
degrade a NIRS analysis, particularly, it produces 
unnecessary heat to the sensing environment. This 
change of environmental temperature will indirectly 
affect the sample temperature. Consequently, unstable 
temperature on samples will affect the quality of acquired 
NIR data. Additionally, in contrast with NIRS rapid and 
fast characteristics, halogen tungsten lamp needs to be 
pre–heated before NIR data acquisition. This could slow 
down the scanning process. For instance, a handheld 
non-invasive detector mounted with micro-halogen lamp 
was built to measure the soluble solids content (SSC) 
(also known as Brix) of fruits [15]. The device was 
needed to be powered on for at least around 10 minutes 
before it can proceed to a scanning process. Thus, light 
emitting diode (LEDs) that has less heat dissipated, 
insensitive to vibration, and fast operational time to 
reach maximum light intensity characteristics was 
believed to be a new type of NIR energy source in NIRS 
applications [16].  

Specifically, NIR diffuse reflection has revealed its 
potential as a non-destructive technique for rapid analysis 
in different applications e.g. agriculture [17]–[20], 
traditional medicine [21], and medical [22]. According to 
the Lambertian reflection law, diffuse reflection is the 
reflection light from a matte surface that are scattered 

from all angles except the specular reflection. 
Agricultural products especially pineapples that have 
matte surface compared with apple, pear, and stonefruit. 
Consequently, an investigation on the NIR measurement 
positions of samples with matte surface could lead to a 
better understanding of diffuse reflectance.  

For samples with smaller size (e.g. tomato [23], pear 
[24], apple [25]), the NIR data acquisition process that 
was performed around the equator showed satisfied 
prediction results. A research focused on the effects of 
measurement positions in determining the SSC of apples 
using on-line NIR system was carried out [26]. Seven 
models were developed including six local models for six 
fixed positions, and one global model for combination of 
all positions. The local model that was built with NIR 
data collected from equator gave the best prediction 
accuracy. Similar result was reported by [27] using the 
similar samples, i.e. apples. However, no similar study 
has been conducted using fruits with medium size e.g. 
pineapples.   

NIRS can be influenced by various factors e.g. 
temperature [28], sample biological variability (e.g. 
cultivar, season, and origin) [29]–[32], sample position 
detection [27], distance between the sensing instrument 
and samples [33], angle of illumination and detection 
(geometry set up) [34], and surface condition of samples 
[35]. Abundant studies of NIR diffuse reflectance were 
carried out in non-destructively SSC determination, 
however, lack of studies concerns about the underlying 
mechanism of NIR diffuse reflectance. This could limit 
the understanding of the mechanism and the potential of 
NIRS. A better understanding will improve the accuracy 
of non-destructive internal quality measurement in terms 
of better diffuse reflectance acquisition design to 
produce a NIR signal with higher signal-to-noise ratio for 
the internal quality determination. A high accuracy of 
internal quality prediction will help the farmer in post-
harvesting activities e.g. to reduce the unnecessary fruit 
wastes that could indirectly improve the global fruit 
security. Therefore, in this study, the parameters that 
affect the NIR diffuse reflectance in SSC prediction were 
studied using a sensing instrument that comprised of five 
NIR LEDs with different wavelengths i.e. 780, 851, 870, 
910, and 940 nm. 

  

2. Materials and Methods 
 

2.1. Sample Preparation and NIR Data Acquisition 
 

A total of 75 fresh harvested pineapples were 
purchased from local market in Batu Pahat, Johor, 
Malaysia. All pineapples were separated into six batches 
and collected on different days i.e. 11th, 12nd, 18th, 19th, 
24th, and 25th April 2019, respectively. In order to 
ensure that all the pineapples were stood alone from each 
other pineapple attributes, each pineapple was washed 
carefully to remove grimy substances and viscous liquid 
on the surface of the fruits. This precaution step is to 
protect the reliability of the data collected. After that, 
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all pineapples were placed under room temperature for 
around 20 minutes to ensure their surface was naturally 
dried before data collection. The soluble solids content 
(SSC) of pineapples is different from the top to the 
bottom parts of the fruits. Thus, three data were acquired 
from a single pineapple i.e. from the top, middle, and 
bottom of a fruit. Eventually, 225 data were collected 
(top: 75, middle: 75, and bottom: 75). 

A portable sensing instrument (built in with five light 
emitting diodes (LEDs) with different wavelengths i.e. 
780nm, 851nm, 870nm, 910nm, and 940nm, and a 
photodiode detector) was used to collect the diffuse 
reflected near infrared (NIR) data non-destructively from 
the pineapples surface. These wavelengths are at the 
vicinity of informative wavelengths of the third overtone 
of OH stretching (780nm) [36]; the third combination 
overtone of sugar OH stretching at 840nm (851nm) [37]; 
the strong absorption of water and oxygen (870nm) [38] 
that was used to predict the SSC of citrus [39]; the third 
overtone of CH stretching (910nm) [40]; and the strong 
water absorption band for the second and third overtone 
of the OH stretching (940nm) [41]. The illumination 
angle of LED is positioned to 45˚. Detail explanation 
about the working principle of the sensing instrument 
was reported by [42]. The sensing instrument was 
undergone calibration process (i.e. dark and white 
calibration) to calibrate the acquired NIR light intensity 
of each wavelength before the scanning process. White 
calibration was carried out with Labsphere Certified 
Reflectance standard which is able to provide up to 99% 
reflectance values for 250 to 2500nm. Dark and white 
reference values were recorded before the data 
acquisition. To reduce the impact of light and noise, the 
dark and white references values were obtained under the 
same condition [43]. Fig. 1 illustrates the schematic 
diagram of the scanning process. The sensing instrument 
was directly contacted with the surface of the pineapple. 
The scanning of each point was repeated three times, and 
an average of these three successive scans was recorded 
and used as the inputs of ANN. All the collected data 
were stored in a computer and processed via software 
MATLAB R2019a. 
 
2.2. Soluble Solids Content Acquisition 

 
The reference SSC was measured immediately once 

the NIR data acquisition of pineapples was completed. 
The flesh along with the peel that was at the data 
acquisition point was taken out using a stainless steel 
corer with a dimension of 50mm depth and 20mm 
diameter. The length of each specimen was limited to 
20mm while the surplus flesh was removed. Then, the 
specimen with peel was crushed using a stainless steel 
crusher to extract its juice into a beaker. The beaker was 
shaken gently to ensure the equilibrium of samples. 
Eventually, few drops of the pineapple juices from the 
beaker were placed on a digital refractometer (PAL-1, 
Atago, Tokyo, Japan) to measure the SSC values. The 
SSC value was expressed into °Brix.  

 
2.3. Data Pre-processing  

 
The calibrated diffuse reflectance (Ic) was calculated 

from the raw NIR data by subtracting the raw data (Iled) 
with dark reference value (Id), and then that divided by 
the subtracted value of the white reference (Iw) and Id as 
shown in Eq. (1) [44]. 

 

Ic =  
Iled−Id

Iw−Id
                                (1) 

 
The calibrated diffuse reflectance was then pre-

processed using the normalization and standard normal 
variate (SNV). The normalization was used to reduce the 
data redundancy and improve data integrity. SNV was 
used to reduce the effect of scattering and to correct the 
baseline shift [45].  Normalization was carried out by 
dividing the Ic of a particular wavelength with the 
summation of the Ic of the five different wavelengths at 
that particular spectrum. SNV was performed by 
subtracting the Ic with the mean of the spectrum and 
then divided by the standard deviation of the spectrum. 

 
2.4. Model Development 
 

In this study, three layers (i.e. input, hidden, and 
output layers) artificial neural network (ANN) model was 
developed for each measurement position i.e. top, middle, 
and bottom, respectively. The ANN was trained using 
Levenberg-Marquardt training algorithm via MATLAB 
R2019a. Holdout validation was applied i.e. dataset was 
randomly split into training (70%) and testing (30%) sets 
that were used to build the calibration model and validate 
the calibrated model, respectively. 

First, the input (i.e. calibrated diffuse reflectance, Ic) 
and target (i.e. measured soluble solids content (SSC)) 
were mapped in the range between -1 and +1. Second, 
holdout validation was applied to determine the optimal 
calibrated model. The calibrated model was validated 
with the testing set. The hidden neuron was varied from 
one to 10. Third, the performance of ANN was 
evaluated based on the root mean square error (RMSE) 

 

 

Fig. 1. The scanning position is divided into three 
different parts along a pineapple: (1) the top part, (2) the 
middle part, and (3) the bottom part. 
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Table 2. Descriptive statistics of the measured SSC for 
three different parts of pineapples 
 

Pineapple 
Parts 

Number 
of 
samples 

Min 
(°Brix) 

Max 
(°Brix) 

Mean 
(°Brix) 

SD 
(°Brix) 

Top 75 6.4 16.1 11.76 2.09 

Middle 75 7.3 16.9 13.25 1.93 

Bottom 75 7.8 19.9 14.23 1.94 

Total 225 6.4 19.9 13.08 2.24 
 

 

 

Table 3. Descriptive statistics of the first four ranking 
patterns 
 

Pattern Top Middle Bottom 

Sample % Sample % Sample % 

1 21 28 23 30.67 16 21.33 
2 14 18.67 22 29.33 18 24 
3 8 14.67 7 9.33 18 24 
4 11 10.67 5 6.67 2 2.67 
Others 21 28 18 24 21 28 

Total 75 100 75 100 75 100 
 

 

and correlation coefficient (R). The optimal model 
should achieve the lowest RMSE and the highest R [46]. 
The RMSE was calculated using Eq. (2), where, n is the 
number of samples. The best hidden neuron was selected 
based on the lowest root mean square error of prediction.  

   

RMSE=√
Σ(SSCpredicted -SSCactual )

2

n
               (2) 

 
Three parameters that affect the near infrared diffuse 

reflected signals were studied i.e. distribution of light 
intensity on different parts, relationship between the light 
intensity and soluble solids content (SSC), and the effect 
of measurement position. The distribution of light 
intensity was analyzed through boxplot analysis. 
Subsequently, the relationship between the light intensity 
and SSC was investigated using a scatter plot. The effects 
of measurement positions were investigated by 
developing three calibration models for different 
measurement positions, respectively. 

 

3. Results and Discussion 
 

3.1. White and Dark Calibration 
 

Table 1 shows the acquired NIR light intensity 
values of white and dark calibrations and their calculated 
diffuse reflectance for five different wavelengths. The 
calculated diffuse reflectance revealed that the NIR light 
intensity of each wavelength was maximized without 
saturation i.e. more than 1024 for 10-bit analog-to-digital 
conversion. 

 
 
3.2. Soluble Solids Content (SSC) Reference 

 
Table 2 summarizes the descriptive statistics of 

acquired soluble solids content (SSC). The SSC values of 
the top, middle, and bottom parts were normally 
distributed with mean values of 11.76, 13.25, and 
14.23 °Brix and standard deviations of 2.09, 1.93, and 
1.94 °Brix, respectively. The ranges of SSC for the three 
different parts i.e. top, middle, and bottom were 6.4-16.1, 
7.3-16.9, and 7.8-19.9 °Brix, respectively. The results 
indicate that the acquired SSC covered a range from 6.4 
to 19.9 °Brix. This range is considered sufficient in 
developing a good predictive model [27]. Next, the mean 
value of SSC shows that the top part of the pineapples 

has the lowest SSC while the bottom part has the highest 
SSC. This could be due to the ripening process that 
begins from the bottom to the top parts of pineapples. 
The descriptive statistics of the measured SSC is in-line 
with the distribution of internal quality of pineapples 
study that reported by [47].  

 
3.3. Overview of NIR Data and Pattern Recognition 

 
Table 3 indicates the descriptive statistics of the 16 

patterns of the acquired NIR light. Each part has 75 NIR 
samples. The result indicates that the top four identical 
patterns had occupied around 70% of the acquired NIR 
light in the top, middle, and bottom parts, respectively. 
For instance, the number of samples that involved in the 
first four ranking patterns contribute 76% for the middle 
part; whereas that contributes 72% in the top and 
bottom parts. This implies that the acquired data have 
the higher consistency on the middle part compared with 
the top and the bottom parts. This might be due to less 
geometrical effects on the middle part of pineapples that 
have relatively flat surface compared with the top and 
bottom parts.   

 Each wavelength was compared with the following 
wavelength in a sequence from 780nm to 940nm to 
determine its particular pattern. After pre-processed the 
raw diffuse reflectance data from three different parts i.e. 
the top, middle, and bottom of pineapples, and 
compared the acquired NIR light intensity difference 
among the five different wavelengths, 16 patterns were 
observed. Fig. 2 illustrates the top four ranking patterns 
that were obtained. For instance, pattern 1 (dot line) was 
defined where the light intensity of 780nm is lower than 
851nm and then 851nm lower than 870nm. 

 
 

 

Table 1. The calibration values of the five wavelengths 
for white and dark calibrations. 
 

Wavelength 
(nm) 

White 
Calibration 
(a.u.) 

Dark 
Calibration 
(a.u.) 

Diffuse 
Reflectance 
(%) 

780 1001 19 100 

851 1000 33 100 

870 1001 28 100 

910 999 41 100 

940 1001 27 100 
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3.4. Investigated Parameters 

 
3.4.1. Reflected NIR Intensity in Different Parts  

 
Fig. 3 illustrates the boxplot of five near infrared 

(NIR) wavelengths light intensity values on the three 
different parts of pineapples (i.e. top, middle, and 
bottom). This technique (boxplot) can identify potential 
outliers on each wavelength with dependent y-variable 
(i.e. diffuse reflectance) which fall outside the 99.9% 

coverage of a normally distributed data [5]. Five 
independent wavelengths under different parts reveal 
insignificant interquartile range (length of the box) and 
also whisker (spread from two ends of box until its reach 
sample maximum and minimum value). This 
phenomenon reflects the irregularly soluble solids 
content (SSC) distribution on different parts of 
pineapples.  

The whisker helps in distinguishing the outlier data 
from the normal distributed dataset. For instance, 
wavelength 780nm in the boxplot of top and middle part 
does not discover any outlier data (i.e. red plus symbol), 
whereas there were five outlier data at the bottom part. 
In total, 46 outliers were recorded from the three 
different parts, i.e. top: 13, middle: 12, bottom: 21. 
Higher number of outlier data in the top and bottom 
parts might be caused by the concave surface of 
pineapples which will alter the ways that NIR light was 
reflected from the sample tissues [26]. Besides, the 
number of outlier data suggests that the consistency of 
the middle part was the highest because it had the lowest 
number of outlier data. This is in-line with the first four 
patterns that discussed in Section 3.3, i.e. the acquired 
NIR light from the middle part of pineapples had the 
highest consistency. 

 
 
3.4.2. The Relationship between the Light Intensity and 

Soluble Solids Content 
 

Fig. 4 illustrates 15 scatter plots of soluble solids 
content (SSC) versus the calibrated NIR diffuse 
reflectance on different parts of pineapples. The result 
indicates that the correlation coefficient (R) values are 
relatively low where the highest and lowest values were 
only 0.2224 for 940nm from the middle part and 0.0063 
for 910nm from the top part, respectively. R values of 
940nm and 910nm from middle part gave higher values 
than that from other parts. This might be due to higher 
consistency of the acquired NIR from the middle.  

 
 

Fig. 2. The top four ranking patterns: Dot line represents 
Pattern 1, Dash line represents Pattern 2, Dot-dash line 
represents Pattern 3, and Solid line represents Pattern 4. 
 
 
 
 

 

 

 

 
Fig. 3. Boxplot: (a) Top, (b) Middle, (c) Bottom (total 
potential outliers: top: 13, middle: 12, bottom: 21). 
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Fig 4. The correlation between SSC and diffuse reflectance of each wavelength: (a), (b), and (c) are the top, middle, 
and bottom for 780nm; (d), (e), (f) are that for 851nm; (g), (h), (i) are that for 870nm; (j), (k), (l) are that for 910nm; 
and (m), (n), (o) are that for 940nm. 

 
3.4.3. Effect of Pre-Processing 

 
Nine artificial neural network (ANN) models i.e. top, 

middle, and bottom were trained with and without pre-
processing methods. The prediction performance of 
different independent ANN models was validated using 
respective testing data. For instance, the top ANN model 

was trained using 70% of the data that acquired from the 
top part, and then evaluated using the rest 30% of the 
data. The results of training and testing in terms of root 
mean square error of calibration (RMSEC), root mean 
square error of prediction (RMSEP), correlation 
coefficient of calibration/training (Rc), and correlation 

(a) R = -0.1612 (b) R = 0.0529 

(d) R = -0.1814 

(g) R = 0.0173 

(j) R = 0.0063 

(m) R = -0.0980 

(c) R = 0.1063 

(e) R = 0.0055 

(k) R = 0.2128 

(n) R = 0.2225 

(h) R = 0.1123 

(f) R = -0.0693 

(i) R = 0.0640 

(l) R = 0.1025 

(o) R = 0.0911 
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coefficient of prediction/testing (Rp) are tabulated in 
Table 4.  

Table 4 shows that the performance of ANN with 
the SNV pre-processing method achieved better 
performance for the top and middle parts, followed by 
that without pre-processing and that with normalization. 
The performance of ANN without pre-processing was 
better than the normalization might be due to the pre-
processing technique removed interested signals, thus, 
degraded the performance of ANN. Meanwhile, the 
performance of bottom ANN model contrasts with top 
and middle model where the normalization achieved best 
performance, followed by that without pre-processing 
and that with the SNV. However, the overall calibration 
and prediction performance of the bottom model was 
inferior to the top and middle models. 
  
3.4.4. Prediction Performance of ANN Model  

 
Fig. 5 illustrates the relationship between the 

predicted SSC and measured SSC for the training and 

testing by three calibrated models with SNV i.e. top, 
middle, and bottom, respectively. The RMSEC and Rc of 
three different measurement positions for SNV model i.e. 
top, middle, and bottom are 1.4921 °Brix, 0.7285; 
1.0998 °Brix, 0.8394; and 1.8419 °Brix, 0.4799 
respectively. The middle part revealed the best training 
performance with lowest RMSEC and highest Rc. The 
similar geometrical effect of the concave surface on the 
top and bottom parts of pineapples may the reason that 
led to an unsatisfied training performance. This 
observation is in-lined with the previous study [26] where 
the training performance is similar at the concave surface 
of calyx and stem end of the apples. The non-uniform 
surface of pineapples limits the penetration of NIR light 
to obtain sufficient absorbance. For samples liked durian, 
this problem can be minimised by destructively removing 
some of the peel to provide a flat area for scanning [50]. 
Since the surface of pineapples sticking with its flesh, this 
approach is unsuitable to be applied to improve the 
scanning method.  

 

Next, the prediction accuracy of the calibrated 
models was evaluated based on RMSEP and Rp. The 
RMSEP and Rp for three SNV calibrated models i.e. top, 
middle, and bottom were 1.4866 °Brix; 0.5509, 
1.2104 °Brix; 0.7301, and 1.3412 °Brix; 0.3139 
respectively. In previous study [51], non-invasive 
prediction of soluble solids content (SSC) of pineapples 
using wavelength ranged from 668 to 968nm achieved 
RMSEP between 0.82 to 1.01 °Brix. The RMSEP values 
in this study is relatively high. This may be caused by the 
lack of wavelength range covered and subsequently lost 
the small portion of information. This is in-line with 
previous study that used a simplified LED design with 
four NIR wavelengths from 630 to 890nm in rapid 
ripeness evaluation of white grape [37].   

Fig. 5 illustrates that the best prediction was achieved 
by the ANN model for the middle, followed by the top, 
and the bottom parts. The best number of hidden 
neurons in the middle model was five which is same with 

the previous research [49] where ANN with five hidden 
neurons gave 68.89% in correctly classification of 
internal quality of pineapples. Next, the optimum model 
was developed using the acquired NIR data on the 
middle/equator part of pineapples. This selection was 
based on the prediction accuracy that illustrated in Fig. 5.  

Next, previous study reported the similar trend in 
investigating the effect of measurement positions on 
apples where the equator model gave the best 
performance with RMSEP = 0.447°Brix and Rp= 0.970 
[27]. Similar researches that acquired NIR data from the 
equator part performed well in prediction model e.g. 
tomato (r2= 0.9718, RMSEP = 0.1707) [23], and pear 
(r2= 0.83, RMSEP = 0.57) [24]. Even though the 
prediction performance of this present study appears to 
be low with RMSEP = 1.2104 °Brix; Rp = 0.7301, this 
accuracy is considered comparable with that reported in 
previous study in SSC prediction of loquats i.e. RMSEP= 
1.180, Rp = 0.717 [52].  

 
 

 

Table 4. Calibration and prediction performance of ANN for three parts i.e. calibrated diffuse reflectance without 
pre-processing (no applied), that with normalization, and that with standard normal variate (SNV) 
 

Pineapple 
parts 

Different Pre-
processing 
method 

Hidden 
Neurons 

Calibration Prediction 

 RMSEC      Rc RMSEP Rp 

Top No applied  2 1.8162 0.5520 1.7012 0.5206 

 Normalization 2 1.9221 0.4704 1.6451 0.3343 

 SNV 3 1.4921 0.7285 1.4866 0.5509 

Middle No applied 2 1.7453 0.5062 1.3719 0.5285 

 Normalization 2 1.7096 0.5351 1.4792 0.4573 

 SNV 5 1.0998 0.8394 1.2104 0.7301 

Bottom No applied 1 2.0258 0.2627 1.3333 0.3932 

 Normalization 1 2.0351 0.2458 1.2439 0.4866 

 SNV 3 1.8419 0.4799 1.3412 0.3139 
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Fig 5. Correlation plot of SSC prediction with SNV calibrated model: (a) Rc for the top, (b) Rp for the top; (c) Rc for 
the middle, (d) Rp for the middle; (e) Rc for the bottom, (f) Rp for the bottom parts of pineapple. 
 

(a) (b) 

(c) (d) 

(e) (f) 
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4. Conclusion and Recommendation 
 
Three parameters that affect the near infrared diffuse 

reflected signal in non-destructive soluble solids content 
(SSC) prediction for intact pineapples were studied and 
evaluated using artificial neural network (ANN) i.e. effect 
of light intensity of light emitting diode (LED), the 
relationship between SSC and near infrared light intensity, 
and measurement positions. Based on the boxplot 
analysis, the distribution light intensity of different 
wavelengths on different parts of pineapples showed that 
the top and bottom parts of pineapples had higher 
number of outliers than the middle part. This implied 
that the effects of the concave surface of pineapples 
which affects the consistency of the light entering and 
reflecting from the sample tissues. Next, the scatter plot 
of the middle part of pineapples in investigating the 
relationship between light intensity and SSC showed that 
the near infrared light with wavelengths of 870, 910, and 
940nm provided higher consistency results than that at 
the top and bottom parts. Furthermore, the relationship 
between the measurement positions and prediction 
accuracy was established using ANN models with and 
without preprocessing of normalization and standard 
normal variate (SNV). Results indicate that the calibrated 
model with SNV on the middle part of pineapples gave 
the best prediction performance i.e. RMSEP = 
1.2104 °Brix; Rp = 0.7301. These suggest that the best 
SSC prediction performance can be obtained by avoiding 
the prediction on the top and bottom parts of pineapples. 
Future research should study alternatives to minimize the 
scatter effects of NIR spectrum, and different types of 
machine learning algorithms that may potentially 
improve the prediction accuracy of the NIRS. 
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