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Abstract. In this paper an intelligent approach is introduced to study switching 
overvoltages during transmission lines energization. In most countries, the main step in 

the process of power system restoration, following a complete/partial ‎blackout, is 

energization of primary restorative ‎transmission lines. An artificial neural network (ANN) 

has been used to evaluate the overvoltages due to transmission lines energization. ‎ Three 
learning algorithms, delta-bar-delta (DBD), extended delta-bar-delta (EDBD) and directed 
random search (DRS), were used to train the ANNs. Proposed ANN is trained with 
equivalent circuit parameters of the network as input parameters; therefore developed 
ANNs have proper generalization capability. The simulated results for 39-bus New 

England test system, ‎show that the proposed technique can estimate the peak values 

and ‎duration of switching overvoltages with acceptable accuracy and EDBD algorithm 
presents best performance. 
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1. Introduction 
 
Switching overvoltage is a primary importance in insulation co-ordination for extra high voltage (EHV) 
lines. The objective of simulating switching overvoltage is to help for a proper insulation co-ordination and 
would lead to minimize damage and interruption to service as a consequence of steady state, dynamic and 
transient overvoltage [1-5]. 

The magnitude and shape of the switching overvoltages vary with the system parameters and network 
configuration. Even with the same system parameters and network configuration, the switching 
overvoltages are highly dependent on the characteristics of the circuit breaker operation and the point-on-
wave where the switching operation takes place [6-9]. 

In this paper power system blockset (PSB), a MATLAB/Simulink-based simulation tool [10-11] is used 
for computation of overvoltages. This paper presents the artificial neural network (ANN) application for 
estimation of peak and duration overvoltages under switching transients during transmission lines 
energization. A tool such as proposed in this paper that can give the maximum switching overvoltage and 
its duration will be helpful to the operator. It can be used as training tool for the operators. The proposed 
ANN is expected to learn many scenarios of operation to give the maximum peak overvoltage and it's 
duration in a shortest computational time which is the requirement during online operation of power 
systems. 

In this paper we have considered the most important aspects, which influence the transient 
overvoltages such as voltage at sending end of transmission line before switching, equivalent resistance, 
equivalent inductance, equivalent capacitance, switching angle, line length, line capacitance, and shunt 
reactor capacity. This information will help the operator to select the proper sequence of transmission lines 
to be energized safely with transients appearing safe within the limits. Since ANN is trained with equivalent 
circuit parameters, thus it's applicable to every studied system. In fact, proposed ANN is trained just once 
with a simple circuit that includes equivalent circuit parameters. Therefore, developed ANN can estimate 
overvoltage peak and duration for every studied system. Results of the studies are presented for 39-bus 
New England test system to illustrate the proposed approach. 
 

2. Study System Modeling 
 
In this paper the simulations are carried out employing PSB [10]. The simulation tool has been developed 
using state variable approach and runs in the MATLAB/Simulink environment. This program has been 
compared with other popular simulation packages (EMTP and Pspice) in [11]. The user friendly graphical 
interfaces of PSB enable faster development for power system transient analysis. Transmission lines are 
described by the distributed line model. This model is accurate enough for frequency dependent parameters, 
because the positive sequence resistance and inductance are fairly constant up to approximately 1 KHz [12] 
which cover the frequency range of harmonic overvoltages phenomena. In [13] generators have been 
modelled by generalized Park’s model that both electrical and mechanical part are thoroughly modelled, but 
it has been shown that a simple static generator model containing an ideal voltage source behind the sub-
transient inductance in series with the armature winding resistance can be as accurate as the Park model. 
Thus in this work, generators are represented by the static generator model. Phases of voltage sources are 
determined by the load flow results. All of the loads and shunt devices, such as capacitors and reactors, are 
modelled as constant impedances. 
 

3. Switching Overvoltages during Restoration 
 
One of the major concerns in power system restoration is the occurrence of overvoltages as a result of 
switching procedures. These can be classified as transient overvoltages, sustained overvoltages, harmonic 
resonance overvoltages, and overvoltages resulting from ferro-resonance. Steady-state overvoltages occur at 
the receiving end of lightly loaded transmission lines as a consequence of line-charging currents (reactive 
power balance). Excessive sustained overvoltages may lead to damage of transformers and other power 
system equipment. Transient overvoltages are a consequence of switching operations on long transmission 
lines, or the switching of capacitive devices, and may result in arrester failures. Ferro-resonance is a 
nonharmonic resonance characterized by overvoltages whose waveforms are highly distorted and can cause 
catastrophic equipment damages [14-15]. 
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Fig. 1. Study system for transmission line energization. G: generator, Reqv: equivalent resistance, Leqv: 
equivalent inductance, Ceqv: equivalent capacitance. 
 

 
 
Fig. 2. Harmonic overvoltage at bus 3 (receiving end) after switching of transmission line. 
 

The sample system considered for explanation of the proposed methodology is a 400 kV EHV 
network shown in Fig. 1. In the system studies 400 kV line-to-line is considered as a base voltage and 100 
MVA is adopted as a base power. Fig. 2 shows the harmonic overvoltages at bus 3 when transmission line 
is energized. 

In practical system a number of factors affect the overvoltages factors due to energization or reclosing. 
In this paper following parameters is considered as ANN inputs: 

 Voltage at sending end of transmission line before switching 

 Equivalent resistance of the network 

 Equivalent inductance of the network 

 Equivalent capacitance of the network 

 Closing time of the circuit breaker poles 

 Line length 

 Line capacitance 

 Shunt reactor capacity 
 

Fig. 3 shows the effect of source voltage on overvoltage at different equivalent inductance. Fig. 4 
shows the effect of line length on overvoltages at different line capacitance. Also, Fig. 5 shows the effect of 
switching angle on overvoltage at different equivalent capacitance, and Fig. 6 shows the effect of shunt 
reactor capacity on overvoltage at different equivalent resistance. 

As discussed above for an existing system the main factors which affect the peak and duration values 
of switching overvoltage are voltage at sending end of transmission line before switching, equivalent 
resistance, equivalent inductance, equivalent capacitance, switching angle, line length, line capacitance, and 
shunt reactor capacity. Here it should be mentioned that a single parameter often cannot be regarded 
independently from the other important influencing factors. The magnitude and duration of the 
overvoltages normally does not depend directly on any single isolated parameter and a variation of one 
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parameter can often alter the influence of another parameter, in other words there exists an interaction 
between the various system and breaker parameters. This forbids the derivation of precise generalized rule 
of simple formulae applicable to all cases [16]. So an ANN can help to estimate the peak and duration 
values of switching overvoltages generated during transmission line energization. An ANN is programmed 
by presenting it with training set of input/output patterns from which it then learns the relationship 
between the inputs and outputs. In next section an ANN-based approach is described which can give an 
acceptable solution of switching transients by the help of which an operator can take a quick decision at the 
time of operation. 
 

 
(a) 

 
(b) 

 

Fig. 3. Overvoltage at bus 3 as source voltage while equivalent resistance 0.005 p.u., equivalent capacitance 
1.8912 p.u., switching angle 36°, line length 250 km, line capacitance 1.2121 F/km, and shunt reactor 
capacity 15 MVAR. Leqv is equivalent inductance. (a) Peak, (b) Duration. 
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(b) 

Fig. 4. Overvoltage at bus 3 as line length while source voltage 1.05 p.u., equivalent resistance 0.005 p.u., 
equivalent inductance 0.02 p.u., equivalent capacitance 1.8912 p.u., switching angle 36°, and shunt reactor 
capacity 15 MVAR. CLine is line capacitance. (a) Peak, (b) Duration. 
 

 
(a) 

 
(b) 

Fig. 5. Overvoltage at bus 3 as switching angle while source voltage 1 p.u., equivalent resistance 0.004 p.u., 
equivalent inductance 0.025 p.u., line length 300 km, line capacitance 1.237e-8 F/km, and shunt reactor 
capacity 20 MVAR. Ceqv is equivalent capacitance. (a) Peak, (b) Duration. 
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(a) 

 
(b) 

Fig. 6. Overvoltage at bus 3 as shunt reactor capacity while source voltage 1 p.u., equivalent inductance 
0.025 p.u., equivalent capacitance 1.2825 p.u., switching angle 90°, line length 300 km, and line capacitance 
1.237e-8 F/km. Reqv is equivalent resistance. (a) Peak, (b) Duration. 
 

4. The Artificial Neural Network 
 
The basic structure of the Artificial Neural Network (ANN) is shown in Fig. 7. The ANN consists of three 
layers namely, the inputs layer, the hidden layer, and the output layer. Training a network consists of 
adjusting weights of the network using a different learning algorithm [17,18]. In this work, ANNs are 
trained with the two supervised and one reinforcement learning algorithms. In this paper, the delta-bar-
delta (DBD), the extended delta-bar-delta (EDBD) and the directed random search (DRS) were used to 
train the multi-layer perceptron (MLP) neural network [19]. To improve the performance of ANNs, tangent 

hyperbolic activation function was used. A learning algorithm gives the change Δwji(k) in the weight of a 
connection between neurons i and j. 
Relative error is calculated by the difference of PSB output and ANN output: 
 

100
PSB

PSBANN
(%)ErRelative 


                       (1) 

 
and absolute error is calculated as: 
 

PSBANNErAbsolute 
           (2) 

 
In the next section, these learning algorithms have been explained briefly. 
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Fig. 7. The structure of artificial neural network. 
 
4.1. Delta-Bar-Delta Algorithm 
 
The DBD algorithm is a heuristic approach to improve the convergence speed of the weights in ANNs [20]. 
The weights are updated by 
 

( 1) ( ) ( ) ( )w k w k k k                                                                (3) 

 

where ( )k  is the learning coefficient and assigned to each connection, ( )k  is the gradient component of 

the weight change. ( )k  is employed to implement the heuristic for incrementing and decrementing the 

learning coefficients for each connection. The weighted average )(k  is formed as 

 

( ) (1 ) ( ) ( 1)k k k                                                          (4) 

 
where θ is the convex weighting factor. The learning coefficient change is given as 
 

   

( 1) ( ) 0

( ) ( ) ( 1) ( ) 0

0 otherwise

k k

k k k k

  

   

  


    



                                              (5) 

 
where   is the constant learning coefficient increment factor, and   is the constant learning coefficient 

decrement factor. 
 
4.2. Extended Delta-Bar-Delta Algorithm 
 
The EDBD algorithm is an extension of the DBD and based on decreasing the training time for ANNs 
[21]. In this algorithm, the changes in weights are calculated from: 
 

( 1) ( ) ( ) ( ) ( )w k k k k w k                                                              (6) 

 
and the weights are then found as 
 

( 1) ( ) ( )w k w k w k                                                                 (7) 
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In Eq. (6), ( )k  and ( )k  are the learning and momentum coefficients, respectively. The learning 

coefficient change is given as 
 

exp( ( ) if ( 1) ( ) 0

( ) ( ) if ( 1) ( ) 0

0 otherwise

a k k k

k k k k





    

    

   


    



                                         (8) 

 

where   is the constant learning coefficient scale factor, exp is the exponential function,   is the constant 

learning coefficient decrement factor, and   is the constant learning coefficient exponential factor. The 

momentum coefficient change is also written as 
 

exp( ( ) if ( 1) ( ) 0

( ) ( ) if ( 1) ( ) 0

0 otherwise

k k k

k k k k

 


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   

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


                                         (9) 

 

where   is the constant momentum coefficient scale factor,   is the constant momentum coefficient 

decrement factor, and   is the constant momentum coefficient exponential factor. In order to take a step 

further to prevent wild jumps and oscillations in the weight space, ceilings are placed on the individual 
connection learning and momentum coefficients [21]. 
 
4.3. Directed Random Search Algorithm 
 
The directed random search is a reinforcement learning approach and used to calculate the weights of 
ANNs. This algorithm also tries to minimize the overall error [22]. Random steps are taken in the weights 
and a directed component is added to the random step to enable an impetus to pursue previously search 
directions. The DRS is based on four procedures as random step, reversal step, directed procedure and self-
tuning variance. In the random step, a random value is added to each weight of network and the error is 
then evaluated for all training sets as 

 

( 1) ( )bestw k w dw k                                                          (10) 

 

where bestw  is the best weight vector previous to iteration k and ( )dw k  is the delta weight vector at iteration 

k. Depending on the error evaluation, the weights are replaced with the new weights. If there is no 
improvement at the error in the random step, some random value is subtracted from the weight value 
during the reversal step, that is 
 

( 1) ( )bestw k w dw k                                                          (11) 

 
In [22], a directed procedure has been added to the random step to further improve with reversals. The new 
weights are obtained from: 
 

( 1) ( ) ( )bestw k w dw k dp k                                                   (12) 

 

where )(kdp  is the directed procedure and based on the history of success or failure of the random steps. 

As mentioned before, the following parameters are used as ANN inputs: 

 Voltage at sending end of transmission line before switching 

 Equivalent resistance of the network 

 Equivalent inductance of the network 

 Equivalent capacitance of the network 
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 Closing time of the circuit breaker poles 

 Line length 

 Line capacitance 

 Shunt reactor capacity  
 
To train ANNs, all experiments have been repeated for different system parameters. After learning, all 

parameters of the trained networks have been frozen and then used in the retrieval mode for testing the 
capabilities of the system on the data not used in learning. The testing data samples have been generated 
through the PSB program by placing the parameter values not used in learning, by applying different 
parameters. A large number of testing data have been used to check the proposed solution in the most 
objective way at practically all possible parameters variation. 

In this study, a number of tests were performed varying with the one or two hidden layers as well as 
varying the number of neurons in each hidden layer for every algorithm. Specification of developed ANNs 
is presented in Table 1. These values (number of hidden layers and units) are optimum case for every 
algorithm from both the accuracy and training speed point of view and present best evaluation of 
transmission line overvoltages.  
 
Table 1. Specification of developed ANNs 

ANN model 
Number of hidden 

layers 
Number of neurons in each 

hidden layer 
Training duration 

[epochs] 

Delta-bar-delta 2 10 143 
Extended delta-bar-
delta 

2 8 56 

Directed random 
search 

2 7 47 

 

5. Case Study 
 
In this section, the proposed algorithm is demonstrated for two case studies that are a portion of 39-bus 
New England test system, of which its parameters are listed in [23]. 

In the proposed method, first, studied system must be converted to equivalent circuit of Fig. 1, i.e., 
values of voltage at sending end of transmission line before switching, equivalent resistance, equivalent 
inductance, and equivalent capacitance are calculated by using equivalent circuit theory. These values are 
used in trained artificial neural network to estimate overvoltages peak and duration. 
 
5.1. Case 1 
 
Fig. 8 shows a one-line diagram of a portion of 39-bus New England test system which is in restorative 
state. In the next step of the restoration, line 5_6 must be energized. First, equivalent circuit of this system, 
seen behind bus 5, is determined and values of voltage at sending end of transmission line before switching, 
equivalent resistance, equivalent inductance, and equivalent capacitance are calculated. In other words, this 
system is converted to equivalent system of Fig. 1. Values of equivalent resistance, equivalent inductance 
and equivalent capacitance are 0.006408 p.u., 0.02375, and 1.4516 p.u., respectively. For testing trained 
ANN, values of voltage at sending bus of transmission line before switching, switching angle, line length, 
and shunt reactor capacity are varied and in each state, overvoltage peak values are calculated from trained 
ANN and actual system (no equivalent). Table 2 contains the some sample result of test data of case 1. 
 
5.2. Case 2 
 
As another example, the system in Fig. 9 is examined that is another portion of 39-bus New England test 
system. In the next step of the restoration, line 26_29 must be restarted. As mentioned before, first this 
system is converted to equivalent circuit of Fig. 3. In other words, equivalent circuit parameters seen from 
bus 26 are calculated. In this case, Values of equivalent resistance, equivalent inductance and equivalent 
capacitance are 0.00792 p.u., 0.0247, and 1.1594 p.u., respectively. For testing developed ANN, various 
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cases of transmission line energization are taken into account and corresponding peak and duration 
overvoltages are computed from PSB program and trained ANN. Summary of few result are presented in 
Table 3. It can be seen from the results that the developed ANNs are able to estimate overvoltage peak and 
duration with good accuracy. 
 

 
 
Fig. 8. Studied system for case 1. 
 
Table 2. Case 1 some sample testing data and output. 
 

Delta-bar-delta algorithm: 

V S.A. L.L. S.R. VPSB VDBD errorV TPSB TDBD errorT 

0.9068 75 410 26 2.2194 2.1800 1.7737 0.2509 0.2585 3.0336 
0.9347 75 262 26 2.0927 2.1575 3.0945 0.2153 0.2190 1.7003 
0.9558 15 175 40 1.9835 2.0262 2.1545 0.1864 0.1805 3.1616 
0.9558 90 175 7 2.6173 2.6131 0.1624 0.4311 0.4308 0.0711 
1.0048 30 315 35 2.5441 2.4593 3.3317 0.3697 0.3615 2.2288 
1.0057 14 227 76 2.3428 2.3567 0.5916 0.2718 0.2628 3.3042 
1.0538 25 160 16 2.5892 2.5143 2.8933 0.4276 0.4282 0.1427 
1.0738 81 344 55 2.4367 2.3846 2.1398 0.3924 0.3963 0.9999 

Extended delta-bar-delta algorithm: 

V S.A. L.L. S.R. VPSB VEDBD errorV TPSB TEDBD errorT 

0.9068 75 410 26 2.2194 2.2852 2.9655 0.2509 0.2424 3.4002 
0.9347 75 262 26 2.0927 2.1011 0.3994 0.2153 0.2166 0.5990 
0.9558 15 175 40 1.9835 1.9384 2.2723 0.1864 0.1855 0.4759 
0.9558 90 175 7 2.6173 2.6068 0.4019 0.4311 0.4425 2.6432 
1.0048 30 315 35 2.5441 2.5019 1.6569 0.3697 0.3738 1.0963 
1.0057 14 227 76 2.3428 2.3988 2.3911 0.2718 0.2762 1.6214 
1.0538 25 160 16 2.5892 2.6013 0.4665 0.4276 0.4225 1.1880 
1.0738 81 344 55 2.4367 2.4763 1.6243 0.3924 0.3925 0.0337 

Directed random search algorithm: 

V S.A. L.L. S.R. VPSB VDRS errorV TPSB TDRS errorT 

0.9068 75 410 26 2.2194 2.1747 2.0131 0.2509 0.2430 3.1558 
0.9347 75 262 26 2.0927 2.1226 1.4283 0.2153 0.2177 1.1349 
0.9558 15 175 40 1.9835 1.9971 0.6850 0.1864 0.1827 2.0045 
0.9558 90 175 7 2.6173 2.5704 1.7926 0.4311 0.4339 0.6477 
1.0048 30 315 35 2.5441 2.6076 2.4967 0.3697 0.3602 2.5827 
1.0057 14 227 76 2.3428 2.4139 3.0358 0.2718 0.2707 0.3911 
1.0538 25 160 16 2.5892 2.6564 2.5963 0.4276 0.4219 1.3431 
1.0738 81 344 55 2.4367 2.3519 3.4819 0.3924 0.4042 3.0183 

 
V = voltage at sending end of transmission line before switching [p.u.], S.A. = switching angle [deg.], L.L. = 
line length [km], S.R. = shunt reactor capacity [MVAR], VPSB = overvoltage peak calculated by PSB [p.u.], 
VDBD = overvoltage peak calculated by DBD [p.u.], VEDBD = overvoltage peak calculated by EDBD [p.u.], 
VDRS = overvoltage peak calculated by DRS [p.u.], TPSB = overvoltage duration calculated by PSB [s], TDBD 
= overvoltage duration calculated by DBD [s], TEDBD = overvoltage duration calculated by EDBD [s], TDRS 
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= overvoltage duration calculated by DRS [s], errorV = voltage error [%], and errorT = duration time error 
[%]. 
 

 
 
Fig. 9. Studied system for case 2. 
 
Table 3. Case 2 some sample testing data and output. 
 

Delta-bar-delta algorithm: 

V S.A. L.L. S.R. VPSB VDBD errorV TPSB TDBD errorT 

0.9491 30 375 40 2.3508 2.4213 2.9998 0.3652 0.3548 2.8605 
0.9127 30 240 40 2.2769 2.2116 2.8678 0.3107 0.3133 0.8212 
0.9973 60 240 55 2.3016 2.2818 0.8599 0.3496 0.3424 2.0560 
0.9754 75 195 12 2.3882 2.3132 3.1416 0.4073 0.3941 3.2346 
1.0719 15 315 23 2.4195 2.4707 2.1144 0.4217 0.4266 1.1552 
1.0592 5 282 45 2.3725 2.3841 0.4891 0.3846 0.3818 0.7194 
1.0946 45 137 63 2.3596 2.3463 0.5646 0.3378 0.3335 1.2757 
1.1123 53 346 10 2.8537 2.9419 3.0910 0.5449 0.5635 3.4150 

Extended delta-bar-delta algorithm: 

V S.A. L.L. S.R. VPSB VEDBD errorV TPSB TEDBD errorT 

0.9491 30 375 40 2.3508 2.4313 3.4250 0.3652 0.3667 0.4008 
0.9127 30 240 40 2.2769 2.2290 2.1046 0.3107 0.3142 1.1171 
0.9973 60 240 55 2.3016 2.2725 1.2663 0.3496 0.3572 2.1765 
0.9754 75 195 12 2.3882 2.3689 0.8099 0.4073 0.4201 3.1309 
1.0719 15 315 23 2.4195 2.4576 1.5741 0.4217 0.4359 3.3726 
1.0592 5 282 45 2.3725 2.4259 2.2509 0.3846 0.3843 0.0702 
1.0946 45 137 63 2.3596 2.3799 0.8583 0.3378 0.3391 0.3873 
1.1123 53 346 10 2.8537 2.8070 1.6380 0.5449 0.5526 1.4106 

Directed random search algorithm: 

V S.A. L.L. S.R. VPSB VDRS errorV TPSB TDRS errorT 

0.9491 30 375 40 2.3508 2.4066 2.3734 0.3652 0.3568 2.3092 
0.9127 30 240 40 2.2769 2.2364 1.7807 0.3107 0.3049 1.8815 
0.9973 60 240 55 2.3016 2.3239 0.9690 0.3496 0.3608 3.2173 
0.9754 75 195 12 2.3882 2.4366 2.0259 0.4073 0.3962 2.7318 
1.0719 15 315 23 2.4195 2.4892 2.8799 0.4217 0.4169 1.1435 
1.0592 5 282 45 2.3725 2.4507 3.2951 0.3846 0.3747 2.5856 
1.0946 45 137 63 2.3596 2.3229 1.5551 0.3378 0.3430 1.5321 
1.1123 53 346 10 2.8537 2.8114 1.4813 0.5449 0.5336 2.0713 

 
V = voltage at sending end of transmission line before switching [p.u.], S.A. = switching angle [deg.], L.L. = 
line length [km], S.R. = shunt reactor capacity [MVAR], VPSB = overvoltage peak calculated by PSB [p.u.], 
VDBD = overvoltage peak calculated by DBD [p.u.], VEDBD = overvoltage peak calculated by EDBD [p.u.], 
VDRS = overvoltage peak calculated by DRS [p.u.], TPSB = overvoltage duration calculated by PSB [s], TDBD 
= overvoltage duration calculated by DBD [s], TEDBD = overvoltage duration calculated by EDBD [s], TDRS 
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= overvoltage duration calculated by DRS [s], errorV = voltage error [%], and errorT = duration time error 
[%]. 
 

6. Discussion 
 
As seen in Tables 2 and 3, all trained ANNs based on DBD, EDBD, and DRS algorithms can estimate 
overvoltages peak and duration with proper accuracy. Also, the author in [24] evaluated “single-phase” 
transmission lines overvoltages using radial basis function (RBF) neural network. Because of “three-phase” 
transmission lines are considered in this paper, evaluation of “three-phase” transmission lines using RBF 
neural network is presented in Table 4 for comparison with developed ANNs. Optimum structure of RBF 
for this study involves two hidden layers and 10 hidden units in each hidden layer. Table 5 presents a 
comparison between DBD, EDBD, DRS algorithms and RBF structure based on average of relative and 
absolute errors. Based on Table 5, it can be concluded that EDBD algorithm has better performance 
(smaller relative and absolute errors in both case studies) and is proper for evaluating of transmission line 
overvoltages in power system studies. 
 

7. Conclusion 
 
This paper presents an ANN-based method to evaluate transmission lines switching overvoltages during 
power system restoration. The delta-bar-delta, extended delta-bar-delta and directed random search has 
been adopted to train ANN. Since equivalent circuit parameters of the network are employed as ANN 
inputs, developed ANNs are applicable for every studied system. Best performance has been achieved by 
extended delta-bar-delta algorithm. The results from this scheme are close to results from the conventional 
method and helpful in predicting the overvoltage of the other case studies within the range of training set. 
Therefore, the ANN application is recommended as an operator-training tool for estimation of temporary 
overvoltages during power system restoration. 
 
Table 4. Some sample testing data and output for RBF structure. 
 

Case 1: 

V S.A. L.L. S.R. VPSB VRBF errorV TPSB TRBF errorT 

0.9068 75 410 26 2.2194 2.2218 0.1069 0.2509 0.2445 2.5540 
0.9347 75 262 26 2.0927 2.0382 2.6043 0.2153 0.2100 2.4754 
0.9558 15 175 40 1.9835 1.9488 1.7501 0.1864 0.1915 2.7348 
0.9558 90 175 7 2.6173 2.6613 1.6797 0.4311 0.4268 1.0079 
1.0048 30 315 35 2.5441 2.6247 3.1665 0.3697 0.3607 2.4239 
1.0057 14 227 76 2.3428 2.3928 2.1345 0.2718 0.2771 1.9483 
1.0538 25 160 16 2.5892 2.6452 2.1618 0.4276 0.4335 1.3878 
1.0738 81 344 55 2.4367 2.5100 3.0080 0.3924 0.3932 0.2156 

Case 2: 

V S.A. L.L. S.R. VPSB VRBF errorV TPSB TRBF errorT 

0.9491 30 375 40 2.3508 2.2775 3.1167 0.3652 0.3566 2.3492 
0.9127 30 240 40 2.2769 2.2132 2.7964 0.3107 0.3029 2.5032 
0.9973 60 240 55 2.3016 2.3608 2.5702 0.3496 0.3417 2.2472 
0.9754 75 195 12 2.3882 2.3839 0.1797 0.4073 0.4013 1.4667 
1.0719 15 315 23 2.4195 2.4257 0.2551 0.4217 0.4159 1.3677 
1.0592 5 282 45 2.3725 2.3651 0.3098 0.3846 0.3736 2.8565 
1.0946 45 137 63 2.3596 2.4255 2.7942 0.3378 0.3416 1.1110 
1.1123 53 346 10 2.8537 2.9479 3.3005 0.5449 0.5604 2.8509 

 
V = voltage at sending end of transmission line before switching [p.u.], S.A. = switching angle [deg.], L.L. = 
line length [km], S.R. = shunt reactor capacity [MVAR], VPSB = overvoltage peak calculated by PSB [p.u.], 
VRBF = overvoltage peak calculated by RBF [p.u.], TPSB = overvoltage duration calculated by PSB [s], TRBF 
= overvoltage duration calculated by RBF [s], errorV = voltage error [%], and errorT = duration time error 
[%]. 
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Table 5. Values of relative and absolute errors for developed ANNs. 
 

Case 1: 

ANN model 
Average of 

relative peak 
error [%] 

Average of 
absolute peak 

error [p.u.] 

Average of 
relative duration 
time error [%] 

Average of 
absolute 

duration time 
error [s] 

Delta-bar-delta 2.0178 0.0471 1.8307 0.0049 
Extended delta-bar-
delta 

1.5228 0.0350 1.3831 0.0045 

Directed random search 2.1908 0.0527 1.7765 0.0056 
Radial Basis Function 2.0765 0.0494 1.8435 0.0053 

Case 2: 

ANN model 
Average of 

relative peak 
error [%] 

Average of 
absolute peak 

error [p.u.] 

Average of 
relative duration 
time error [%] 

Average of 
absolute 

duration time 
error [s] 

Delta-bar-delta 2.0159 0.0494 1.9452 0.0080 
Extended delta-bar-
delta 

1.7404 0.0419 1.5121 0.0061 

Directed random search 2.0453 0.0492 2.1777 0.0085 
Radial Basis Function 1.9153 0.0468 2.0940 0.0083 
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