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Abstract. In this study, a non-destructive measuring method, near-Infrared (NIR) technique was used to 
evaluate the quality of sugarcane. Two sugarcane (Saccharum spp.) varieties viz., Lumpang 92-11 and Khon 
Kaen 3 were chosen for the test. The samples were collected for 3 years. The sugar contents were measured 
in terms of °Brix, %Pol, %Fiber, and Commercial Cane Sugar (CCS) values using the NIR technique and 
conventional laboratory testing for comparison. The Partial Least Squares Regression (PLSR) model was 
performed using 400 samples for each variety. The NIR models showed the coefficient of determination (R2) 
of 0.97, 0.90, 086 and 0.82 for °Brix, %Pol, %Fiber and CCS, respectively with the corresponding root mean 
square error of prediction (RMSEP) of 0.246, 0.512, 0.353 and 0.542. The results indicated that the modelling 
using °Brix gave the best estimation with the highest R2 and lowest RMSEP, indicating high accuracy and 
reliability. The modelling with %Pol and %Fiber gave the moderate estimations and that with CCS value gave 
the lowest accuracy. However, all the four modelling predictions were within the acceptable range and could 
thus be used in crops trading instead of the traditional method. It was more reliable, quicker, more 
comfortable and more environmentally friendly than the traditional method as it did not involve the use of 
the chemical. 
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1. Introduction 
 
Sugarcane (Saccharum officinarum) is considered an 

industrial plant because its crop yields food and bioenergy 
products. It is a fast-growing plant whose chief product is 
sugar. About 6% of the world’s total sugarcane production 
comes from Thailand (103 Mt/year in 2016) with the 
corresponding values of approximately 18 million dollars 
per year.  Also, the most popular sugarcane varieties viz., 
Lumpang 92-11 (LK 92-11) and Khon Kaen 3 (KK3) 
originated from Thailand[1]. These two sugarcane 
varieties are suitable for various soil conditions and have 
higher production levels compared to other varieties. It 
has been reported that the LK 92-11 and KK 3 
productions were 35 tons/acre (approximately 5.13 
CCS/acre), while the other varieties produce only 33 
tons/acre (approximately 3.28 CCS/ acre). 

The commercial cane sugar (CCS) value is one of the 
critical parameters used to determine the price of 
sugarcane for trading [2] based on the sugar content 
parameters viz.,  °Brix, %Pol, and %Fiber. Traditionally, 
sugar content is measured in laboratories on sugarcane 
juice samples [3]. Chemical reagents were added to the 
sugarcane juice to clarify the sample before 
measuring °Brix and %Pol.  °Brix indicates the sugar 
content as a percentage of soluble solid in a liquid 
measured by the refraction index of light as it passes 
through the liquid sample [3]. %Pol is the percentage of 
sucrose, determined by the optical activity property 
obtained from polarized light as it passes through the 
sample. %Fiber is obtained from the dry weight of 
sugarcane after the juice is extracted [3]. Furthermore, the 
laboratory methods of °Brix, %Pol and %Fiber are time-
consuming and require chemical reagents [4]. 
However, the use of near-infrared spectroscopy (NIR) 
technique has been growing within the chemometrics 
circle as it is a non-destructive, non-chemical with the 
capability for fast analysis and high accuracy [5-7]. NIR 
provides direct analysis of samples with light scattering at 
a wavelength of 700-2500 nm [8]. However for NIR, the 
measurement of the liquid sample has limitation since the 
liquid sample contains water molecule with broad 
vibration bands at 1000-1300 nm [5]; OH group bonded 
absorbing at 1160 nm, OH group in H-bonded absorbing 
at 1200 nm [9]. The water molecule with two OHs and H-
bonded absorbing can interfere with other OH groups in 
the sample and affects the measurement accuracy [10, 11]. 
The application of NIR technique for °Brix and  %Pol 
measurement in the sugar industry has been extended 
from laboratory measurement to portable type 
measurement [12, 13]. 

Furthermore, compared to the traditional method, 
NIR measurement saves time and chemical usage. 

Moreover, the accuracy of NIR measurement is 
improving from the extensive studies of various factors, 
including many samples, moisture content, and measuring 
temperature [14-17]. However, sugarcane varieties affect 
the measurement accuracy because they contain different 
fiber, juice and sugar contents [18]. To provide excellent 

accuracy and high precision with the NIR measurement, 
the correlations between the NIR range and °Brix 
and %Pol in sugarcane are essential. The chemometric 
algorithms of partial least-squares regression (PLSR) 
method are created to predict ◦Brix and %Pol in sugarcane 
[19]. The NIR measurements of °Brix, %Pol, %Fiber and 
CCS have been reported by Sanseechan et al. (2018). 
However, the influence of sugarcane varieties on the NIR 
measurement has not yet been reported. 

Thus, this work aims to develop the prediction 
models using the NIR technique to evaluate the sugar 
contents viz., °Brix, %Pol, %Fiber, and CCS. Furthermore, 
the prediction model of LK 92-11 and KK 3 are compared. 
The calibration and validation were optimized from the 
400 samples of each variety. It is expected that this work 
could improve the NIR measurement resulting in the 
better alternative method for the estimation of sugar cane 
quality without the use of chemicals. 
 

2. Materials And Methods 
 

2.1.  Preparation of Sugarcane Sample  
 

The procedure in experiment was demonatrated in 
Fig. 1. Two hundred samples of sugarcane LK 92-11 and 
KK 3 each were collected from the Official Cane and 
Sugarcane Board of Thailand and sugarcane growers for 3 
years from 2016-2019. All sugarcane was at the age of 11-
13 months. Topped, root, and leaf of cane stalks were 
eliminated by hand cutting.  The cleaned stalk samples 
were chopped in the length of 50 cm.  The chopped cane 
stalks were crushed by a shatter machine and passed 
through a sieve to obtain sizes between 2-4 mm. The 
shattered sugarcane was ready to sue in the next 
experimen 
 
2.2.  NIR Measurement 

 
The shattered sample was analyzed using an FT-NIR 

spectrometer (MPA, Bruker Optics, Ettinger, Germany). 
Six hundred grams of shattered sugarcane was placed in 
the rotating drum having 244 mm in diameter (see Fig. 1). 
The analysis was conducted in diffuse reflectance mode at 
25 ± 3 ◦C. The spectral was obtained between 3600 and 
12500 cm−1 (800-2777 nm), and the samples were scanned 
32 times at a resolution of 32 cm−1. Before sample 
scanning, as a reference material which is the gold plate 
used was scanned for background. It was assumed that the 
gold material provides 100% reflection. The NIR spectra 
was recorded in term of absorption which was calculated 
by log(1/R), where R was reflectance value of the sample. 
Each sample was scanned in duplicate and the averaged 
spectra was used for data analysis. These data are the 
independent variables. The scanned sample spectra were 
analyzed and recorded in duplicate. OPUS 7.8 was used to 
collect the spectral data, and the data was saved as an 
OPUS file. After the scanning, the shattered sugarcane 
was used to determine °Brix, %Pol, %Fiber, and CCS. 
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Fig. 1. NIR data collecting process. 
 
2.3.  Reference Methods 
 

The sugarcane juice was measured °Brix and %Pol 
following the methods described by the International 
Commission for Uniform Methods of Sugar Analysis 
(ICUMSA). Two hundred grams of shattered cane was 
pressed to extract a juice.  The °Brix was measured by 
using a refractometer (RX 5000 CX, ATAGO, Japan) at 
the °Brix range of 0-50% at 20 ± 3 °C.  For %Pol 
measurement, 50 mL of sugarcane juice was mixed with 8 
mL of 200 g/L aluminium sulfate solution 
(Al2(SO4)3·18H2O), and 5 mL of 2 M sodium hydroxide 
(NaOH) solution in a volumetric flask. The solution was 
then filled with distilled water to 200 mL. The obtained 
solution was agitated and filtered through filter paper (45 
mm in diameter, 11 µm in pore size, and 180 µm in 
thickness). The filtered solution was used to determine the 
degree of optical rotation (OR) using a polarimeter and 
polarization  (POLAX 2L, ATAGO, Japan). %Pol was 
calculated from °Brix and OR based on Engelke’s method 
[3] following Eq. (1): 
 

%Pol =
−6.517+(25.3×OR)−0.0118(OR)2+(2.937×°Brix)−0.207(°Brix)2

100
   (1) 

 
where OR is the optical rotation, and °Brix is the 
concentration of soluble solids in sugarcane juice (%). 
%Fiber (FC%) is determined following Method 4 of BSES 
(2001). The shattered sugarcane was placed into a cotton 
cambric bag and then placed in bathwater at 60 ◦C for 30 
min for sugar extraction. The bag was then washed for 
three cycles in an automatic washing machine and dried at 
100-105◦C for 36 h until a constant weight was obtained. 
The fiber content for each sample was calculated 
following the mathematical method proposed by Watson 
et al. (1999): 
    

%Fiber =
(1002 −100 ×moisture%−97×°Brix)

(100+°Brix)
                    (2) 

 
 

The CCS value was then calculated from %Pol, %Brix 
and %Fiber according to the formula given below: 
 

(CCS )  =
0.9433(%𝑃𝑜𝑙)(100−𝐹𝐶%)

100
−

1

2
(

(0.9660(°𝐵𝑟𝑖𝑥)(100−%Fiber)

100−0.9433(%𝑃𝑜𝑙)
(100−%Fiber)

100

) (3) 

The precision of measured values (°Brix, %Pol, %Fiber 
and CCS) were indicated by using the repeatability (Rep) 
value as the reference data. The Rep value was calculated 
from the standard deviation of the different results of the 
reference methods in duplication. The repeatability was 
used to calculate the maximum coefficient of 

determination (Rmax
2 ) using Eq. (4). 

 

       Rmax
2 =

(SDy
2 −Rep2)

SDy
2     (4) 

 
where SDy is the standard error of reference value. 
 

The rep indicates the precision of the laboratory 

reference methods. The Rmax
2  is the means to the 

maximum possible coefficients of examinations when no 
error from the spectral collection is present [12]. For 

example, if Rmax
2  is higher than 0.90 is defined to 

goodness fitting of reference method [1], mean that the 
reference method is presice. 
 
2.4 Spectral Pre-processing and Model Development 
 

In order to increase the precision of modelling, it is 
imperative that the obtained data needed to be treated 
before modelling [20].  The NIR spectra were thus 
pretreated using constant offset elimination, straight- line 
subtraction, vector normalization, min-max normalization, 
MSC (multiplicative scatter correction) , first derivatives, 
second derivatives, first derivatives + straight line   
subtraction, first derivatives + vector normalization and 
first derivatives + MSC.  The spectral pre-processing was 
used based on the previous study by Ramírez- Morales, 
Rivero [13]. 

The data analysis was conducted to establish a 
correlation between the response matrix composed of the 
reference values (°Brix, %Pol, %Fiber, and CCS) and the 
spectral matrix (reflectance measurements), with the 
number of lines equalled to the number of sugarcane 
samples, and the number of columns equalled to the 
number of wavelengths. The OPUS software (Bruker, 
Germany) was used for partial least squares regression 
(PLSR) calibration and validation. The validation samples 
(test set) were obtained from the same sample set at 50% 
of the total samples. 

PLSR is a multivariate statistical covariance-based 
method used to optimize both the variance and 
correlation with the response variables. Within this 
algorithm, an orthogonal basis of latent variables is 
constructed one by one, so they are positioned along the 
direction of maximal covariance between the response and 
the spectral matrices. Thus, PLSR models find new 
variables, which are the estimates of latent variables or 
their rotations. The new variables are named X-scores and 
are predictors of the responses. Deviations between the 
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measured and predicted responses are also generated and 
named Y-residuals [21]. The final model is given by Eq. (5) 
as follows: 

 
Y=B∙X+F                                (5) 

 
where Y is the matrix of response variables 
(°Brix, %Pol, %Fiber and CCS), X is the matrix of 
predictor variables or scores (°Brix, %Pol, %Fiber and 
CCS), B is the matrix of regression coefficients 
(dimensionless), and F is the matrix of Y-residuals 
(°Brix, %Pol, %Fiber and CCS). 
The prediction models were evaluated by OPUS software 
(Bruker, Germany). Root mean square error of calibration 
(RMSEC), statistical parameters mean bias error (BIAS), 
the ratio of the standard error of prediction to standard 
deviation of reference values (RPD), and coefficient of 
determination (R2) were the performance of NIR model 
calculated from Eq. (6), (7), (8) and (9) , respectively:  
 

  

 RMSEP and RMSEC = √
∑ (yi−ypre)2i

i=1

i
 (6) 

 BIAS =  
∑ (yi−ypre)i

i=1

i
  (7) 

 RPD =  
SD

RMSEP
 (8)  

 R2 =
∑ (yi−ypre)2i

i=1

∑ (yi−ŷi)2i
i=1

 (9) 

where yi is the measured value from the traditional method 
(°Brix, %Pol, %Fiber and CCS), ypre is the predicted value 

from NIR model, ŷi  are the average values measurand 
(°Brix, %Pol, %Fiber, and CCS), and i is the number of 
samples (dimensionless). SD is the means to standard 
deviation of Yi.. 
 

3. Result and Discussion 
 

3.1.  Measured Value 
 

Table 1 shows the rep and  Rmax
2   of  the measured value        

fortwo varieties  including °Brix, %Pol, %Fiber, and CCS.  

It was found that the Rmax
2  of all parameters showed no 

significant difference in both sugarcane varieties. Also, the 

highest Rmax
2  of °Brix and %Pol were obtained at 0.997 

for two sugarcane varieties, whereas the Rmax
2  of CCS 

and %Fiber content was at 0.993 and 0.962, respectively. 

It is important to note that the Rmax
2  of all sugar content 

parameters was above 0.95, which is an indicative factor 
of reliable predictive models [22]. 

 

Table 1. Repeatability of reference method and maximum 
R2 for °Brix, %Pol, %Fiber and CCS. 
 

Parameter variety SD Repeatability  𝐑𝐦𝐚𝐱
𝟐  

°Brix 

KK 1.60 0.08 0.997 

LK 0.83 0.06 0.994 

KK and 
LK 

1.42 0.07 0.997 

%Pol 

KK 1.75 0.08 0.997 

LK 1.13 0.08 0.995 

KK and 
LK 

1.50 0.08 0.997 

%Fiber 

KK 1.15 0.26 0.950 

LK 1.13 0.22 0.962 

KK and 
LK 

1.15 0.24 0.962 

CCS 

KK 1.92 0.16 0.993 

LK 1.16 0.10 0.992 

KK and 
LK 

1.61 0.13 0.993 

 
3.2. Spectral Information and Principal Components 

Analysis (PCA) Analysis 
 

Figure 2 presents the raw NIR spectra of 80 sugarcane 
samples in each variety (KK and LK) in the range of 12500 
to 3600 cm−1. The NIR spectral graph shows the relation 
of the x-axis as the wavenumber in cm−1 and the y-axis is 
the absorbance value, both of which were obtained from 
the log (1/R). The NIR spectral graph of sugarcane variety 
KK is illustrated as a red line in Fig. 2a. The leading bands 
were between 6000 to 7500 cm−1 and 4000 to 5500 cm−1, 
which is an O-H stretching and HOH bending 
combination of polysaccharides at 6940 cm−1 (1449 nm). 
These could be a sucrose molecule [23]. The second band 
shows a significant constituent of sucrose, glucose and 
fructose in sugarcane. The band at 5181 cm−1 (1930 nm) 
demonstrates the stretching of the second overtone of O-
H, which corresponds to polysaccharides [23]. There were 
also prominent bands at 4252 cm−1 and 4019 cm−1 (2352 
and 2488 nm). The band at 4252 cm−1 is assigned to C-H 
stretching in the polysaccharide molecule, and the band at 
4019 cm−1 is a combination of C-H and C-C stretching 
[24]. The NIR spectra of the sugarcane variety LK is 
presented in Fig. 2b. It has similar results to the sugarcane 
variety KK, and no significant difference was noted. This 
is because sugarcane contains the same major sugar 
molecules, resulting in the absorbance value of both 
varieties to be within the same range of 1111 to 18181 
cm−1; however, both sugarcane varieties could have 
different amounts of sugar content in each sample. Similar 
results have been reported by Neto et al. 2017 and Nawi 
et al. 2014 [14, 25] wherein both reported absorption 
bands of sugarcane in the wavelength region of 11111 to 
18181 cm−1, including famous bands near 4000 and 5296 
cm−1, which account for the overtone of CH stretching 
and OH stretching from polysaccharides [24]. Figure 2c 
demonstrated comparison raw spectral of two sugarcane 
varieties. 
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In order to gain a better insight into the influence of 
sugarcane varieties on NIR measurement. The correlate of 
NIR spectra from sugarcane varieties was subjected to 
PCA analysis which is performed using seconderivative 
spectra. Figure 3 shows the performed PCA analysis from 
the second derivative spectra. The spectral pretreatment 
of derivative is used to solve the overlapping of NIR 
spectra. The cluster data was indicated the spectra of 
sugarcane KK and LK as displayed in black dot and red 
dot, respectively.  The total variability was explained by the 
first two principal components (PCs), with PC1 and PC2 
accounting for 50 and 50 % of the variation in data, 
respectively. PCA analysis was showed a distribution of 
sugarcane spectra data. It was found that the scatter plot 
of two sugarcane verities performed as a cluster was in a 
dot line circle. The cluster of data was indicated that 
similar properties of two sugarcane varieties. As the result 
of NIR spectra, it was found that the model may be 
developed using combination spectra of two varieties.  
The non-different NIR spectra from sugarcane verities 
were exhibited advantage on the prediction model; this is 
because of the combination of NIR spectra from two 
sugarcane verities were extended sugarcane parameter 
ranges (°Brix, %Pol, %Fiber and CCS). The wide 
parameter range would be a contribution to a wide range 
of predictive model from NIR measurement. 
 
3.3. The Influence of Sugarcane Varieties on the 

Prediction Model 
 

Table 2 shows the statistical data of the sugarcane KK 
and LK variety. If the reference value range of calibration 
is more extensive than the prediction set, it is considered 
plausible because the sample distribution in the calibration 
set is vital for the accuracy of the prediction model. Also, 
the combination of two sugarcane varieties increases the 
range of reference data, which can help improve the 
prediction model performance since the range of the 
sample distribution is more extensive compared to using 
just one sugarcane variety. The °Brix reference values of 
sugarcane variety KK are distributed to mean values of 
21.34%, standard deviation (SD) of 2.01, and the range 
of °Brix value at ca. 12.77%, while the sugarcane variety 
LK shows the °Brix reference values of 21.52%, standard 
deviation (SD) of 1.55, and the range of °Brix range at 3.45, 
meaning the mean values of °Brix reference from the 
sugarcane KK variety is higher than the sugarcane LK 
variety. With regards to SD, the distribution of °Brix value 
from KK is higher than the distribution of °Brix from LK.  
In order to, it can be seen the combination of two 
sugarcane variety that a standard deviation (SD) is slightly 
increased to about 0.2% by using separate calibration for 
different sugarcane variety. It is possible to improve upon 
prediction models. When comparing the two sugarcane 
varieties, the total distribution of the °Brix reference 
decreased to 24.42%, and the range of the °Brix value 
remained at 12.77. However, the calibration of the two 
sugarcane varieties illustrates that the range of the °Brix 
slightly increased from the LK variety, this can be 

confirmed the dependability of °Brix prediction model in 
the combination of two varieties. 

 

 
 

Fig. 2. NIR raw spectra of 80 samples of sugarcane variety 
KK as a red line (2a), LK(2b) as a blue line and 
comparison spectral of two sugarcane varieties (2c). 

 
The %Pol reference values indicate the quality of 

sucrose in sugarcane. The mean of %Pol reference values 
of two sugarcane varieties are distributed around mean 
values of 17 to 18%, the range of %Pol is ca. 6.10 and 
13.28, and the standard deviation is at 1.36%. For 
calibration, the mean of  %Pol, the range of %Pol, and SD 
from two sugarcane varieties are 13.28%, 6.10%, and 1.54, 
respectively. %Fiber reference values show the percentage 
of fiber composition in sugarcane. %Fiber reference 
values of two sugarcane varieties obtained mean values of 
13.61%, the range of %Fiber was 10.61 to 6.70, and 
standard deviation of 1.11%. The calibration of %Fiber 
showed a significant increase from 6.70 to 8.70 of LK. 

2a

) 

2b

) 

2c

) 
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CCS is the source of payment in the sugarcane 
industry. It is not a direct measure of sucrose content but 
estimates the total sugar (%) with °Brix, %Pol, and %Fiber 
in sugarcane. Besides, CCS of  KK and LK varieties 
distribute reference value around mean values of 13.22, 
range of 11.88, and standard deviations of 1.64. For the 
calibration of two sugarcane varieties, the CCS value 
shows a narrow range; this may be because the CCS value 
is an estimated value from the source data such 
as °Brix, %Pol, and %Fiber. 

The total distribution of °Brix, %Pol, %Fiber and CCS 
reference illustrates that the range of the values is slightly 
higher for the LK variety compared to the KK variety. 
The prediction model will be obtained more reliable if the 
range of data in reference value is more extensive than that 
of the prediction model. Thus, the prediction model of the 
LK variety has higher reliability than that of the KK 
variety. However, the combination of two varieties in the 
prediction model rise the range of reference value, leading 
to improve the dependability of the prediction model. 
 

 
 
Fig. 3. PC1 versus PC2 score plot of 80 NIR analyses of 
sugarcane from two different varieties (Sugarcane variety 
KK( as a black dot) and LK (as a blue dot)). 
 
3.4. Prediction Model of °Brix, %Pol, %Fiber and CCS 
 

Table 3 illustrates the optimized results of the model 
for determination of °Brix, %Pol, %Fiber, and CCS. The 
table was included in the wavenumber range, spectral 
pretreatment methods, number of PLS factor or latent 
variable, coefficient of determination (R2) of both 
calibration and validation, root mean square error of 
calibration (RMSEC) and prediction (RMSEP), and bias 
of effective PLSR models. The wavenumber ranges are 
effective for the determination of values measurement 
since the wavenumber ranges are meant to absorb the 
stretching or vibration of chemical bonding, which is 
measured by the NIR detector [26]. Overall, the 
wavenumber ranges of °Brix, %Pol and CCS were similar 
at 4150 to 4875 and 5415 to 6481 cm-1, while the 
percentage of fiber in sugarcane (%Fiber) showed a 
waverange of 4150 to 8038 cm-1. The difference in the 
wavenumbers indicates the various measured values; this 
may be because the measurements of °Brix and %Pol were 

determined by the sugar content in sugarcane, which is 
related to OH in the sucrose structure. The vibration band 
of OH in sucrose banding is associated with O-H 
stretching and OH the first overtone at a wavenumber of 
4800 and 6274 cm−1 [27]. Nevertheless, the %Fiber 
presents a difference in the wavenumber range. This may 
be because %Fiber is calculated from dried shattered 
sugarcane, which is related to the vibration band of C-H 
of the second overtone, O-H and C-H stretching at wave 
range of 4213, 4367 and 6050 cm−1, respectively [28]. The 
results of determination of cellulose by the NIR has been 
reported by He et al. (2013) [29]. They found that cellulose 
contains an important vibration band with spectral regions 
between 5685 and 4300 cm−1, and is associated with C–H 
stretching and O–H stretching with a wavenumber of 
4300 and 6025 cm−1, respectively [30]. Overall, a pre-
treatment method of the PLSR models 
for °Brix, %Pol, %Fiber, and CCS have several latent 
variables around 6-7. The pre-treatment method 
of °Brix, %Pol and CCS indicates a second derivative, 
while the %Fiber used the spectral pre-treatment of first 
derivative and vector normalization method. R2, RMSEP, 
RPD and bias of all sugar contents were in range of 0.90 -
0.97, 0.24-0.35, 3.41-6.40 and - 7.67×10-6 - 0.01, respectively. 
R2 means that the percentage of the measured value could 
be explained by variance of NIR spectra; however, the 
percentage residuum of R2 was the unexplained variance. 
As a result, the best of PLSR is the prediction of °Brix. 
The optimized PLSR model for ◦Brix shows that R2 of 
0.97. It indicates that 97.3% of °Brix variance could be 
explained by adsorption variance, and 2.70% is the 
unexplained variance, and the root means a square error 
of prediction (RMSEP) of °Brix is 0.24. The lowest 
RMSEP selected the best model due to it shows the 
different values between reference and prediction model. 
Then, the optimal sub wavenumber ranges and spectrum 
pretreatment method were considered to improve the 
calibration. If the model suffers from not being complex 
enough (underfitting), calibration error approximates 
prediction error. The ratio of the standard error of 
prediction to a standard deviation of reference values 
(RPD) is used by Williams et al. 2004 [31], which is used 
to assess the goodness of the NIR calibration. RPD 
of °Brix is 6.40 while the RPD of %Pol, %Fiber and CCS 
are 3.46, 3.41 and 3.75, respectively.  RPD of all sugar 
contents were above 3, which were indicated high 
accuracy prediction model. [32]. Bias constants value 
between prediction and value from the reference method 
is an indicator of the overall accuracy of the calibration 
model for the prediction model. Bias value was obtained 
at -0.011 by the PLSR model of °Brix value.   

The best PLSR model for %Pol was optimized using 
the second derivative with a latent variable number of 7. 
The model showed that R2, RMSEC, RPD, and Bias was 
0.93, 0.33, 3.46, and -0.001, respectively. Furthermore, 
Zornorza et al., (2008) [33] suggested that R2 > 0.90 and 
RPD > 3 (or between 2.5 and 3) corresponds to good and 
excellent prediction accuracy. Thus, it can be supported 
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that this prediction model is high accuracy and reliable 
using for sugar contents measurement.   

The optimization of the PLSR model for %Fiber used 

the first derivative and vector normalization with a seven 

latent variable number. R2, RMSEC, RPD and Bias was 

0.91, 0.29, 3.41, and -7.67×10-6, respectively. All values 

were similar to Hoang et al. .s’ work  (2017)[34], who 

studied the prediction of %Fiber and sugar in sugarcane.  

Furthermore, the best PLSR model of CCS is 

obtained by using the second derivative with a latent 

number of 7. The model showed that R2, RMSEC, RPD 

and bias was 0.92, 0.35, 3.75, and -0.001, respectively. Also, 

PLSR mode of CCS is the lowest values, which can 

account for the fact that the CCS was calculated 

from °Brix, %Pol and %Fiber by the ratio of  RMSEP and 

mean value of prediction set. However, the CCS value was 

at 4.27%. It has been reported by Mevik & Cederkvist 

(2004) that CCS prediction model was suitable for price 

evaluating value with PLSR mode of CCS higher than 3 %.   

[35].  

The comparison between the scatter plot of measured 

values and the predicted value of the calibration set and 

prediction set, regression coefficient plot, and X-loading 

plot is shown in Fig. 4a, b, c, and d. This also shows the 

target line with its slope equal to 1.00. For the regression 

coefficient and X-loading plot, if a high value at various 

wavenumbers exists, it suggests the vibration of a 

molecular bond at that wavenumber (in FS1-FS4 and TS1-

TS4 [36-37]). Also, this has been the primary influence on 

the model prediction. The dependent variable positively 

or negatively changes with the composition of the 

sugarcane, and this relates to the change in vibration 

bonding in the sugarcane composition. These results are 

essential for developing spectrometers for this specific 

application  [38-40]. 

RMSEP is the most efficient measure of uncertainty 

in the NIR predictions as it measures the average 

uncertainty that can be expected when predicting new 

samples (unknown samples). This measurement is valid if 

the new samples are like those used for the calibration; 

otherwise, the prediction error might be much higher.  In 

the present study, the RMSEP of °Brix, %Pol, %Fiber, and 

CCS of two sugarcane varieties were 0.25, 0.35, 0.28, and 

0.33, respectively. When compared to other works, the 

RMSEP in this study was in range (RMSEP<0.3), meaning 

the PLSR model can be applied for the prediction of 

essential parameters such as °Brix, %Pol, %Fiber, and CCS 

in future development models [20]. 

CCS is a payment parameter for sugarcane trading, 

which is calculated from °Brix, %Pol and %Fiber content 

of sugarcane. The precisely accurate CCS prediction 

model is needed for commercial trading because of its 

users to decided price for customers.  

 
Table 2. Statistical data of °Brix, %Pol, %Fiber and CCS 
in model development. 
 

 
In this work, the model was compared the 

determination of CCS from NIR prediction and 

calculation of CCS from NIR prediction values 

(°Brix, %Pol, %Fiber). Table 4 shows RMSEP of the 

determination of CCS from NIR prediction (RMSEPpre) 

and the calculation of CCS from NIR prediction values 

(RMSEPcal). In the present study, RMSEPpre were 

obtained at 0.35, 0.34, and 0.33 for sugarcane KK, LK and 

two varieties (KK and LK), respectively. In the case of the 

RMSEPcal, there were 0.67, 0.72 and 0.61 for sugarcane 

KK, LK and two varieties, respectively.   RMSEPcal was 

higher RMSEP values than that of RMSEPpre. This means 

model from the determination of CCS from NIR 

prediction was more precise than that of the model from 

the calculation of CCS from NIR prediction.  This could 

be that RMSEPcal was obtained by calculation of CCS 

formula while RMSEPpre was used PLSR model for 

optimizing prediction value. This could be supported that 

the determination of CCS from NIR prediction can be 

used for CCS prediction. 

 

3.5.  Comparison of Results with Other Works 
 

Figure 4 shows scattering plots of calibration and 
validation of sugar contents in the sugarcane prediction 
model. It can be seen similarly scattering between 
calibration and validation data from NIR and the reference 

Parameter variety Data set N Max Min Mean Range SD 

°Brix 

KK 

Total 200 25.22 12.45 21.34 12.77 2.01 

Calibration set 100 25.22 12.45 21.97 12.77 1.97 

Validation set 100 25.22 12.56 21.98 12.77 1.98 

LK 

Total 200 23.0 19.47 21.81 3.83 0.83 

Calibration set 105 24.42 19.47 21.60 4.95 0.88 

Validation set 100 24.42 19.47 21.61 4.95 0.89 

KK + 
LK 

Total 400 25.22 12.45 21.56 12.77 1.77 

Calibration set 200 25.22 12.45 21.79 12.77 1.55 

Validation set 200 24.42 9.53 14.92 14.88 3.27 

%Pol 

KK 

Total 200 22.18 8.90 17.76 13.28 1.91 

Calibration set 100 22.18 8.9 18.26 13.28 1.54 

Validation set 100 22.18 8.9 18.26 13.28 1.54 

LK 

Total 200 20.32 14.22 18.63 6.10 1.13 

Calibration set 100 20.32 14.22 18.63 6.10 1.54 

Validation set 100 20.32 14.22 18.63 6.10 1.54 

KK + 
LK 

Total 400 20.32 8.90 18.18 13.28 1.73 

Calibration set 200 22.18 8.90 18.26 13.28 1.54 

Validation set 200 22.18 8.90 18.26 13.28 1.54 

%Fiber 

KK 

Total 200 16.90 6.29 13.50 10.61 1.10 

Calibration set 100 16.24 9.53 13.40 6.70 0.94 

Validation set 100 16.24 9.53 13.40 6.70 0.94 

LK 

Total 200 16.25 8.18 13.71 8.07 1.13 

Calibration set 100 16.24 9.53 13.40 6.70 0.95 

Validation set 100 16.24 9.53 13.40 6.70 0.94 

KK + 
LK 

Total 400 16.64 6.29 13.61 10.61 1.11 

Calibration set 200 16.24 9.53 13.40 6.70 0.94 

Validation set 200 16.24 9.53 13.40 6.70 0.94 

CCS 

KK 

Total 200 17.58 5.69 12.80 11.88 1.79 

Calibration set 100 16.58 8.6 13.48 7.98 1.23 

Validation set 100 16.58 8.6 13.48 7.98 1.23 

LK 

Total 200 15.31 9.32 13.67 5.99 1.16 

Calibration set 100 16.58 8.60 13.48 7.98 1.23 

Validation set 100 16.58 8.60 13.48 7.98 1.23 

KK + 
LK 

Total 400 17.58 5.69 13.22 11.88 1.64 

Calibration set 200 16.58 8.60 13.45 7.98 1.23 

Validation set 200 16.58 8.60 13.48 7.98 1.23 
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method (Laboratory data).  Most of NIR technique work  
for sugar content prediction models have focused 
on °Brix, %Pol and %Fiber value.  No such work has 
reported in CCS value prediction . In this work, %Fiber 
prediction model of sugarcane variety Lumpang 92-11 
(LK 92-11) and Khon Kaen 3 (KK 3) shows the lowest  
R2 (0.90), comparing to the other parameters  (0.97, 0.91, 
and 0.92 for °Brix, %Pol and CCS, respectively). 
Comparison to Sanseechan P et al.’s work, (2018) [12], R2 
value was the same value at 0.90.  In additional, R2 
of °Brix, %Pol and %Fiber from validation method were 
0.99, 0.98 and 0.87, respectively. From the set of 
prediction and validation data, it can be confirmed that 
this prediction model was precisely accuracy and reliable 
for sugar content measurement and price evaluating. 
 
Table 3.  Results of partial least squares regression models 
( PLSR)  for determination of °Brix, % Pol, % Fiber and  
CCS of two sugarcane varieties. 
 
 

Param
eters 

Wavenu
mber 
range 
(cm-1) 

Pretreat
ment 

 
vari
ety 

Calibration Validation 

L
V 

Rc
2 

 

RMS
EC 

Rp
2  

 

RMS
EP 

RP
D 

Bias 

 
°Brix 

 
6481-
5415 
4875-
4150 

 
Second 

derivativ
e 

KK 6 0.
97 

0.29 0.
97 

0.30 5.8 0.04
7 

LK 6 0.
96 

0.25 0.
97 

0.23 3.5
2 

0.03
1 

KK 
+ 

LK 

6 0.
97 

0.24 0.
98 

0.25 6.4
0 

-
0.01

1 

 
%Pol 

6418-
5415 
4875-
4150 

 

 
Second 

derivativ
e 

KK 7 0.
93 

0.43 0.
93 

0.45 3.1
7 

-
6.00
x10-4 

LK 7 0.
90 

0.36 0.
90 

0.40 3.0
7 

-
0.00

4 

KK 
+L
K 

7 0.
93 

0.33 0.
92 

0.35 3.4
6 

-
0.00

1 

%Fibe
r 

8038-
4150 

 

First 
derivativ

e  
+  

Vector 
normali
zation 

KK 7 0.
91 

0.29 0.
90 

0.28 3.5
4 

4.25 
x10-5 

LK 7 0.
89 

0.37 0.
89 

0.37 2.4
3 

2.45 
x10-5 

KK 
+ 

LK 

7 0.
91 

0.29 0.
91 

0.28 3.4
1 

-
7.67
x10-6 

CCS 6803-
5291 
4751-
3826 

 
Second 

derivativ
e 

KK 7 0.
93 

0.34 0.
93 

0.35 3.7
7 

-
0.00

2 

LK 7 0.
92 

0.33 0.
93 

0.34 3.5
8 

-
0.00

2 

KK 
and 
LK 

7 0.
92 

0.35 0.
93 

0.33 3.7
5 

-
0.00

1 

 

Table 4.  Comparison of the root means a square error of 
prediction (RMSEP)  form the determination of CCS by 
NIR prediction and calculation of CCS from NIR 
prediction values (°Brix, %Pol, %Fiber). 
 
 

CCS  RMSEPpre RMSEPcal 
KK 0.35 0.67 
LK 0.34 0.72 

KK + LK 0.33 0.61 

 
 

Fig. 4. Scatter plot of the measured value of °Brix (a), %Pol 
(b), %Fiber (c) and CCS (d) of two sugarcane varieties 
versus the predicted value of calibration and validation set. 

 

4.  Conclusion 
 

In this study, the NIR technique was successfully 
applied to use for measuring sugar content in sugar- cane. 
Sugarcane (Saccharum spp.) variety Lumpang 92-11 (LK 92-
11) and Khon Kaen 3 (KK 3) were compared in term 
of °Brix, %Pol, %Fiber and CCS in both of Laboratory 
and NIR techniques primary and secondary methods. It 
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was no significant difference in both laboratory and NIR 
methods of two varieties. By using the set of data for the 
prediction model, the best PLSR model for CCS is 
obtained by using the second derivative with a latent 
number of 7. The model showed that R2, RMSEP, RPD 
and bias were 0.92, 0.35, 3.75, and -0.001, respectively. 
Furthermore, the RMSEP of °Brix, %Pol, %Fiber, and 
CCS of two sugarcane varieties were 0.25, 0.35, 0.28, and 
0.33, respectively. When compared to other works, the 
RMSEP in this study was in range (RMSEP<0.3), meaning 
the PLSR model can be applied for the prediction of 
important parameters such as °Brix, %Pol, %Fiber, and 
CCS in future development models. Comparison of CCS 
determination form NIR prediction and CCS calculation 
form prediction values, RMSEPcal from the calculation of 
CCS from NIR prediction was higher than that of 
RMSEPpre from the determination of CCS from NIR 
prediction. This could be that RMSEPcal was obtained by 
calculation of CCS formula while RMSEPpre was used 
PLSR model for optimizing prediction value. This could 
be supported that the determination of CCS from NIR 
prediction can be used for CCS prediction. 
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Appendix: Supplementary Data 
 
The vibration of a molecular bond at that wavenumber of °Brix, POL, Fiber contents and CCS value. 
 
TS1. The summarized of vibration of a molecular bond in wavelength of Brix prediction  

 

FS1. The plot of regression coefficients of °Brix prediction 

 

 

 

 

  

Wavenumber 

(cm-1) 

Wavelength 

(nm) 

Wavelength from 

reference (nm) 

Bond vibration Structure Reference 

4213 2373 2380 O-H def second overtobe ROH [36] 

4289 2326 2323 C-H stretching +C-H def CH2 [36] 

4441 2251 2252 O-H stretching O-H def Strach [36] 

4645 2152 2150 2*amide I+ amide II CONHR [36] 

4692 2131 2132 N-H stretching, C=O stretching Amino acid [36] 

4800 2083 2080 O-H stretching O-H def R-OH Sucrose [36] 

5415 1846 1820 O-H stretching+2xC-O  stretching Cellulose [36] 

5523 1810 1820 O-H/C-H combination Cellulose [36] 

5616 1780 1780 C-H stretching first overtone Cellulose [36] 

5710 1751 1765 C-H stretching first overtone CH2 [36] 

5817 1719 1725 C-H stretching first overtone CH [36] 

5879 1700 1701 C-H methyl C-H, OH associated ROHCH3 [36] 

5985 1670 1671 C-H aromatic CH [36] 

6000 1667 1664 C-H aromatic ROHCH3 [36] 

6213 1609 1620 C-H stretching first overtone =CH2 [37] 

6355 1573 1580 O-H  stretching first overtone Glucose [37] 

6355 cm-

6281 cm-

6213 cm-
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TS2. The summarized of vibration of a molecular bond in wavelength of POL prediction  

 
 
FS2. The plot of regression coefficients of POL prediction 

 

 

 

  

Wavenumber 

(cm-1) 

Wavelength (nm) Wavelength from 

reference (nm) 

Bond vibration Structure Reference 

4211 2374 2380 O-H  second overtone ROH [36] 

4365 2290 2294 N-H stretching + C=O stretching Amino acid [36] 

4495 2224 2200 C-H stretching + C=O stretching -CHO [36] 

4555 2195 2190 CH2 asymmetric + C=O  stretching HC=CH [36] 

4630 2159 2160 2xAmide  I + Amide III CONHR [36] 

4691 2131 2132 N-H stretching, C=O stretching Amino acid [36] 

4780 2092 2080 O-H stretching O-H R-OH Sucrose [36] 

5430 1841 1860 C-Cl chlorinated organics (C-Cl group)  [36] 

5477 1825 1820 O-H stretching + 2xC-O  stretching Cellulose [36] 

5500 1818 1820 O-H stretching + 2xC-O  stretching Cellulose [36] 

5678 1761 1762 C-H methylene (CH2) symmetric  [36] 

5710 1751 1765 C-H stretching first overtone CH2 [37] 

5771 1732 1725 C-H stretching first overtone CH2 [36] 

5865 1705 1705 C-H stretching first overtone CH3 [36] 

5985 1670 1671 C-H aromatic CH [36] 

6200 1612 1620 C-H stretching first overtone =CH2 [36] 

6252 1599 1580 O-H stretching first overtone (Intermol 

H-bond) 

Glucose, starch [36] 

6252 cm-1 

6200 cm-1 

5985 cm-1 

5678 cm-1 

5865 cm-1 

5771 cm-1 

5500 cm-1 

5477 cm-1 

5430 cm-1 

4780 cm-1 

4691 cm-1 

4630 cm-1 

4555 cm-1 

4495 cm-1 

4365 cm-1 

4211 cm-1 
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TS3. The summarized of vibration of a molecular bond in wave length of Fiber content prediction  

 

FS3. The plot of regression coefficients of Fiber contents prediction 

 

 

 

 

  

Wavenumber 

(cm) 

Wavelength (nm) Wavelength from 

reference (nm) 

Bond vibration Structure Reference 

6050 1652 1660 C-H stretching  

first overtone 

Cis-

RCH=CHR1 

[36] 

6233 1604 1598 C=O/N-H combination from polyamide II C=O/N-H [36] 

6498 1538 1540 O-H stretching first overtone Starch [36] 

6835 1463 1460 N-H  stretching first overtone CONHR [36] 

6947 1439 1440 O-H stretching first overtone Sucrose [36] 

7115 1405 1410 O-H stretching first overtone ROH [36] 

7200 1388 1395 2xC-H strectching + C-H def CH2 [36] 

7281 1373 1370 C-H methyl C-H, associated with linear 

aliphatic 

Hydrocarbon [36] 

7350 1360 1360 C-H methyl C-H, associated with aromatic 

(ArCH3) 

Hydrocarbon [36] 

6050 cm-1 

7536 cm-1 

7860 cm-1 

7441 cm-1 

7350 cm-1 

7200 cm-1 

7281 cm-1 7115 cm-1 

6947 cm-1 

6835 cm-1 

6498 cm-1 

6233 cm-1 
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TS4. The summarized of vibration of a molecular bond in wave length of CCS value prediction  

 

FS4. The plot of regression coefficients of CCS value prediction 

 

 
 
 

Wavenumber 

(cm) 

Wavelength (nm) Wavelength from 

reference (nm) 

Bond vibration Structure Reference 

4213 2373 2352 C-H def Second overtone Cellulose [36] 

4367 2289 2270 O-H stretching + C-H def Cellulose [37] 

4494 2225 2200  C-H stretching + C=O stretching HC=CH [36] 

4552 2196 2190 CH2 asymmetric + C=O  

stretching 

HC=CH [36] 

4658 2146 2140 =C-H stretching + C=C stretching HC=CH [36] 

4770 2096 2100 2x O-H def + 2x C-O stretching Strach [36] 

4800 2083 2080 O-H stretching O-H def R-OH Sucrose [36] 

5786 1728 1725 C-H stretching  

first overtone 

CH2 [36] 

5878 1701 1705 C-H stretching  

first overtone 

CH3 [36] 

5987 1670 1660 C-H stretching  

first overtone 

Cis-RCH=CHR1 [36] 

6173 1619 1620 C-H stretching first  =CH2 [36] 

6274 1593 1580 O-H stretching first over tone 

(Intramolecular H-bond) 

Glucose [36] 

6515 1534 1533 C-H stretching first over tone CH [36] 

6666 1500 1490 O-H stretching first over tone 

(Intramolecular H-bond) 

Cellulose [36] 

6725 1486 1480 O-H stretching first over tone 

(Intramolecular H-bond) 

Glucose [36] 

6666 cm-

6515 cm-

1 

6274 cm-1 

5987 cm-1 

5878 cm-1 

5786 cm-1 
4800 cm-1 

4658 cm-

1 

4770 cm-1 

4552 cm-1 

4494 cm-1 

4367 cm-1 

4165 cm-1 

4213 cm-1 

3967 cm-1 

3918 cm-1 

6725 cm-1 

6173 cm-

1 


