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Abstract. The coupling between Raman spectroscopy and green fluorescent protein (GFP) 
labelling informs chemical compositions at the specific sites. This information leading to 
study that explain core knowledge of living organism and eventually advance our 
conventional technique of medical diagnosis. In order to achieve these purposes, the precise 
interpretation is required. A massive number of Raman/GFP spectra as well as identification 
of GFP contribution in each spectrum are arroaches to achieve those goals. In the paper, 
CNN is proposed to classify the spectra with and without GFP signal. The dataset of GFP-
positive and GFP-negative spectra were created with various size and background color. 
The feature extraction and classification are conduced with VGG networks. To increase the 
performance of VGG network, the modified VGG13 and modified VGG19 were designed. 
These two models extend fully-connected layer from 3 (the original VGG model) to 5 layer 
for better classification task. Batch normalization is also added at the end of feature 
extraction units to reduce unpredicted shifting of parameters. The original VGG16, VGG19, 
and ResNet50 are used as comparison models. The results show that both of our modified 
VGG models significantly enhances training accuracy of the network comparing to the 
original VGG. The accuracy of original VGG can be increased when applied pre-trained 
weight, but the accuracies are yet slightly lower than modified models. Training on ResNet, 
deeper network, gave the comparable accuracy with our modified models. 
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1. Introduction 
 
Raman spectroscopy is the non-destructive technique 

based on principal interaction between light and electron 
of matter [1], [2]. This technique shows the inelastic 
scattering of vibrational modes which specific to particular 
molecules. The different in vibration refers to molecular 
properties, stages, or chemical compositions, and they 
show obviously in the spectrum. According to its 
simplicity and non-destruction, Raman spectroscopy is 
widely used in many fields of science such as Chemistry, 
Physics, Biology, and medical [3], [4], [5], [6], [7], [8], [9], 
[10] especially for the living systems. In order to study 
living system, traceability is the critical concern. Green 
fluorescent protein (GFP) is the typical protein which can 
emit green fluorescent and visible to bare eyes [11]. As this 
straightforwardness, it is extensively used for genetically 
targeting organelles or other proteins in living cell to 
visualize only interested components. The most advantage 
of using GFP is because its emission not only observe 
qualitatively via human eyes, but can also measure 
quantitatively with spectrometer as GFP spectrum. 
Combination between Raman spectroscopy and GFP 
tagging elevates the study of dynamic system in living 
organisms since the information about chemical 
composition and location are presented on a single 
spectrum [12]. The component analysis of living system is 
very powerful information for further fundamental 
understanding about life. When comes into medical field, 
it can developed to be more sensitive diagnosis technique 
in the future. However, to classify only targeted spectrum 
is a handful process in which the spectrum is selected one 
by one with human eyes. A mathematical program is used, 
but the parameters are need to adjust by human. There 
two conventional approaches may leads to 
misinterpretation of Raman/GFP spectra. Therefore, in 
this paper we proposed an idea to classify Raman/GFP 
spectra by incorporated with artificial intelligence.  

Artificial Intelligence (AI) is a branch of computer 
science which aims to simulate computers to learn, decide 
and solve a problem like a human [13]. The subfield of AI 
such as Machine Learning is a core of AI that makes 
computers more intelligent by feeding data, thus machines 
can perform automatically learning itself without 
supervision required. AI becomes a part of Industry 
technology, especially in the manufactory [14]. Many 
applications are also applied with machine learning such 
as image processing, natural language processing, and 
robotics [15]. Nowadays, AI is widely used in image 
classification with deep learning algorithms which is one 
of the best algorithms in machine learning. Its neural 
network is inspired by the working of human brain [13]. 
One of neural networks model that good in image 
classification is convolutional neural network. 

Convolutional Neural Networks (CNNs or ConvNets) 
are the networks which have considerable success in image 
recognition with large-sized dataset [16], [17], [18], [19]. 
Due to the achievement in classification, CNNs became 
one of the most popular neural networks and played a 

huge role in many works over the last few years, especially 
in the medical field. CNNs have been applied in 
circumstance of MRS which analyzed biochemical 
changes in the brain with waveforms [20]. It was also used 
for identification of pathogens in relevant biofluids which 
is more accurate. It can improve patient outcomes and 
reduce healthcare costs [21]. The extract image feature of 
CNN can help in spectral prediction [14]. It is used as an 
approach to detect the artefact in wideband Near-Infrared 
Spectroscopy (NIRS) [22]. In the field of Raman 
spectroscopy, its classification achieved significantly high 
accuracy [23].  

Deep convolutional networks showed the 
competence in image classification which can extract more 
specific and complex features as well as better 
classification performance [14], [19], [24], [25]. The 
architecture that we are interested in are VGG16 and 
VGG19. VGG are the models which are easy to 
understand and uncomplicated to adjust the layer. 
Moreover, these models can apply and fine-tune to fit 
small datasets [26], [27], [28], [29]. 

In this paper, we modified our models based on VGG 
architectures to suit the GFP dataset which is not very big. 
Our two modified models have a difference in the depth 
of convolutional layers ,and we also add batch 
normalization to fix the problem from the change in the 
distribution of layers’ inputs cause the parameters of the 
previous layers change also known this problem as 
‘Internal Covariate Shift’ which will slows down the 
training and make the model hard to train [26], [30]. By 
shrinking the dimension of fully-connected layers, the 
parameters are significantly reduced. More fully-
connected layers are added to improve accuracy in 
classification tasks. The transfer learning which is the use 
of pre-trained weight for classification steps is applied [28], 
[29], [31], [32]. It is used to compare the accuracy with our 
modified VGG networks. Residual neural network 
(ResNet) is also used as a reference network since it has a 
great performance, and it commonly used with Raman 
spectra data [33] and solved the model degradation 
problem on deep networks [34]. 

This paper consists of 6 sections. Section 2 describes 
the system overview, the details of data pre-processing and 
our dataset that we use in the training step. The neural 
network architecture is presented in section 3. Section 4 
show the detail of network training and the results 
performance of our models in GFP classification. Finally, 
the discussion and conclusion are described in Section 5 
and section 6, respectively. 
 

2. Proposed Method 
 
2.1. System Overview 

 
The two main processes in our system are image 

generation and model training, see Fig. 1. At the beginning, 
raw data from excel file were converted spectral images 
with the User Interface (UI). At the UI, we can import an 
external file and select image size and background color 
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for generating spectral image. The preprocessing step is 
added to cut out obvious defect from images.  Then, the 
training set of spectral image is introduce to our network 
for training. The models we used for training are our 
modified VGG13, modified VGG19, original VGG16, 
original VGG19, and ResNet to compare the accuracy. All 
CNN networks are implemented with Keras and 
Tensorflow. The testing set is used after training step to 
verify network accuracy. The output is shown as 
probability value between 0-1 which indicates the 
prediction accuracy to be GFP-positive and GFP-negative 
(see section 2-2.3).  A program has been developed to 
store classified data and saved in separated folders. 
 

 
 

2.2. Spectral Image Generation 
 

The raw data were obtained as Raman/GFP spectra 
of Shizosaccharomyces pombe mitochondria from Prof. 
Hiro-o Hamaguchi, Department of Applied Chemistry, 
National Chiao Tung University, Taiwan [12]. The image 
generation process from raw data are demonstrated in the 
early part of Fig. 1. In brief, Raman shift and Raman 
intensity are assigned to arrays in NumPy library for x- and 
y-axis respectively. The program for image generation is 
written in Python. The Panda library is used to help 
reading raw data from excel file. All the images are 
preprocessed by removing cosmic rays from the spectrum. 
The spectral images are generated as 3 sizes, 56x43, 62x47, 
and 68x52. All the spectra images are converted to RGB 
pixels at the value of 255,255,255 for white background 
and 0,0,0 for black background. All images are eventually 
saved to .png file. 

The user interface is created to generate spectral 
images by importing external raw data files. The images 
are then automatically labelled either GFP-positive or 
GFP-negative for training process in the next step. The UI 
can generate the dataset with different size and 
background color as shown in Fig. 2. In the final step, the 
prediction result from training in neural network is 
obtained. This program can compare the result with raw 

data, and separately store GFP-positive and GFP-negative 
data in different folders for further analysis. 
 
2.3. Dataset 

 
All datasets were created by the same raw data of 

30,000 spectra with other specifications below: 

• Size 56x43 pixel, white background color 

• Size 62x47 pixel, white background color 

• Size 68x52 pixel, white background color 

• Size 56x43 pixel, black background color 

• Size 62x47 pixel, black background color 

• Size 68x52 pixel, black background color 
 

 
 
All datasets were separated to training and testing sets 

in the ratio of 26,000 to 4000 spectral images. The ratio 
between GFP-positive and GFP-negative is 50:50 for both 
training and testing sets. The example of spectral images 
are shown in Fig. 3. The GFP-positive label is the spectra 
which recognized as GFP-containing spectra and the 
GFP-negative label referred to non-GFP containing 
spectra as examples in Fig. 3. The difference of GFP-
positive and GFP-negative images can be seen from low 
x-value region (half-left of the generated image). GFP-
positive exhibits high y-value at low x-value region while 
GFP-negative image shows y-value almost zero at low x-
value. 
 

 

 
 

Fig. 1. The overview of our system: Raman/GFP raw data 
collection, spectral image generation, data pre-process, 
training in CNN network, and classification result storage. 

 
 

Fig. 2. The user interface to generate spectral images to 
preferred specification. 

 
 

Fig. 3. The illustration of GFP-positive and GFP-negative 
images in each dataset. The image size and background 
color are indicated on the left and and top of the images, 
respectively. 
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3. Neural Network Architecture 
 
3.1. Original VGG16 and VGG19  

 
According to performance of deep convolutional 

neural networks in large-scale image recognition [19], two 
outstanding models are VGG16 and VGG19 which are 
the first two models in Fig. 4. The main components of 
these two models are convolutional layers, max-pooling 
layers, fully-connected layers and softmax. VGG16 
consists of 13 layers of convolutional but VGG19 
comprises 16 convolutional layers. Both of them have 5 
max-pooling layers, 3 fully-connected layers and softmax 
in the final layer. All convolutional layers of these two 
models are divided into 5 feature extraction units. The 
number of filters in the first feature extraction unit starts 
from 64 and then increases by a factor of 2 in each group 
until 512 in the final unit. The stride and padding are fixed 
to 1 in all convolutional layers. Max-pooling after 
convolutional layers in each group is performed over a 2x2 
pixel window with stride 2. Three Fully-connected layers, 
the first two performs 4096 channels in each layer and the 
third has 2 for 2 classes of our GFP classification. Softmax 
is added at the end of classification step to adjust 
classification result and present as a probability. 

 
3.2. Our Modified VGG16 and VGG19 

 
Our VGG models are developed to enhance 

classification tasks of neural networks. The number of 
fully-connected layers are increased from 3 layers (original 
VGG network) to 5 layers. In addition, batch 
normalization is also added at the end of every feature 
extraction unit (convolution layer and max-pooling layer) 
to help shifting of internal covariate and improving the 
training process [26], [30]. Modified VGG13 model is 
adapted from the original VGG16. It consists of 3 sets of 
feature extraction units, 5 fully-connected layers, and 
softmax. The increase of fully-connected layers means the 
longer training period. Therefore, this modified model is 
reduced feature extraction units from 5 iterations to 3 
iterations to compensate time consumption. Another 
modified model is modified VGG19. This model consists 
of 5 sets of feature extraction units with batch 
normalization, 5 fully-connected layers, and softmax. The 
model is generally similar to the original VGG19 except 
the number of convolutional layers in each feature 
extraction unit are different (Fig. 4). The fully-connected 
layers of both of our modified VGG models are adjusted 
to classify GFP-positive and GFP-negative tasks. The first 
fully-connected layer consists of 2048 channels. The 
channels are decreased by a factor of 2 in the next layer 
until reaching the fourth layer, which is 256 channels. The 
final fully-connected layer performs 2-way GFP 
classification. The overall architecture of two modified 
VGG models are illustrated in Fig. 4. 
 

 
 

3.3. ResNet50 
 

In the field of neural networks, the developers believe 
in the fact that the more convolutional layers refer to the 
better neural network performance. However, a number 
of literatures said too many convolutional layers can also 
cause efficiency drop of the model.  

ResNet or Residual Network is one example of a very 
deep network. It can raise the accuracy by increasing the 
depth of network [34]. ResNet50 model uses the modified 
building block called a bottleneck design which is a stack 
of three layers consisting of 1x1, 3x3, and 1x1 
convolutions. It also has batch normalization after each 
convolutional layer and before the activation. ResNet50 
architecture contains 50 layers including a single fully-
connected layer at the terminal followed by softmax. In 
this paper, a fully-connected layer is adjusted to suit our 
data. Therefore, the channels are changed from 1000 to 2 
channels according to 2 classes of GFP. The special part 
of this network is shortcut connection which can skip 
some unimportant convolutional layers. It allows only the 
essential data passes through the next layer. In our work, 
ResNet with 50 layers depth is used to compare the 
accuracy and latency with our modified and original VGG 
models which contain less layers. 
 

4. Experiments and Results 
 
4.1. Network Training 

 

 
 

Fig. 4. Overall network architectures, compare between 
original VGG and modified VGG networks in the depth 
of CNN. The layers compose of convolutional layer, batch 
normalisation, max-pooling, and fully-connected layers. 
From the top: The original VGG16, the original VGG19, 
the modified VGG13, and the modified VGG19. 
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Original VGG16, VGG19 and ResNet50 models are 
the pre-trained models from Keras which is fast and easy 
for fine-tuning. The modification is done to the last layer 
of fully-connected layer to fit with our GFP classification. 
These previous three models are used as reference to 
compare the performance with our modified VGG 
networks. In order to get higher accuracy, the ImageNet 
weight is borrowed from pre-trained model in Keras. 
ImageNet weight is obtained from training of a very large-
scale dataset. We believe that the pre-trained weight can 
improve the training accuracy. The condition of using pre-
trained weight (ImageNet) and without pre-trained weight 
are compared to find the optimized model for our datasets. 
The training is conducted with 4 VGG models that we 
mentioned earlier (2 original VGG and 2 modified VGG). 
Another important factor for the training is the dataset. 
The size and background color are varied as described in 
section 2-2.3. The size has been generated to 3 sizes 
consisting of 56x43, 62x47 and 68x52 pixels. In each size 
of GFP spectra images consist of background colors, 
which is white and black. In addition, the two original 
VGG networks are also trained without weights and 
weights from ImageNet for comparison. The comparison 
of VGG models with ResNet50 is performed eventually 
to see the effect of network depth to the classification 
achievement. 

 
 

4.2. Results 
 
The training accuracy of modified VGG and original 

VGG models are shown in Table 1. The training accuracy 
of our modified VGG13 is compared with the original 
VGG16 model, top three rows. The modified VGG19 is 
compared with the original VGG19, bottom three rows. 
For two original VGG models, the networks were trained 
with pre-trained weight (ImageNet) and without pre-
trained weight, middle and right column of Table 1 
respectively. The different datasets which are size and 
background color also indicated on the row and column 
heads. The training results of the modified VGG and 
original VGG without pre-trained weights show the 
accuracy of white background color in every image size is 
lower than the case that trained with black background 
color. The standard deviation (SD) are also higher in white 
background datasets which refers to the more stable 
network with black background training. Therefore, black 

background datasets are used for further comparison of 
the accuracy between modified VGG and the original 
VGG networks.  

The accuracy of the modified VGG13 model is 
around 4-10% higher than the original VGG16 as well as 
giving lower SD values. We want to note that the original 
VGG16 networks which trained with pre-trained weight 
can perform very good classification regardless white or 
black background. The training accuracy is around 82 - 84% 
for both colors. However, when comparing the accuracy 
with our modified VGG13 model, the accuracy of the 
original VGG16 with pre-trained weight is slightly lower. 
The accuracy trend of the modified VGG19 and the 
original VGG19 also have consistent responses with that 
of modified VGG13 and the original VGG16. The highest 
accuracy from the modified model and the original 
VGG19 achieved from 68x52 pixel image with black 
background color dataset. The training accuracy of the 
modified VGG19 and the original VGG19 are 85.84±0.41% 
and 76.04±1.03%, respectively. Due to these accuracies, 
we can imply that our modified VGG19 model works 
better than the original VGG19 model. Even the original 
VGG19 with pre-trained weight which gave a high 
accuracy, yet still lower than the modified VGG19. 
According to the result from Table 1, the size of the input 
image can be considered as negligible factor  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

since the accuracies are slightly changed. In contrast, 
background color plays a significant role in improving 
accuracy. Black background color not only performs 
better classification, but it also reduces the time and 
memory consumption of training process.  

In order to demonstrate the performance of our 
modified VGG network, a confusion matrix was created, 
see Fig. 5. The dataset of 68x52 pixel with black 
background is tested with the modified VGG19. This 
condition gave the highest accuracy for all VGG19models, 
average accuracy 85.84±0.41%. The confusion matrix 
shows the classification output of our modified VGG19 
model. The output is presented by number of images 
which classified as GFP-positive and GFP-negative in 
four quadrants. The agreement between categories in x- 
and y-axis is counted as correct classification. This test set 
contains 4000 spectral images. They are labeled as GFP-
positive and GFP-negative by 50:50. The confusion 
matrix reveals that our model can predict the correct GFP-

 

Table 1. Training accuracy from our modified VGG19 network compared to original VGG19 and original VGG19 
with weight from ImageNet. 
 

 Image size Modified VGG Original VGG Original VGG (ImageNet) 

 / pixel White Black White Black White Black 

 
VGG16* 
 

56x43 
62x47 
68x52 

65.82±16.02 
66.19±12.67 
71.65±18.84 

85.35±0.78 
85.93±1.16 
85.44±0.78 

60.05±4.67 
55.58±3.55 
59.36±5.56 

81.77±3.64 
79.96±2.74 
75.53±1.23 

83.83±0.36 
83.51±0.25 
84.03±0.44 

84.18±0.56 
82.50±1.23 
83.41±0.67 

 
VGG19 

56x43 
62x47 
68x52 

69.40±16.84 
53.02±5.23 
50.11±0.13 

83.80±0.48 
85.64±0.63 
85.84±0.41 

54.64±2.04 
51.61±2.79 
52.16±3.54 

55.38±7.32 
62.24±8.20 
76.04±1.03 

85.57±0.32 
80.73±1.37 
84.55±0.42 

84.47±0.16 
83.74±0.36 
84.70±0.13 

∗Refers to modified VGG13 or the original VGG16 
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positive and GFP-negative at 1799 and 1653 out of 2000, 
respectively. The total fault prediction is 548 images, 
which converted to 86.30% accuracy. 

 

 
 

After we compared between the modified and the 
original VGG networks, we also did the comparison with 
the ResNet50 model. Figure 6 shows the accuracy of every 
network that we compared by using one of the best 
conditions dataset which is 68x52 pixel with black 
background. The accuracies of ResNet50 with and 
without ImageNet weights pre-trained have similar results 
around 85%, but the ResNet50 which initialized with 
ImageNet weights has slightly higher accuracy as well as 
lower SD. Besides, the ResNet50 gave a greater 
performance than the original VGG16 and VGG19. The 
initial weights from ImageNet can improve training 
accuracy and lower SD as found in the original VGG and 
ResNet50. However, without the initial weight, our 
modified VGG model gave the best performance in 
accuracy and SD values. 

 

The convergence rate of individual models also 
evaluated as illustrated in Fig. 7. The original VGG19 
shows the slowest convergence, followed by the original 
VGG16. These 2 models converge better when applied 
with pre-trained weights. ResNet50 and our modified 
VGG models have faster converge rate than the original 
VGG. The reason for the fast convergence is from batch 
normalization [26], [30] in our model and ResNet50. 
However, our modified networks have more fluctuations 
than other networks. Apart from the convergence rate, the 
training time consumption also observed. The modified 
networks used the time around 20-50s per epoch which 
are close to the originals. RestNet50, on the other hand, 
spent around 60-200s per epoch due to deeper layer of 
feature extraction. The shorter training period of our 
modified models also caused from massive reductions of 
parameters. The parameters in the original VGG network 
are 3 times higher and twice for the ResNet50. 

 
 

5. Discussion 
 
The image sizes in the dataset are separated into 3 

sizes and 2 background colors which are 68x52, 62x47 and 
56x43 pixels with white and black. Our modified models 
and the original VGG models without using ImageNet 
pre-trained weights in Table 1 shows that the black 
background dataset outperformed in classification than 
the white color. On the other hand, different sizes did not 
give huge impact to the accuracy in our modified models 
but affected the original networks. The original VGG 
models with pre-trained weights gave the low accuracy, 
even the dataset was changed from white to black color. 
Therefore, the use of VGG network without any 
modification of convolutional and fully-connected layers 
is not appropriate to Raman/GFP dataset. ResNet50 was 
used for comparison as shown in Fig. 6 by using the finest 
condition that always gave a high accuracy and low SD. 
The bar chart shows the performances of the ResNet50 

 
 

Fig. 5. Confusion matrix of 68x52 pixel with black 
background color dataset trained with the modified 
VGG19 network. 

 
 

Fig. 6. Training accuracy comparison of the modified 
VGG13, modified VGG19, original VGG16, original 
VGG19, and ResNet50. The pre-trained weight from 
ImageNet are applied for original VGG16, original 
VGG19, and ResNet50. 

 
 

Fig. 7. Convergence rate of the modified VGG13, 
modified VGG19, original VGG16, original VGG19, and 
ResNet50. The pre-trained weight from ImageNet are 
applied for original VGG16, original VGG19, and 
ResNet50. 
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model with and without applying pre-trained weight are 
very similar. Nonetheless, the original VGG16 and 
VGG19 performed exceedingly better when ImageNet 
weights were used. Even though the original VGG16, 
original VGG19 and ResNet50 pre-trained model gave the 
high level accuracy, our modified VGG models still had 
the highest accomplishment. Deep convolutional neural 
networks are used in various kinds of spectrum patterns 
to improve the work efficiency. In Near-Infrared 
Spectroscopy Sensors, CNN with parameter initialization 
can improve data analysis. MSRA, Gaussian distribution 
of specific variance, was used as initial weight [35]. They 
received prediction accuracy around 93% from the 
training of 990,000 cycles. The highest accuracy of 93.13% 
was obtained when setting the best conditions of learning 
rate, CNN layers, activation function and network 
optimization evaluated with 2674 samples in the testing 
set. For Raman spectra classification, multilayer 
perceptron (MLP) algorithm has been implemented to 
classify mineral spectra [36], the classification 
performance of their neural networks showed 83% and 
80.4% accuracy, when trained with Raman spectral data 
from their mineral collection and the RRUFF mineral 
library, respectively. Our work in Raman/GFP spectra 
classification reveal the highest mean accuracy around 85-
86% from the modified VGG networks by training with 
Raman/GFP dataset less than 200 rounds. Compared to 
other works that we mentioned previously, our deep 
convolutional networks work better with Raman spectra 
using much shorter training periods as well as obtain 
higher accuracy. The important components in our 
modified model which gain accuracy and help time-
consuming processes are batch normalization and fully-
connected layers. Batch normalization aids each layer of 
the networks have a normal distribution avoid Internal 
Covariate Shift problem and also made our networks 
converge faster [26], [30]. Fully-connected layers can 
impact the classification performance [22], the number of 
neurons in FC layers as well as more number of FC layers 
can obtain better performance [37]. Finally, the data pre-
processing is also a crucial step because the color and size 
or quality of images that are used can affect the training 
and learning capability of the networks [38], [39]. 

 

6. Conclusion 
 
The VGG network was used to assist classification 

GFP appearance on the Raman/GFP spectra for the first 
time. The modified VGG13 and VGG19 were adapted 
from the original VGG16 and VGG19 by reducing 
convolution layer, adding Batch normalize and increase 
fully-connected layers to improve the training 
performance. Datasets are Raman/GFP spectral images 
which various sizes, 56x43, 62x47, and 68x52, and 
background colors of black and white. The original VGG 
networks were initialized with ImageNet pre-trained 
weight to evaluate the change to accuracy. It can improve 
the accuracy in the order of 10-20% for the original VGG 
networks. The training accuracy of our modified models 

in both models provided higher accuracy than original 
VGG19 and original VGG16, even the pre-trained weight 
was applied. The best VGG model in classification is our 
modified VGG19, achieving 85.84% accuracy from 68x52 
pixel image with black background dataset. Resnet50 
model also used to compare with our VGG model. It gave 
the similar accuracy with modified VGG19 which is 
around 85% for both with and without pre-trained weight. 
However, ResNet50 consumed longer time and higher 
memory for training process. Therefore, with the factors 
of training accuracy, time and resource management, our 
modified VGG models are proof to be the best network 
to train and classify GFP-positive and GFP-negative 
spectral images. The classified spectral images were 
eventually stored in separated folder for further Raman 
spectral analysis. 
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