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Abstract. Bridge weigh-in-motion or moving force identification systems have been 
developed to screen the heavy truck or monitor its gross weight and axle loads. Bridge 
surface roughness has been considered a very sensitive parameter to the identification error. 
This paper presents the algorithm to accurately identify static axle weights by modifying the 
identification process to include the measured bridge influence line containing the actual 
road profile. The existing iterative calculation called the updated static component (USC) 
technique is also utilized to improve the dynamic axle load accuracy. The extracted influence 
line is obtained from a low-speed test using a known axle weight truck. Therefore, the 
characteristics of the road roughness and the measurement noise are included in the bridge 
responses. The effectiveness of the proposed technique is investigated through the 
numerical simulation and the experiment using scaled models. The results reveal that the 
identified axle loads become more accurate than those identified using the USC and the 
conventional regularized least squares methods. The proposed technique effectively 
decreases the identification errors of moving axle loads on the rough surface with a high 
measurement noise level. Moreover, the regularization parameter can be easily assigned with 
a broader range to achieve accurate identification results. 
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1. Introduction 
 
The dynamic axle load and gross weight of vehicles 

are essential factors for designing new bridges and 
pavements, assessing the rating and fatigue life of existing 
roads and bridges, calibrating design codes and 
specifications, and controlling the heavy vehicles on 
highways. Monitoring the overweight trucks using weigh 
stations can only measure the static axle weight and the 
gross vehicle weight, and the truck is required to stop on 
the weighing scale. Hence, to directly measure the vehicle 
axle load’s time-history without traffic disturbance, the 
weigh-in-motion (WIM) system was adopted. There are 
various types of WIM scales with different levels of 
accuracy. The existing technologies for WIM scales use 
measurement sensors such as bending plates, piezoelectric 
stripes, or load cells. However, these sensors are 
embedded in the pavement and disturb the traffic during 
installation and maintenance. Moses [1] presented an 
alternative system using an instrumented bridge as the 
scale to weigh the truck in motion called the bridge weigh-
in-motion (B-WIM) system.  

The original B-WIM employed the static influence 
line concept to calculate the predicted static axle weight 
and gross vehicle weight. However, traditional B-WIM 
can only estimate the static loads. Law et al. presented the 
moving force identification system (MFIS) based on the 
inverse problem of the relationship between moving force 
and bridge responses in a time-domain method [2], and a 
frequency and time domains analysis [3]. The MFIS 
applied the vehicle-bridge system’s differential equation of 
motion to identify the time-varying axle loads simplified 
as a group of concentrated loads moving with a constant 
speed. The MFIS commonly uses acceleration, strain, and 
bending moment as the measurement responses. The 
major problem of the identification is that the system is an 
ill-posed problem. The identification result is very 
sensitive to measurement noise, in which the predicted 
load from a simple least squares becomes unrealistic due 
to large fluctuation at the location near the bridge’s 
supports, especially to the solution from experimental 
studies [4, 5, 6]. A method of least squares with Tikhonov 
regularization was adopted to decrease the massive 
variation of identified moving force [7, 8]. The regularized 
least squares method requires the optimal regularization 
parameter determined from L-curve [9] to obtain an 
appropriate solution. However, constructing the L-curve 
requires numerous rounds of repetitive identification with 
the trial regularization parameters. Although the optimal 
regularization is applied, the predicted load time histories 
found from the experimental investigation are accurate 
only when all axles are close to midspan [7, 8, 10, 11]. With 
the singular value decomposition (SVD) technique, the 
regularized least squares method performs a robust 
solution at any regularization parameter [8, 12]. 

The updated static component (USC) technique [13] 
was proposed to overcome the difficulty of determining 
the optimal regularization parameter. The USC technique 
performs the iterative calculation to update the static load 

component from the measured response, and the 
appropriate regularization parameter can be assigned at a 
broader range. Identification accuracy from experimental 
results was significantly improved through the time-
histories of the identified forces [14, 15]. The estimation 
errors of static axle weight and gross vehicle weight 
obtained from the USC were smaller than the 
optimization using the theoretical response constructed 
from the concept of static influence line [16, 17]. 

O’Brien et al. [18] presented the determination of the 
actual influence line of bridge girders from the direct 
measurement using a calibrated vehicle. The B-WIM 
systems applying the extracted bridge influence line to 
Moses’ algorithm [19, 20, 21] successfully enhance weight 
estimation accuracy. The directly measured influence line 
exhibits the bridge girder’s actual characteristics subjected 
to the moving axle load. 

Deng and Cai [22, 23] proposed axle load 
identification using the influence surface of deflection and 
strain responses for the deck slab and girder bridges. Road 
surface roughness and vehicle speed are the crucial 
parameters that influence the solution accuracy. Besides, 
accurate estimation of bridge influence line has been 
studied to increase the effectiveness of B-WIM [24, 25] 
and structural health monitoring of bridges [26]. 

Various studies on developed optimization processes 
such as the preconditioned conjugate gradient method 
[27],  the redundant concatenated dictionary and weighted 
l1-norm regularization method [28], a comparison on the 
truncated generalized singular value decomposition 
(TGSVD), the piecewise polynomial truncated singular 
value decomposition (PP-TSVD), the modified 
preconditioned conjugate gradient (M-PCG), and the 
preconditioned least squares QR-factorization (PLSQR) 
methods [29] were presented to deal with the ill-condition 
of the MFIS. The results revealed the ability to decrease 
the identification error compared to the conventional 
regularized least squares method. However, the numerical 
simulation and experimental results were insufficient for 
verifying the identified dynamic load since the test 
provided only actual static force. 

The straightforward optimization schemes have been 
adopted to identify the parameters of the moving vehicle, 
such as the genetic algorithm (GA) [30, 31], the artificial 
neural network (ANN) [32], and the virtual distortion 
method (VDM) [33]. They found that the vehicle mass can 
be identified with good accuracy with the presence of 
measurement noise and irregularity of road surface 
roughness. However, the optimization approaches based 
on the searching scheme require lots of training data and 
the upper and lower bounds or the initial trial values of all 
unknown parameters in the identification. 

Recent research focused on developing the B-WIM 
and MFIS using modern instrumented sensors [34, 35] and 
the presence of multiple vehicles [35, 36]. Additionally, 
most recent studies concern the system implementation to 
the girder bridges, which are preferable for axle load 
identification with the free of axle detector (FAD) or the 
nothing-on-road (NOR) systems.
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Fig. 1. Vehicle-bridge interaction system using a finite beam element model. 

 
Regarding the review of previous studies, with the 

advantage of the USC technique and the use of extracted 
bridge influence line, the present study applied the benefit 
of the extracted bridge influence line to the USC technique 
to include the effects of bridge surface roughness and 
measurement noise. The regularized least squares 
optimization with the SVD method and the accuracy 
improvement scheme utilizing the extract bridge influence 
line via the iterative calculation based on the USC 
technique is proposed. Numerical examples through the 
computer simulation and experiment in the laboratory 
using the scaled vehicle-bridge model installed the actual 
wheel load detectors are investigated and discussed to 
evaluate the effectiveness of the proposed technique. 
 
2. Theory of Vehicle-Bridge Interaction 
 
2.1. Equation of Motion of Vehicle-Bridge System 

 
Figure 1 shows a vehicle-bridge interaction system 

employing the finite element method. The vehicle is a four 
degree-of-freedoms half-car considering the mass, 
damping, and stiffness of the suspensions and tires. 

Moving speed of the vehicle is denoted by v(t). The bridge 
is discretized by Euler-Bernoulli beam elements. The 
equation of motion of the vehicle is represented as: 
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where SM  is the static load vector of the vehicle; 1vM , 

2vM , 11vC , 12vC , 21vC , 22vC , 11vK , 12vK , 21vK , and 22vK  

are respectively the mass, damping, and stiffness sub-
matrices of the vehicle, and they are given in the Appendix. 

 1 2

T

v vy y y=Y is the response vector of the 

vehicle.  ( ) ( )
T

int f rP t P t=P  is the interaction force 

vector represented in Eq. (2).  
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where ( )r x  is the road surface roughness at the location 

of tires. ( )fx t  and ( )rx t  are the positions of the front 

and rear axles respectively at time t. ( , )w x t  is the vertical 

deflection of the bridge at the axle position x and time t, 

and g is the gravity acceleration. ( )y t  and ( )y t  are the 

displacement and the velocity of the suspension mass, 
respectively. The equation of motion of the bridge is given 
as: 
 

 b b b intM R + C R + K R = H P  (3) 

 

where R  is the bridge nodal response vector. bM , bC  

and bK  are the assembled mass, damping, and stiffness 

matrices of the bridge, respectively. The mass and stiffness 
matrices are formulated using the Hermitian cubic 
interpolation shape functions. The damping matrix is the 
modal damping in which the damping ratio is assumed to 
be equivalent for every vibration modes. H is the load 

transformation matrix used to transform the axle load into 
the nodal force vector. The matrix H  contains the 
component shape function vectors of each interactive 

force. The shape function for the ith interactive force on 

the jth beam element is written as: 
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where l is the length of the beam element, ( )i t  is the 

location of the ith axle load referred from the left end of 

the jth beam element expressed as ( ) ( ) ( 1)i t x t j l = − − . 

Bridge deflection at the position x at the time t can be 
calculated from: 
 

 ( ) ( )( ) ( ), Tw x t x t t= H R  (5) 

 
With the combination of Eq. (1) and Eq. (3), the equation 
of motion of the vehicle-bridge system can be formulated 
as follows: 
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where details of the sub-matrices in Eq. (6) are given in 
the Appendix. The step-by-step calculation using a 
discretizing method by state-space formulation [10] is 
used to determine the bridge and vehicle responses. In this 
study, the bridge surface roughness specified in ISO-8606 
is adopted to simulate the magnitude of the road profile.  
 
2.2. Bridge Strain Response 

 
According to the derived nodal response of the bridge 

from Eq. (6), the bridge strain at the position on the beam 

x at the time t can be determined from Eq. (7). 
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 is the distance from the bottom surface of the bridge 

section to the neutral axis. Eq. (8) represents the strain 

response ( )jz t  at the jth measuring point on the bridge 

calculated from the nodal displacements of the 

corresponding beam element ( )au t , ( )bu t , ( )cu t  and 

( )du t  as shown in Fig. 2.  
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3. Vehicle Axle Load Identification 
 

In the axle load identification system, since the axle 
loads of the vehicle are unknown; therefore the equation 
of motion of the vehicle-bridge interaction is replaced by 
the concept of a group of time-varying concentrated loads 
moving on a beam. Figure 3 represents the system of two-
axle loads moving on a simply-supported bridge. The 
measured strain response Z  is defined as: 
 

  1 2( ) ( ) ( )
T

mz t z t z t=Z  (9) 

 

where m is the number of measuring points, and ( )mz t   is 

the bridge strain response vector of the mth measuring 

section. Similarly, the predicted strain response Ẑ  

containing m vectors of the theoretical bridge strain can 
be expressed as: 
 

  1 2
ˆ ˆ ˆ ˆ( ) ( ) ( )

T

mz t z t z t=Z . (10) 

 

 
 

Fig. 2. Measuring point in a beam element. 
 

 
 

Fig. 3. Moving load-bridge system used in axle load 
identification. 

xf (t)

y

L

,EI r
x

xr (t)

ˆ ( )fP t

ˆ ( )rP t

( )v t



DOI:10.4186/ej.2021.25.5.45 

ENGINEERING JOURNAL Volume 25 Issue 5, ISSN 0125-8281 (https://engj.org/) 49 

3.1. Identification using Regularized Least Squares  
 

The moving loads can be identified by the simple least 
squares method from the minimization of the residue 
between the measured and predicted bridge strain 
responses. However, using the simple least squares leads 
to the ill-conditioned solution, in which the obtained axle 
loads become unrealistic. The least squares function with 
Tikhonov regularization is therefore adopted to solve this 
ill-posed problem. Equation (11) represents the objective 
function of the identification system. 
 

 
2 2

ˆ ˆ ˆ( , )J P  = − +Z Z P  (11) 

 

where  is the regularization parameter, and P̂ is the 
predicted interactive axle load. In this study, the 
theoretical bridge strain is formulated as the state variable 
vectors using state-space formulation as: 
 

 ˆ ˆ=Z QX  (12) 

 

where Q is the transformation matrix linking the 
relationship between the theoretical bridge strain and the 
state-variable vector of the bridge nodal response  

ˆ
T

 =  X R R . The identification using singular value 

decomposition (SVD) is also adopted to obtain a robust 
solution for any regularization parameter. The 

transformation matrix Q is then decomposed to 
T=Q UΣV , in which U and V are orthogonal matrices 

of the decomposition, and Σ  is the diagonal matrix 
containing singular values  . The objective function 

becomes: 
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where N is the number of time steps of the measured data, 

and  ˆ T

i f r i
P P=P is the identified time-varying axle load 

vector containing the interaction force of the front and 

rear axles at the ith time step. Hence, the solution of the 

predicted axle load vector P̂  is expressed as: 
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where NR is the rank of the transformation matrix Q. ku

and kv  are the sub-orthogonal vector of the matrices U

and V , respectively. 

 
3.2. Bridge Influence Line Extraction 

 
The equivalent static axle weights of the vehicle can 

be estimated using the concept of the bridge influence line. 

For an n-axle vehicle, Eq. (15) expresses the relationship 

between the theoretical bridge strain at the jth measuring 

point and the n static axle weights. 
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where predicted ˆ
static

iP is the static weight of the ith axle. 
i

jIL  is the vector of the bridge strain for the jth measuring 

point containing the influence line ordinates with respect 

to the location of the ith axle. The strain influence line 

vector of the bridge jIL  can be determined using a 

calibrated truck with known axle weights. For a two-axle 
truck, the representation of Eq. (15) is given as: 
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where  
T

f

j j=IL IL 0  and  
T

r

j j=IL 0 IL are the 

vectors of influence ordinate of the front and rear axles, 

respectively. jIL  consists of the strain influence line 

ordinates for the whole bridge length at the jth measuring 
point. From the calibration, the information on the 
location of each axle on the bridge is collected. Hence, the 

relationship between the measured bridge strain jZ and 

the influence line vector jIL  of the jth measuring section 

can be formulated as: 
 

 
j j j=Z W IL  (17) 

 

where jW is the transition matrix containing the 

multiplication of the pre-weighted axle load and the 
location of the corresponding axle on the bridge. The 
recorded strain response used in Eq. (17) considers only 
the time step that the vehicle axle is on the bridge span; 

otherwise, the transition matrix jW becomes singular. 

Based on the inverse problem of Eq. (17), the strain 
influence line extracted from the direct measurement 
using the calibrated truck knowing its static axle weights 
can be determined from Eq. (18). 
 

 ( )
1

T T

j j j j j

−

=IL W W W Z  (18) 

 
It is noted that factors directly related to the behavior 

of bridge strain, including moving speed, sampling 
frequency, road surface roughness, and measurement 
noise level, are crucial to the magnitude of the strain 
influence ordinates obtained from the direct measurement. 
This study utilizes the benefit of the extracted influence 
line to include the characteristics of the road profile and 
the measurement noise in the identification system.  



DOI:10.4186/ej.2021.25.5.45 

50 ENGINEERING JOURNAL Volume 25 Issue 5, ISSN 0125-8281 (https://engj.org/) 

 
 
Fig. 4. Flow diagram of the identification algorithm. 
 

However, the estimated static axle loads can vary by 
the moving speed. Traveling the calibrated truck at a 
crawling speed should be avoided because the effect of 
road roughness could vanish. The recommended vehicle 
speed in the calibration is between 3 - 10 m/s or nearly 10 
- 35 km/hr approximately, which is convenient for the test. 
At this range, the measured strain response absorbs the 
vibration from the roughness profile, and the resolution 
of the influence line ordinates is higher than the high-
speed test for the same sampling rate in data acquisition. 
The calibration using a heavy truck is preferable to 
increase the signal-to-noise ratio of the measured bridge 
response. 
 
3.3. Modification of the Updated Static Component 

Technique  
 
The updated static component technique (USC) [13] 

is the algorithm employing the iterative calculation of the 
static load component from time-averaging the identified 
axle loads in each round. The USC technique successfully 
improves the accuracy of the time-history of axle load, 
particularly when the vehicle axle is passing the bridge 

supports. Besides, the iterative computation also 
eliminates the difficulty of the determination of an optimal 
regularization parameter. The regularization parameter 
can be selected in the broader range with a similar 
identification accuracy, and the identification error 
becomes smaller than the conventional regularized least 
squares solution. 

This study presents the modification of the USC 
technique by replacing the system’s static influence line 
with the extracted influence line. Additionally, based on 
the high accuracy of the static weight estimation using the 
influence line obtained from the direct measurement [18, 
19, 20, 21], the modified USC approach identifies that 
static axle loads by using the residue between the 
measured and the quasi-static strain reconstructed from 
the extracted influence line as the input in each iteration.  
The iterative calculation of the static component updating 
finishes when the relative difference of the latest and the 
previously identified static loads is smaller than the 

tolerance . The tolerance is set as 1% according to the 
previous studies employing the USC technique [14, 15]. 
Once the updated static axle load converges to the final 
solution, the dynamic load component will be computed 
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in the last process from the dynamic strain, which is the 
residue from the subtraction of the measured bridge strain 
by the static bridge strain reconstructed from the typical 
static influence line concept.  The extracted influence line 
is no longer used in the static strain reconstruction process 
because it contains the bridge’s dynamic characteristics 
due to road roughness and moving speed. Finally, the 
time-varying axle load is accomplished by combining the 
identified static and dynamic axle loads. Figure 4 shows 
the flow diagram of the proposed identification algorithm. 
The identification accuracy is investigated through the 
static weight error of the static axle weight and the relative 
percentage error (RPE) of the time-varying axle load 
defined by Eq. (19) and Eq. (20), respectively. 

 

ˆ
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i i

static static

i

static

P P
Static weight error
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 −
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where ˆ
i

staticP  and i

staticP are the identified and actual static 

weights of the ith axle, respectively. The positive and 
negative signs of the static weight error denote the 
overestimated and underestimated values, respectively.  
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where ˆ iP  and iP represent the vectors of the ith identified 

and actual time-varying axle loads, respectively.  

4. Numerical Simulation 
 

The vehicle-bridge interaction system employing the 
finite element method was conducted for numerical 
simulation. The bridge was modeled as a single-span 
simply supported beam with a span length of 30 m. The 
vehicle was a two-axle truck with an axle spacing of 4.27 
m. The simulation employed the physical properties of the 
truck-bridge system. Table 1 lists the vehicle-bridge 
parameter, which was also used in previous studies [11, 
15]. Bridge strain response was simulated from the bridge 
model discretized for 32 beam elements. According to the 
previous research works, the identification system 
assembled the bridge using eight beam elements [11, 17]. 
The sampling frequency was set at 200 Hz. The truck 
model traveled across the bridge with different surface 
roughness at a constant speed. The simulated road 
roughness profile using ISO-8606 in this study was 
classified into three levels inducing various dynamic 
amplification factors to the axle load. The road roughness 
levels I, II, and III generated the maximum impact factor 
to the axle load of 10%, 20%, and 40%, respectively. 
Besides, since the extracted bridge influence line must be 
unique for the instrumented bridge with the inclusion of 
the actual road profile, the surface roughness used in the 
response simulation and the influence line extraction is 
precisely the same profile for each scenario. Strain 
responses were collected from three measuring points 
located on the bridge sections at L/3, L/2, and 2 L/3. 

 
Table 1. Parameters of the simulated vehicle-bridge system. 
 

Vehicle-bridge properties 

L  = 30 m EI  = 2.5×1010 Nm2 A = 5000 kg/m = 0.02 for all modes 

v
I = 1.47×105 kgm2 

v
m = 17,735 kg 

1
m = 1,500 kg 

2
m = 1,000 kg 

1s
k = 2.47×106 N/m 

2s
k = 4.23×106 N/m 

1t
k = 3.74×106 N/m 

2t
k = 4.60×106 N/m 

1s
c = 3.00×104 N/m 

2s
c = 4.00×104 N/m 

1t
c = 3.90×103 N/m 

2t
c = 4.30×103 N/m 

S  = 4.27 m 
1a  = 0.519 2a  = 0.481  

 

 
 

Fig. 5. Influence line extraction: (a) roughness level II and 5% noise level (b) roughness level III and 10% noise level. 
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The influence line used in the identification was 
extracted from the pre-weighted truck moving at a 
constant speed of 5 m/s. The calibrated truck has the 
same properties as the vehicle in Table 1 but the gross 
weight is heavier from the additional mass of 10,000 kg. 
Fig. 5 shows the comparison of the general static 
influence line and the extracted influence lines. It is 
indicated that the shape of the obtained influence lines 
is different from the static influence line due to the 
vehicle dynamics, road profile, and measurement noise. 
The variation between the extracted and the static 
influence ordinates becomes larger with the higher 
roughness and noise levels. 

Fig. 6 compares the identification results using the 
conventional regularization, the regularization with the 
USC technique, and the proposed algorithm in case of 
a truck moves on the surface roughness level III at a 15 

m/s with a noise level of 10%. It is indicated that the 
proposed method performs the most accurate results 
among the three approaches, particularly to the static 
weight determination. Moreover, the static weight 
estimation using a regularization parameter between 
0.01 to 1000 performs the identification error below 10% 
for every axle. 

The identification error for the time-varying axle 
load by the proposed method is slightly lower than 
those obtained from the USC technique. The optimal 
regularization parameter for dynamic load identification 
for the USC and the proposed schemes seem similar. 
However, the proposed method requires many loops of 
the iteration when a wrong regularization parameter is 
assigned. Consequently, the appropriate regularization 
parameter can be selected based on the number of 
computational rounds.  

 

 
Fig. 6. Regularization parameter on the identification error for roughness level III and 10% noise level: (a) static weight 
and (b) time-varying load. 
 

 
 

Fig. 7. RPE of total load and number of iterations for roughness level III and 10% noise level: (a) USC (b) proposed. 
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Table 2. Identification result of numerical examples. 
 

Case 1 2 3 4 5 6 7 

Total vehicle mass (kg) 25,235 25,235 25,235 20,235 20,235 30,235 30,235 
FGR 0.40 0.40 0.40 0.50 0.50 0.30 0.30 

Moving speed (m/s) 20 20 20 25 25 15 15 

Roughness level I II III I III I III 

Measurement noise level (%) 1 5 10 1 5 1 10 

USC technique ( = 10)        

Static weight error of front-axle (%) -10.15 -14.36 -22.18 -5.08 -16.16 -9.62 -27.25 

Static weight error of rear-axle (%) 3.44 3.89 2.90 0.47 -1.48 1.99 3.28 

Static gross weight error (%) -2.00 -3.41 -7.13 -2.28 -8.76 -1.49 -5.88 

RPE of front-axle load (%) 11.28 15.68 24.55 5.78 17.65 10.73 29.35 

RPE of rear-axle load (%) 7.01 8.18 11.73 7.12 14.27 5.56 9.88 

RPE of total load (%) 3.20 4.57 8.18 2.57 8.08 2.25 7.12 

Number of iterations 8 7 6 5 6 14 12 

Proposed technique ( = 10)        

Static weight error of front-axle (%) -7.86 -9.19 -7.22 -3.38 -6.63 -6.67 -9.64 

Static weight error of rear-axle (%) 3.87 4.29 2.61 1.08 1.19 2.34 4.04 

Static gross weight error (%) -0.82 -1.11 -1.33 -1.13 -2.69 -0.36 -0.06 

RPE of front-axle load (%) 11.31 13.73 17.43 8.55 15.59 10.16 20.91 

RPE of rear-axle load (%) 6.59 7.33 10.17 7.03 13.00 5.33 8.44 

RPE of total load (%) 4.00 4.50 6.73 3.88 6.94 3.77 5.94 

Number of iterations 9 9 10 6 6 15 14 

 

 
 

Fig. 8. Identified load: (a) roughness level II and 5% noise level and (b) roughness level III and 10% noise level. 
 

Table 2 lists the identification results from 
numerical examples of various factors, in which the 
regularization parameter is simply set as 10 for every 

scenario. It is found that the proposed technique 
decreases the identification error in both static and 
dynamic loads for all cases.  

(a) (b)
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Fig. 9. Bridge model. 
 

The numerical results reveal that applying the 
extracted influence line to the computation improves the 
accuracy of the estimated static weight effectively, 
particularly to the bridge having a high road roughness 
level. The errors of the static axle weight and the static 
gross weight are all below 10% and 3%, respectively. It is 
observed that the RPE of the dynamic load becomes 
smaller except for the cases having both road roughness 
and measurement noise of level I, which are slightly larger. 
Different moving speed and front axle weight to the gross 
weight ratio (FGR) of a truck are less sensitive to the 
solution accuracy compared to the road profile. Figure 8 
demonstrates the time histories of the identified axle and 
total loads from case 2 and case 3, in which the computed 
forces perform in a good match to the actual forces for 
both cases. 

 

5. Experimental Verification 
 

5.1. Experimental Setup 
 
The experimental study was conducted through the 

vehicle-bridge model, in which the bridge span length and 
the axle spacing of the two-axle car model were designed 
on a  scale of 1:15. Figure 9 illustrates the experimental 
setup. The simply-support bridge with a span length of 2 
m fabricated from steel plate was modeled from the full-
scale bridge with a span length of 30 m. From the free 
vibration test, the natural frequency and the damping ratio 
of the bridge were 5.5 Hz and 0.005, respectively. The car 

model was a two-axle truck with an axle spacing of 0.29 m, 
which was scaled from the H20 truck having an axle 
spacing of 4.27 m. Strain signals were measured from three 
sections at locations of L/3, L/2, and 2L/3.  Twenty-
seven strain gauges were installed at the bottom bridge 
surface. The response used in the identification system for 
each measuring point was the average value of the nine 
sensors mounted with a gradually spacing. 
 

 
 

Fig. 10. Instrumented vehicle model. 
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The vehicle model installed an optical sensor to detect 
the axle position at every 0.5 cm from the reading of black-
white stripes attach on the road. Figure 10 shows the car 
model, which the axle load detectors were equipped.  The 
instruments were designed and calibrated from the strain 
reading at the suspension arms and wheel forces. 

The data acquisition system recorded the signal from 
all sensors at a sampling rate of 256 Hz. Measurement 
noise filtering is recommended, although it is included in 
the influence line obtained from the direct measurement. 
The acquired signals were filtered the measurement noise 
using the simple moving average as a low-pass filter. In 
addition to the smooth bridge surface, the road with a 
rough profile was also considered in the test. The artificial 
road roughness was made by placing a group of wooden 
sticks having a circular section with a diameter of 0.5 cm 
along the moving path. 

5.2. Influence Line Extraction 
 

For the influence line extraction, the direct measurement 
using the calibrated vehicle was conducted. The calibrated 
model was a 30-kg mass of two-axle car moving at an 
average speed of 0.25 m/s equivalent to the full-scale as 
3.75 m/s or 13.5 km/hr. The strain influence ordinate 
obtained from the calibration was interpolated for the 
position every 1 cm along the bridge span. It is observed 
that the extracted influence line of bridge strains exhibits 
the dynamics from the road roughness and low-speed 
movement of the calibrated truck. Figure 11 shows the 
extracted influence lines from the smooth and rough 
bridges. 
 

 

 
 

Fig. 11. Extracted influence line of the bridge model (a) smooth surface (b) rough surface. 
 

 
 
Fig. 12. Regularization parameter on the identification error of the 20-kg vehicle moving on a smooth bridge at an 
average speed of 0.92 m/s: (a) static weight error and (b) RPE of time-varying load. 
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5.3. Regularization Parameter 
 
Figure 12 shows the example of the identification 

error of the 20-kg truck moving on a smooth surface 
bridge at an average speed of 0.92 m/s. The plots reveal 
the sensitivity of the regularization to the solution 
accuracy computed by the USC and proposed algorithms. 
It is indicated that the modified approach accurately 
identifies both the static and dynamic loads. The static 
weight errors significantly decrease for every axle and also 
vehicle gross weight. The dynamic load errors become 
smaller at every value of the regularization parameter, 
where the optimal parameter is observed at nearly 0.01. 

For the conventional regularized least squares 
optimization, the optimal regularization parameter can be 
determined using L-curve [9]. However, L-curve requires 
a considerable number of repetitive identification than the 
USC and the proposed algorithm to create the plot and 
determine the optimal point located at the maximum 
curvature. Besides, the optimal regularization parameter is 
unique for each case from many relevant properties of the 
vehicle-bridge system. Hence, using a specific 
regularization parameter in the identification algorithm for 
every predicted vehicle is preferable in practice. The 
selected regularization parameter used in the experimental 
study was 0.01 for all cases. Table 3 lists the identification 
result from eight experimental scenarios varying various 
parameters including vehicle mass, front axle weight to 
gross weight ratio (FGR), moving speed, and bridge 
surface roughness. Identification errors obtained from the 
proposed algorithm and the USC technique were 

compared to investigate the effectiveness of the improved 
method. 

 
5.4. Experimental Results 

 
Regarding the experimental results listed in Table 3, 

the obtained result reveals that the identification using the 
extracted influence line via the USC technique provides 
more accurate results than the ordinary USC technique for 
every case. For the cases with a smooth surface bridge, the 
maximum errors of static axle weight and static gross 
weight significantly decrease to below ±4% and ±2%, 
respectively. The predicted dynamic loads perform slightly 
better than those obtained from USC. The identification 
errors of the time-varying axle load and total load from the 
experiment are less than 9% and 5%, respectively. This is 
because a vehicle moving with faster speed induces more 
dynamics to the axle force, which leads to higher 
identification errors.  

For the effect of bridge surface roughness, the results 
from the last four cases in Table 3 indicate that the 
estimated static and dynamic loads perform larger 
identification errors than the smooth surface bridge. The 
proposed algorithm accurately updates the identified static 
axle weight. Moreover, the relative percentage errors of 
the predicted dynamic axle loads are also reduced. The 
vehicle speed seems to have more effect on the 
identification error than the vehicle mass. This is because 
the extracted influence line obtained from the direct 
measurement was conducted at a low speed. 

 
Table 3. Identification result from the experiment. 
 

Case 1 2 3 4 5 6 7 8 

Total vehicle mass (kg) 20 30 20 30 20 30 20 30 
FGR 0.46 0.44 0.46 0.45 0.43 0.45 0.43 0.44 

Average speed (m/s) 0.48 0.47 0.92 0.96 0.87 0.99 1.28 1.19 

Bridge surface smooth smooth smooth smooth rough rough rough rough 

USC technique ( = 0.01)         

Static weight error of front-axle (%) -1.88 -8.65 -3.65 -7.84 -8.15 -7.99 -14.95 -12.05 

Static weight error of rear-axle (%) 4.84 4.81 5.38 4.89 5.29 12.33 15.33 13.74 

Static gross weight error (%) 1.75 -1.06 1.23 -0.81 -0.43 3.28 2.21 2.45 

RPE of front-axle load (%) 5.62 9.67 8.22 10.72 18.18 16.39 25.88 18.66 

RPE of rear-axle load (%) 6.23 6.15 9.88 9.48 16.76 18.06 26.78 21.51 

RPE of total load (%) 2.93 2.04 5.03 4.26 9.27 9.23 12.94 10.62 

Number of iterations 4 5 4 4 5 4 4 4 

Proposed technique ( = 0.01)         

Static weight error of front-axle (%) 2.80 -3.71 0.81 -3.41 -2.88 -4.44 -11.19 -8.93 

Static weight error of rear-axle (%) 0.12 0.30 0.63 0.44 -3.35 4.52 7.53 5.81 

Static gross weight error (%) 1.35 -1.45 0.71 -1.28 -3.15 0.53 -0.58 -0.64 

RPE of front-axle load (%) 5.49 5.98 7.51 8.26 15.91 14.44 23.76 16.14 

RPE of rear-axle load (%) 3.69 3.51 7.90 7.43 16.18 15.05 24.40 19.05 

RPE of total load (%) 2.35 1.62 4.40 3.59 9.70 8.36 12.41 9.85 

Number of iterations 6 6 6 6 7 6 6 6 



DOI:10.4186/ej.2021.25.5.45 

ENGINEERING JOURNAL Volume 25 Issue 5, ISSN 0125-8281 (https://engj.org/) 57 

 
 
Fig. 13. Identified loads of the experiment on the smooth surface bridge (case 3). 
 

 
 
Fig. 14. Identified loads of the experiment on the rough surface bridge (case 6). 
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However, using a high-speed test of influence line 
extraction should be avoided. If the influence ordinate 
includes identical dynamics from the high moving speed 
of the calibrated vehicle, the system will accurately identify 
only a vehicle having similar physical properties to the 
calibrated car. The proposed method requires only a 
couple of additional iteration compared to the USC 
technique to accomplish an accurate solution. Figures 13 
and Fig. 14 show the time histories of the actual and 
identified time-varying loads for case 3 and case 6, 
respectively. The predicted forces exhibit an excellent 
matching to the real forces, especially to the total load for 
both smooth and rough road profiles. 

The results discussed above use the same 
regularization parameter of 0.01 obtained from Fig. 12. 
Although the static weight can be accurately estimated, the 
actual dynamic axle loads are unknowns in practice. 
Therefore, a specific regularization parameter assigned in 
the implemented identification system can be determined 
from L-Curves of the preliminary test using various mass 
of the pre-weight trucks. The identification error from a 
high-speed vehicle can be controlled in practice by speed 
limit enforcement or selecting the instrumented bridge 
locating in a low-speed area. Moreover, it is noted that the 
recalibration of the extracted bridge influence line is highly 
recommended when the pavement or structural 
component of the bridge is repaired or reconstructed. 

 
6. Conclusions 

 
The vehicle axle load identification from the bridge 

strain response is analytically and experimentally studied. 
This research presents the improved identification 
algorithm employing the strain influence line extracted 
from the direct measurement and the iterative calculation 
via the updated static component (USC) technique. The 
proposed method’s accuracy and effectiveness are 
investigated and compared to the conventional regularized 
least squares and the USC methods. The analytical results 
obtained from the numerical simulation indicate that the 
proposed approach accurately identifies static axle weight 
and static gross weight with a broader range of the 
regularization parameter compared to the USC technique. 
The modified algorithm also provides the lower 
identification error of the dynamic axle loads, especially 
for a high measuring noise level and high magnitude of 
bridge surface roughness. This is because the extracted 
strain influence line includes the dynamics of the road 
profile and measurement noise. The regularization 
parameter can be selected concerning the appropriate 
number of computational loops of the system. 

The experimental verification using scaled models 
also reveals that the proposed algorithm can provide 
better identification results than the USC for every 
scenario. The identified time-varying load exhibits an 
excellent matching to the measured actual axle force. The 
calculation requires only a couple of additional iteration 
compared to the USC. For a smooth surface bridge, the 
maximum errors of the static weight estimation are below 

±4% and ±2% for the axle weight and gross weight, 
respectively. The relative percentage errors of the dynamic 
loads are less than 9% and 5% for the axle load and total 
load, respectively. However, the axle loads of a vehicle 
moving on the rough road surface at high speed becomes 
difficult to be accurately identified.  

For the system implementation, since the actual axle 
loads are unknown, the appropriate regularization 
parameter can be selected from the bridge test under the 
pre-weight trucks. The advantage of the proposed method 
is that the optimal regularization parameter, which is 
usually very sensitive to vehicle-bridge parameters, can be 
easily assigned. To decrease the identification error of 
high-speed trucks in practice, speed control enforcement 
or selecting the instrumented bridge locating in a low-
speed area is recommended. Regarding the proposed 
method’s effectiveness in both analytical and experimental 
studies, future research on the full-scale application is 
being investigated. It is expected that the proposed 
algorithm is an attractive alternative to existing methods 
for bridge weigh-in-motion systems. 
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