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Abstract. The generalized conforming triangular finite element for thermal bending 
analysis of thin plate caused by the temperature difference along the plate thickness is 
developed.  The finite element formulation with detailed finite element matrices is derived 
based on the modified potential energy principle and the generalized compatibility 
conditions.  The closed-form expressions of the stiffness matrix and the thermal loading 
which can be applied directly to the computer program are also derived and presented.  
The performance of the generalized conforming triangular element is evaluated by several 
examples of which the exact solutions are known.  The results demonstrate that the 
generalized conforming triangular element performs very well for thermal bending analysis 
of thin plate. 
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1. Introduction 
 
The finite element method has been widely used in 

plate bending analysis as the exact solutions of the real 
applications are difficult to be found.  One of the 
difficulties of the finite element in plate bending analysis 
is the requirement of C1 continuity.  As a result of this 
necessity, the value of transverse deflection, w, and its 
slope must impose continuity between adjacent elements.  
Such difficulties contribute to several types of plate 
bending elements which have been developed during the 
past decades [1-4].   

Early developed plate bending elements in finite 
element analysis were the non-conforming element, such 
as the well-known BCIZ triangular element [5].  The 
BCIZ element provided reliable solution accuracy in 
plate bending analysis.  The element was named non-
conforming element because the normal slope along the 
element edges cannot be represented by the corner node 
connections.  In addition, it was found that the solution 
obtained from the non-conforming elements sometimes 
was superior to that obtained from the conforming 
element type.  However, these non-conforming plate 
bending elements sometimes conduced to divergent 
results in some problems so that the convergence to the 
accurate result from this element type could not be 
ensured.  Meanwhile, the conforming element types were 
complicated to formulate and were too stiff as it imposed 
undue conditions of continuity [6].  As a result, the 
conforming elements generally did not used in the real 
applications.  Another element type was the DKT 
element which derived by discrete Kirchhoff theory [3].  
Even though this element provided accurate solution     
[7, 8], the element formulation was quite complicated and 
the transverse displacement was defined only along 
element sides.   

Another type of thin plate bending element was the 
generalized conforming element [9].  The element was 
formulated based on the modified potential energy 
principle and the generalized compatibility conditions 
with the compatibility conditions at nodes and along the 
sides of the element [10].  The nine degrees of freedom 
generalized conforming triangular element then can be 
formulated.  The result obtained from the element 
passed the patch test and provided accurate results.  The 
generalized conforming element was also easy to 
program as the closed-form expression of the 
corresponding finite element matrices can be derived 
explicitly.  However, the finite element formulations of 
this element were derived only for plate bending analysis 
under the applied transverse mechanical loading.  The 
finite element matrices of this element in thermal plate 
bending analysis has not been found in any literature.  
The main objective of this study is to present the finite 
element formulation and the performance of the 
generalized conforming triangular element in thin plate 
bending analysis under thermal loading. 

The paper begins with the corresponding governing 
partial differential equations of the thin plate bending.  

The closed-form expressions of finite element equations 
that include the proposed finite element matrices 
according to thermal plate bending.  Then, the proposed 
thermal load vector is derived and presented.  Finally, 
some thin-plate thermal bending problems with exact 
solutions are used to evaluate the performance of the 
proposed finite element formulations.  Such solutions are 
also compared with the solutions obtained from the well-
known nonconforming triangular thin plate bending 
element (BCIZ) and the discrete Kirchhoff triangular 
element (DKT). 
 

2. Governing Equations 
 
The governing equation of thin plate bending 

problems with the transverse deflection w in the z-
direction normal to the x-y plane of thin plate and the 
temperature distribution T(z) along the plate thickness t 
is given by [11], 
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where p(x,y) is the applied transverse mechanical load 

normal to the x-y plane, ν is Poisson’s ratio and D is the 
bending rigidity which can be defined as, 
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where t is the thickness of the plate and E is the mod 
ulus of elasticity.  The thermal moment MT in Eq. (1) 

is defined by, 
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where α is thermal expansion coefficient. 
 

3. Finite Element Equations 
 
The modified potential energy theorem was used to 

derive the generalized conforming triangular plate 
bending finite element formulations as [12], 
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where  p  and mp  are functions of minimum and 

modified potential energy theorems, respectively.  H is the 
additional energy corresponding to the displacements on 

the element side  eA  in which nQ , nM  and nsM  are 

Lagrange multipliers which represent the transverse shear, 
normal moment and twisting moment on the boundary

 eA , n and s represent the normal and tangential 

directions of the element side, respectively.  w is the 

transverse deflection inside the element.  w  is the 

deflection along the side of the element.  And  s  is the 

rotation about the tangential axis s on  eA . 

With the limit size of the element that tends to zero, 
the additional energy H in Eq. (6) becomes, 
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Therefore, mp  degenerates to  p . The element 

stiffness matrix then can be derived based on the  p . 

We then firstly apply the integration by parts and 
rewrite Eq. (7) as, 
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where j represents the nodal point of the element and 

( ) ns j
M  is the difference between the twisting moments 

acting at the sides connected with nodal point j.  
Therefore, the deflection field w is assumed to meet the 
congruent conditions as, 
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Equation (9) is the point compatibility condition and 

Eqs. (10)-(11), are the line compatibility conditions at 
nodes and along the sides of the element.   

A triangular element with nine degrees of freedom 
(DOF) is shown in Fig. 1.  The vector of nodal unknowns 

 
e
 is defined as, 

 

        =  1 1 1 2 2 2 3 3 3

Te

x y x y x yw w w  (12) 

where ( ) =  /xi i
w y  and ( ) = −  /yi i

w x  denote 

the nodal rotations. 
 

 
 
Fig. 1. Triangular plate bending element with 9 DOF. 

 

The deflection w  and normal slope  s  along the 

element side 12 are supposed to be cubic and linear 
distribution respectively as, 
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where iL  (i = 1, 2, 3) represents area coordinates 

[11], id  (i = 1, 2, 3) represents the length of the element 

side, and = −3 1 2b y y  and = −3 2 1c x x  are the 

coefficients appear in the area coordinates.  Analogous 
expressions for the side 23 and 31 of the element can be 
derived by permutation.  

Therefore, the deflection field w over the element can 
be express as, 
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The nodal compatibility condition Eq. (9) is then 

already satisfied.  The coefficients   1 2 6, , ,  in Eq. 

(16) can be obtained from Eqs. (10) and (11).   
Consequently, the deflection field w can be rewritten 

in matrices as, 
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The expression for six other shape functions (N2, 

Nx2, Ny2, N3, Nx3 and Ny3) can be derived by permutation.  
According to these element shape functions, the element 

stiffness matrix  K  can then be derived. 

The finite element equations for thermal bending 
analysis of thin plate can then be written as, 

 

        = +T pK F F  (21) 

where  K  is the element stiffness matrix,    is the 

vector of the element nodal unknowns which contains 
transverse deflection and the rotations at each node as in 

Eq. (12), and  TF  is the nodal thermal load associated 

with the temperature gradient through the plate thickness.  

While  pF is the nodal force vector due to the applied 

lateral loads which is not considered in this study.   

The element stiffness matrix  K  of the generalized 

conforming triangular element is given by, 
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The closed form expression of the stiffness matrix 

can be rewritten as follows, 
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where the matrices  R  and  Q  is given in 

Appendix. 
The vector of the nodal forces due to the thermal 

load  TF  in Eq. (21) can be defined as, 
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where the vector  M  is given by, 
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The thermal moment, MT is defined as in Eq. (3).  

The vector of the nodal forces due to the thermal load 

 TF  in Eq. (26) can be rewritten as, 
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where the closed form expression of matrix  BA is 

shown in Appendix. 
The closed-form expressions of the thermal load 

vector in Eq. (29) which have been derived firstly in this 
study can be applied in the computer programming 
directly.  The performance of the proposed thermal load 
vector above is then examined by thermal plate bending 
examples of which exact solutions are existed in the next 
section. 

 

4. Applications 
 
Three examples are used to evaluate the performance 

of the generalized conforming triangular (GCT) plate 
bending element with the proposed closed form finite 
element formulations.   

 
4.1. Simply Supported Rectangular Plate 

 
The all-edge simply supported rectangular plate as 

shown in Fig. 2 is considered.  The temperature 
distribution of the plate varies linearly along the 
thickness.  The exact solution of the deflection in z-
direction (w) is [13], 
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The geometric properties of plates are the width (a) 

of 4 m, the length (b) of 2 m, and the thickness (t) of 0.01 m. 
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The physical properties of the plate are consisted of the 
thermal expansion coefficient (α) of 2.3×10-7 /°C, the 
Poisson’s ratio (ν) of 0.33, and the modulus of elasticity 
(E) of 72 GPa.  The temperatures of the upper surface 
(TU) of the plate are set to be 100 °C and the lower 
surface (TL) of the plate are set to be 25 °C. 

 

 
 
Fig. 2. All-edge simply supported rectangular plate with 
linear temperature distribution along the thickness. 

 
Due to its symmetry, only the top right quarter of 

the plate in Fig. 2 was modeled and analyzed.  The finite 
element models with the uniform mesh size of 8×4, 
16×8 and 20x10 intervals (45, 153 and 231 nodes, 
respectively) as shown in Fig. 3(a)-(c) were used in this 
analysis.  Three element types, GCT, DKT and BCIZ, 
were used in the analysis.  From the problem statement, 
the plate tended to bend with the maximum transverse 
deflections occurred at the center of the plate.  The 
maximum transverse deflections at the center of the plate 
obtained from using all elements were shown in Fig. 4.  
The results from all element types converge to the exact 
solution as the mesh size decreased.  It was obvious that 
the results obtained from the proposed GCT element 
and DKT element provided high solution accuracy as 
they closely matched the exact solution while the 
solutions obtained from the non-conforming BCIZ 
element were not as accurate as the others. 

 

 
(a) 8x4   (b) 16x8 

 
(c) 20x10 

 
Fig. 3. Finite element meshes in the computations. 
 

 
 
Fig. 4. Deflections at the center of the plate (wc) with 
mesh refinement. 

 
4.2. Clamped and Simply Supported Plate 

 
The rectangular plate of which the sides are clamped 

and simply supported is considered.  The temperature 
distribution of the plate varies linearly along the 
thickness.  This plate is clamped along the edges y = b/2 
and y = -b/2 of the plate, and the plate is simply 
supported along the edges x = 0 and x = a of the plate as 
shown in Fig. 5.  The exact solution of the deflection (w) 
is given as [14], 
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while D and MT are given in Eq. (2) and Eq. (3), 

respectively. 
 
The dimension of plate is the width (a) of 2 m and 

the length (b) of 4 m. The thickness of the plate (t) is 0.01 
m.  The modulus of elasticity (E) of the plate is defined 
as 190 GPa.  The Poisson’s ratio (ν) and the thermal 
expansion coefficient (α) of the plate are 0.3 and 16×10-6 
/°C, respectively.  The temperatures of the upper surface 
(TU) of the plate is 60 °C, and temperatures of the lower 
surface (TL) of the plate is 0 °C. 
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Fig. 5. Clamped and simply supported rectangular plate 
with linear temperature distribution along the thickness. 

 
Due to the symmetry of the problem, an upper right 

quarter of the plate was used in this analysis.  The finite 
element models consisted of the uniform mesh size of 
4x8, 8x16 and 16x32 mesh intervals with 45 nodes, 153 
nodes and 561 nodes, respectively.  The example of 4x8 
finite element model using in the analysis was shown in 
Fig. 6.  The maximum transverse deflections at the center 
of the plate (wc) obtained in the present analysis were 
shown in Fig. 7.  It can be observed that the results 
obtained from all element types converge to the exact 
solution as the mesh sizes were decreased.  The results 
showed that the GCT element performed very well and 
provided higher solution accuracy than other element 
types. 

 

 
 

Fig. 6. The example of 4x8 finite element model using in 
the analysis. 

 

 
 

Fig. 7. Deflections at the center of the plate (wc) with 
mesh refinement. 

4.3. Parallelogram Plate 
 

The simply supported parallelogram plate with the 
linear temperature distribution through the plate 
thickness shown in Fig. 8 is considered.  The plate 
geometry properties in this analysis are a = 2 m, b = 1 m, 
γ = 30° and the thickness (t) = 0.01 m.  The modulus of 
elasticity (E) of the plate is 190 GPa.  The Poisson’s ratio 
(ν) and the thermal expansion coefficient (α) of the plate 
are 0.3 and 16×10-6 /°C, respectively.  The plate has the 
upper surface temperature (TU) = 60 °C and the lower 
surface temperature (TL) = 0 °C.  The exact solution of 
the central transverse deflection (wc) is given by [15],   
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2

0.090135 T
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where D and MT are given in Eq. (2) and Eq. (3), 

respectively. 
 

 
 
Fig. 8. Simply supported parallelogram plate with linear 
temperature distribution along the thickness. 

 
The finite element model was discretized into 

uniform meshes of 8x4 (45 nodes), 16x8 (153 nodes) and 
20x10 (231 nodes) intervals as shown in Figs. 9(a)-(c).  
The central transverse deflections obtained from each 
element type were compared with the exact solution and 
shown in Fig. 10.  The results indicated that both DKT 
and GCT elements obviously provided good solution 
accuracy while the solution obtained from the non-
conforming BCIZ element diverged from the exact 
solution. 

 

 
 (a) 45 nodes  (b) 153 nodes  (c) 231 nodes 
 
Fig. 9. Finite element meshes of parallelogram plate. 
 

5.  Conclusion 
 

The generalized conforming triangular (GCT) 
element for thermal bending analysis of thin plate caused 
by the temperature difference along the plate thickness 
was presented.  The derived closed-form expressions of 
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the GCT element for thermal bending analysis were 
simple and can be applied in the computer program 
directly.  The presented examples demonstrated that the 
GCT element with the proposed thermal load finite 
element formulation provided good solution accuracy.  
In addition, the results obtained from the proposed 
element also converged to the exact solution with the 
meshes refinement.  The solution accuracy obtained 
from both DKT and GCT elements were quite in the 
same high quality; however, the generalized conforming 
element was better when we considered in the simplicity 
of its formulation.  Moreover, the non-conforming BCIZ 
element was somehow unreliable in some cases as we 
could see in the third example that it provided diverged 
solution. 
 

 
Fig. 10 Deflections at the center of the plate (wc) with 
mesh refinement. 
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Appendix 
 

The closed form of the stiffness matrix  K  given in 

Eq. (25) is, 

 
      =

T
K R Q R  (A1) 

where the matrices  R  and  Q  is defined by, 
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The vector of the nodal forces due to the thermal 

load  TF  given in Eq. (29) is, 
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where the closed form of  BA is in the form of, 
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