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Abstract. In this study, a method to design 2D-lattice plates, based on their weight efficiency, 
is proposed. The 2D-lattice plates considered in this study are made up of Euler-Bernoulli 
beams and can be modeled as homogeneous orthotropic Kirchhoff plates, derived by the 
strain-energy-based homogenization method. The weight efficiency of 2D-lattice plates is 
evaluated using relationships between their effective rigidities and area weight densities. The 
proposed design method is developed with these relationships. The closed-form effective 
rigidities of 2D-lattice plates, derived by the strain-energy-based homogenization method, 
are utilized as convenient design formulas for the proposed design method. A generic 
symbolic finite element program, written in MATLAB, is used to determine the closed-form 
solutions of effective properties that include the effective elastic constants, the effective 
rigidities, and the relationships between the effective rigidities and the area weight densities 
of 2D-lattice plates. Example design graphs, created by the obtained closed-form solutions, 
for 2D-lattice plates with different unit cells are presented and discussed. In addition, the 
usefulness of the obtained weight efficiency is also demonstrated via analysis of 2D-lattice 
plates with different unit-cell patterns. 
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1. Introduction 
 
Two-dimensional lattices are periodic structures that 

are used in a wide range of applications, such as structural 
panels and floors, aircraft structural parts [1-4], heat 
exchangers [5], and biomaterials [6,7]. Structures of this 
type are attractive because they are lightweight when 
compared to their full-solid counterparts and their 
patterns can be designed to yield required overall 
properties [8-11]. In addition, they can usually be mass-
produced. Two-dimensional lattices can be considered as 
structures that are obtained hypothetically by removing 
some materials from their original full-solid structures. 
Naturally, 2D lattices are lighter than their original full 
structures while the stiffness is also reduced. When the 
stiffness of a 2D lattice is the main design target, a method 
to minimize the stiffness reduction with respect to the 
weight reduction, due to the hypothetical material removal 
from an original full-solid counterpart, is desirable. The 
relationship between stiffness and weight can be used to 
determine the weight efficiency of 2D lattices having 
different periodic patterns. Two-dimensional lattices can 
be used as plane or plate structures. When the size of a 
2D-lattice plate is significantly larger than the sizes of its 
unit cells, the lattice can be accurately represented by an 
equivalent full-solid plane or plate structure having an 
equivalent homogeneous solid. By using the properties of 
the equivalent homogeneous solid, modeling of the 
equivalent structure can be done more easily than the 
modeling of the original lattice.  

The effective properties of the equivalent 
homogeneous solid of a 2D lattice can be determined by 
homogenization methods [10,12-27]. A homogenization 
method can be used to theoretically replace a material that 
has uniformly distributed inhomogeneities on a small scale 
with an equivalent homogeneous material on a large scale. 
This allows materials with uniformly distributed small 
inhomogeneities to be conveniently considered as 
homogeneous materials. One of the most widely used 
homogenization methods is the strain-energy-based 
homogenization method [15,28-30]. In this method, the 
strain energy in an equivalent homogeneous material, 
under uniform far-field boundary conditions, is 
considered to be the same as the strain energy in its 
original inhomogeneous material, under the same 
boundary conditions [15]. The relationship between the 
average stresses and average strains that occur in the 
inhomogeneous material under these boundary conditions 
is considered as the effective material law of the material. 

Two-dimensional-lattice plates are generally frame-
like and can therefore be modeled as frame structures, 
with their struts considered as beams. The effective 
material law of a 2D-lattice plate can be determined by the 
strain-energy-based homogenization method through 
frame analysis of a selected unit cell of the plate. Since unit 
cells of practical 2D-lattice plates do not usually have 
many strut members, the analysis of unit cells may be 
performed analytically, instead of numerically, to obtain 
the closed-form effective elastic constants of these plates. 

Closed-form solutions, if obtainable, are preferred since 
they can be conveniently used as engineering formulas. 
Several modern mathematical software packages can 
facilitate these analytical derivations. Closed-form 
effective elastic constants of plane-stress lattices with 
various unit-cell patterns have been determined by 
Masters and Evans [31], Gibson and Ashby [17], Wang 
and McDowell [18], Vigliotti and Pasini [21], and Sam et 
al. [27]. Some of these derivations have been done 
manually while some have been carried out with the help 
of symbolic mathematical software packages. In the work 
by Sam et al. [27], a generic symbolic finite element 
program, written in MATLAB, is used to analytically 
derive the effective elastic constants of frame-like periodic 
solids having various unit-cell patterns. In their study, the 
strain-energy-based homogenization method is used, and 
2D frame-like periodic solids under the plane-stress 
condition and 3D frame-like periodic solids are 
considered. Exact parametric forms of the effective 
material constants for 2D-lattice plates are analytically 
derived by Suttakul et al. [32]. The forms contain some 
dimensionless factors. When these dimensionless factors 
are constants, their values can be determined by exact 
curve fitting, and the closed forms of the effective material 
constants can be obtained. In contrast, when the 
dimensionless factors are not constants, it is not possible 
to obtain the closed-form solutions by their methodology. 

In this paper, a method to design 2D-lattice plates 
with different unit-cell topologies, based on their weight 
efficiency with respect to their effective rigidities, is 
proposed. The proposed design method uses the 
relationships between the effective rigidities and the area 
weight densities of 2D-lattice plates to determine their 
weight efficiency, and design solutions are determined 
from these relationships. In practice, design methods are 
mostly given with formulas. It is therefore desirable that 
the design method proposed in this study can also be given 
with formulas. To demonstrate this possibility, the 
symbolic finite element program in the work by Sam et al. 
[27] is used to determine the closed-form effective 
rigidities of 2D-lattice plates having some common unit-
cell topologies. These unit cells are square, body-centered 
square, diamond-square, triangular, hexagonal, diamond, 
and kagome unit cells. It is assumed that the struts of these 
unit cells can be modeled accurately as Euler-Bernoulli 
beams. As a result, it is also assumed that the equivalent 
homogenous plate of a 2D-lattice plate behaves as a 
homogeneous orthotropic Kirchhoff plate. The obtained 
closed-form effective rigidities can then be used to 
provide essential design formulas. The work by Sam et al. 
[27] provides the closed-form effective in-plane rigidities 
of 2D lattices with several common unit-cell patterns, but 
not the closed-form effective out-of-plane rigidities. As a 
result, the closed-form effective out-of-plane rigidities 
obtained in this study extend the work by Sam et al. [27]. 
In addition, they can also be used to verify the solutions 
obtained by exact curve fitting in the work by Suttakul et 
al. [32]. 
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In the analytical derivations in this study, the symbolic 
finite element program is used to analytically compute the 
strain energy of unit cells under various curvature modes. 
These closed-form expressions of the strain energy are 
subsequently used to analytically compute the closed-form 
effective elastic constants and effective rigidities of the 
resulting 2D-lattice plates. The closed-form relationships 
between the effective rigidities and the area weight 
densities of these plates are also determined. These closed-
form relationships allow the weight efficiency, with 
respect to the effective rigidities, of the resulting 2D-lattice 
plates to be determined. Examples of design graphs for 
2D-lattice plates with different unit cells, constructed 
from the closed-form solutions in this study, are shown. 
Finally, the usefulness of the obtained weight efficiency is 
also demonstrated through analysis of 2D-lattice plates 
with some different unit-cell patterns. 

The 2D-lattice plates considered in this study are 
frames consisting of Euler-Bernoulli beams and can be 
modeled as homogeneous orthotropic Kirchhoff plates. 
This scope of consideration allows convenient closed-
form design formulas to be derived. However, the scope 
also limits the applicability of these design formulas only 
to 2D-lattice plates that can be modeled accurately as 
frames of Euler-Bernoulli beams. For 2D-lattice plates 
consisting of thick beams that can be modeled accurately 
as frames of Timoshenko beams, a different set of closed-
form design formulas can be derived. There are lattice 
structures that consist of only Euler-Bernoulli or 
Timoshenko beams, but their unit-cell topologies contain 
joints, each of which connects a significant number of 
struts. Consequently, these joints contain large volumes of 
material. As a result, modeling these structures as frames 
may yield inaccurate results since, in normal frame analysis, 
joints are modeled as points, and their geometrical details 
are ignored. Frame analysis cannot be used for lattice 
structures that are made up of 3D solid continua. For 
these structures, 3D solid modeling is necessary [33-35]. 
Unfortunately, when 3D solid modeling is required and 
used, it is virtually impossible to obtain closed-form design 
formulas. 

The concept of designing unit cells of cellular solids 
for required macroscopic properties has been studied by 
many researchers. In a broader scope, the components of 
a cellular solid at different scales can be considered 
together and designed. This broader concept is usually 
called the multiscale design concept. Since some design 
tasks for a cellular solid can be directly performed solely 
on its unit cell, it is possible to employ an optimization 
method to facilitate these design tasks. For example, Gu 
et al. [5] proposed an optimization technique for designing 
2D cellular metals for combined heat dissipation and 
structural load capacity by considering cell morphologies 
and cell arrangements. Design strategies dealing with 
multiscale optimal design of sandwich panels with cellular 
cores can be found in the works by Catapano and 
Montemurro [9], Catapano and Montemurro [36], and 
Montemurro et al. [37]. Similar design strategies for shape 
optimization of cellular structures have also been 

proposed by Bertolino et al. [8] and Montemurro et al. [38]. 
Theerakittayakorn et al. [10] presented a simple strategy 
for designing frame-like periodic structures for isotropic 
symmetry by appropriate sizing of their unit-cell struts. 
Approaches for designing 2D auxetic periodic structures 
by modifying their re-entrant honeycomb unit cells have 
been given in the works by Lu et al. [11] and Baran and 
Öztürk [39]. 

This paper is organized into seven sections. Section 2 
presents the definitions of the effective bending rigidities 
and torsional rigidity of a thin periodic plate. These 
rigidities are then used to construct parameters for 
assessing the weight efficiency of 2D-lattice plates in the 
same section. Section 3 discusses how the effective 
properties of 2D-lattice plates can be determined by the 
strain-energy-based homogenization method. Section 4 
briefly mentions the symbolic finite element program used 
in this study. Section 5 presents the closed-form effective 
elastic constants and rigidities of 2D-lattice plates having 
the unit-cell topologies considered in this study. After that, 
the design method for weight efficiency is proposed in 
Section 6, in which some example design graphs are also 
given. The paper is concluded in Section 7. 
 

2. Weight Efficiency of 2D-Lattice Plates 
 

This study considers 2D-lattice plates that consist of 
Euler-Bernoulli beams and can be modeled as 
homogeneous orthotropic Kirchhoff plates [32]. To 
describe an orthotropic Kirchhoff plate, the conventions 

in Fig. 1 are used. In the figure, 𝑥1  and 𝑥2  are the 

orthotropic axes of the plate. In addition, 𝑀11, 𝑀22, 𝑀12, 

and 𝑀21 are the bending moments while 𝑄1  and 𝑄2 are 
the shear forces. These internal forces are quantities per 

unit length. Moreover, ℎ in the figure is the plate thickness. 
 

 
Fig. 1. Plate coordinate system and internal forces. 
 

Lattice patterns are used in plates to reduce the 
weights of the plates. When the plate rigidities are among 
the main design targets, the design efficiency can be 
evaluated using the ratios of the plate rigidities to the area 
weight densities. The area weight density of a plate is 
defined simply as the weight of the plate per its midplane 
area. A plate is considered to have high weight efficiency 
if it has high rigidities per area weight density. In this study, 
the bending and torsional rigidities of orthotropic 
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Kirchhoff plates defined in the work by Suttakul et al. [32] 
are adopted, i.e. 
 

𝑅𝑏1 =
𝐸1ℎ3

12
     𝑅𝑏2 =

𝐸2ℎ3

12
     𝑅𝑡12 =

𝐺12ℎ3

12
 . (1) 

 

Here, 𝑅𝑏1 is the bending stiffness of an orthotropic plate 

measured when only 𝑀11 is applied to the plate while 𝑅𝑏2 

is the bending stiffness measured when only 𝑀22  is 

applied. In addition, 𝑅𝑡12  is the torsional stiffness 

measured when only 𝑀12 is applied to the plate. In these 

definitions, 𝐸1 and 𝐸2 are Young’s moduli and 𝐺12 is the 
shear modulus of the orthotropic material of which the 

plate is made. Note that, 𝜈12 and 𝜈21, which will appear 
later in this paper, denote Poisson’s ratios of an 
orthotropic material. 

A thin periodic plate consisting of a sufficiently 
substantial number of unit cells can be modeled accurately 
as a homogeneous thin plate with effective properties. The 

effective bending rigidities 𝑅𝑏𝑖
∗  and torsional rigidity 𝑅𝑡12

∗  
of a thin periodic plate can be defined straightforwardly 
using Eq. (1) as [32] 

 

𝑅𝑏1
∗ =

𝐸1
∗ℎ3

12
     𝑅𝑏2

∗ =
𝐸2

∗ℎ3

12
     𝑅𝑡12

∗ =
𝐺12

∗ ℎ3

12
 (2) 

 

where 𝐸𝑖
∗ and 𝐺12

∗  are, respectively, the effective Young’s 
moduli and effective shear modulus of the periodic plate. 

In addition, ℎ is the apparent thickness of the plate. 
If the plate consists only of one homogeneous base 

material with voids, the area weight density of the plate is 
given by 

 

𝜌𝐴
∗ =

𝑉𝑠𝜌

𝑉/ℎ
= 𝑉𝑓𝜌ℎ (3) 

 

where 𝑉 and 𝑉𝑠  represent, respectively, the volumes of the 

plate and the base material. In addition, 𝜌 is the weight 

density of the base material and 𝑉𝑓 is its volume fraction. 

By using Eqs. (2) and (3), the effective rigidities per 
area weight density are obtained as 

 

𝑅𝑏𝑖
∗

𝜌𝐴
∗ =

𝐸𝑖
∗ℎ3

12𝜌𝐴
∗ =

𝐸𝑖
∗ℎ2

12𝑉𝑓𝜌
       

𝑅𝑡12
∗

𝜌𝐴
∗ =

𝐺12
∗ ℎ2

12𝑉𝑓𝜌
 . (4) 

 
The above effective rigidities per area weight density are 
also referred to as the specific effective rigidities. Note that, 
in the work by Suttakul et al. [32], the specific effective 
rigidities are defined as the effective rigidities per weight 
density. Using the area weight density, instead of the 
overall weight density, allows the weight efficiency of 2D-
lattice plates having different thicknesses, in addition to 
different unit-cell patterns, to be compared.  

The specific effective rigidities can be further 
normalized by the specific rigidities of a full-solid plate 
having the same thickness to give 

 

�̂�𝑏𝑖
∗ =

(
𝐸𝑖

∗ℎ2

12𝑉𝑓𝜌
)

(
𝐸ℎ2

12𝜌
)

=
1

𝑉𝑓

𝐸𝑖
∗

𝐸
         

�̂�𝑡12
∗ = (

𝐺12
∗ ℎ2

12𝑉𝑓𝜌
) / (

𝐺ℎ2

12𝜌
) =

1

𝑉𝑓

𝐺12
∗

𝐺

=
1

𝑉𝑓

𝐺12
∗

𝐸/[2(1 + 𝜈)]
. 

(5) 

 

Here, 𝐸 and 𝐺 are, respectively, Young’s modulus and the 

shear modulus of the base material. In addition, 𝜈  is 

Poisson’s ratio. The terms, �̂�𝑏𝑖
∗  and �̂�𝑡12

∗ , are called, 
respectively, the normalized specific effective bending and 
torsional rigidities. These normalized specific effective 
rigidities are found to be the same as those presented by 
Suttakul et al. [32]. However, Suttakul et al. [32] defined 
the normalized specific effective rigidities based on the 
weight density, not the area weight density. 

The effective rigidities per area weight density in Eq. 
(4) can be used to compare the weight efficiency of 
periodic Kirchhoff plates that have different unit-cell 
patterns and different thicknesses. The normalized 
specific effective rigidities in Eq. (5) can be used to assess 
specifically the efficiency of unit-cell patterns in terms of 
the weight efficiency of their resulting plates. 
 

3. Effective Properties of 2D-Lattice Plates 
 

When inhomogeneities of an inhomogeneous plate 
are uniformly distributed and considerably smaller than 
the plate’s size, the plate can be considered as a 
homogeneous plate. In this case, the relationships 
between the average moments and average curvatures of 
the plate under uniform far-field boundary conditions can 
be used to define the plate’s effective rigidities [32]. To 
apply uniform far-field boundary conditions, the plate has 
to be theoretically extended to become an infinite plate. If 
the inhomogeneities of the plate are periodically 
distributed, under uniform far-field boundary conditions, 
the moments and curvatures in the plate are periodic, 
except in the negligible regions near the far-field boundary. 
As a result, the average moments and average curvatures 
can be computed from the periodic moments and 
curvatures. This allows periodic far-field boundary 
conditions to be conveniently used instead of uniform far-
field boundary conditions. Subsequently, since periodic 
far-field boundary conditions result in periodic moments 
and curvatures, a smaller domain, within the infinite plate, 
under appropriate periodic boundary conditions can be 
considered instead of the infinite plate. This smaller 
domain can even be one unit cell. Since the moments and 
curvatures are periodic, the averages can also be 
conveniently obtained from one unit cell. Here, some 
equations for the determination of the effective rigidities 
of thin periodic plates are briefly shown. Detailed 
information can be found in the work by Suttakul et al. 
[32]. 
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Consider a thin periodic plate that is made of a 
substantial number of unit cells. The plate has a plane of 

reflection symmetry, which is referred to as a midplane 𝐴. 

The 𝑥1 − 𝑥2 − 𝑥3  coordinate system in Fig. 1, whose 

origin is on the midplane 𝐴, is used as the reference frame. 
Although the real thickness of the plate may not be 
constant, it is considered as having an apparent thickness 

of ℎ. The periodicity of the plate material is only in the 

𝑥1 − 𝑥2 plane. Again, 𝑥1 and 𝑥2 are the orthotropic axes 
of the plate. Periodic kinematic boundary conditions are 

applied to the plate to create the following deflection 𝑤, 
i.e., 
 

𝑤(𝑥1 , 𝑥2) = 𝑤𝑜(𝑥1, 𝑥2) + 𝑤𝑝(𝑥1, 𝑥2) 

= [
𝜅11

𝑜

2
𝑥1

2 +
𝜅22

𝑜

2
𝑥2

2 + 𝜅12
𝑜 𝑥1𝑥2] + 𝑤𝑝(𝑥1, 𝑥2) 

(6) 

 

where 𝜅𝑖𝑗
𝑜  is a constant symmetric tensor. In addition, 𝑤𝑝 

is a periodic function of 𝑥1 and 𝑥2. In the above equation, 

𝑤𝑜  represents the deflection of a homogeneous plate 
subjected to uniform kinematic boundary conditions that 

yield a constant curvature of 𝜅𝑖𝑗
𝑜 . Voids can be considered 

as the limit cases of infinitely soft inclusions [15]. Thus, 

the deflection 𝑤 in the above equation is mathematically 
extended everywhere in the midplane of the plate, 

including the inside of any voids. The rotation 𝜃𝑖 = 𝑤,𝑖 

and the curvature 𝜅𝑖𝑗 = 𝑤,𝑖𝑗 of the periodic plate can be 

obtained as 
 

𝜃𝑖 = 𝑤,𝑖 = 𝑤,𝑖
𝑜 + 𝑤,𝑖

𝑝
= 𝜃𝑖

𝑜 + 𝜃𝑖
𝑝
 (7) 

 

𝜅𝑖𝑗 = 𝑤,𝑖𝑗 = 𝑤,𝑖𝑗
𝑜 + 𝑤,𝑖𝑗

𝑝
= 𝜅𝑖𝑗

𝑜 + 𝑤,𝑖𝑗
𝑝

= 𝜅𝑖𝑗
𝑜 + 𝜅𝑖𝑗

𝑝
. (8) 

 

Note that 𝜅𝑖𝑗
𝑝

 and 𝜅𝑖𝑗  are periodic since 𝑤𝑝  is periodic 

and 𝜅𝑖𝑗
𝑜  is constant. 

It can be proven that the average of 𝜅𝑖𝑗  over  𝐴 , 

denoted here by 〈𝜅𝑖𝑗〉, is equal to 𝜅𝑖𝑗
𝑜  [32], i.e. 

 

〈𝜅𝑖𝑗〉 =
1

𝐴
∫ 𝜅𝑖𝑗𝑑𝐴

𝐴

= 𝜅𝑖𝑗
𝑜 . (9) 

 

The effective rigidity tensor 𝐷𝑖𝑗𝑘𝑙
∗  of the periodic plate 

is defined as  
 

〈𝑀𝑖𝑗〉 = 𝑀𝑖𝑗
𝑜 =

1

𝐴
∫ 𝑀𝑖𝑗𝑑𝐴

𝐴

= −𝐷𝑖𝑗𝑘𝑙
∗ 〈𝜅𝑘𝑙〉

= −𝐷𝑖𝑗𝑘𝑙
∗ 𝜅𝑘𝑙

𝑜 . 
(10) 

 

where 〈𝑀𝑖𝑗〉 = 𝑀𝑖𝑗
𝑜  is the average of 𝑀𝑖𝑗 over 𝐴.  

The average strain energy of the plate 𝑈  over 𝐴  is 
given by [32] 

 

𝑈 = −
1

2𝐴
∫ 𝑀𝑖𝑗𝜅𝑖𝑗𝑑𝐴

𝐴

= −
1

2
〈𝑀𝑖𝑗〉〈𝜅𝑖𝑗〉

=
1

2
𝐷𝑖𝑗𝑘𝑙

∗ 𝜅𝑘𝑙
𝑜 𝜅𝑖𝑗

𝑜 . 

(11) 

 

Subsequently, the strain energy of the unit cell 𝑈𝐶 is 
given by 

 

𝑈𝐶 = 𝑈𝐴𝐶 =
1

2
𝐷𝑖𝑗𝑘𝑙

∗ 𝜅𝑘𝑙
𝑜 𝜅𝑖𝑗

𝑜 𝐴𝐶 (12) 

 

where 𝐴𝐶  denotes the midplane area of the unit cell. 

Equation (12) is used to determine 𝐷𝑖𝑗𝑘𝑙
∗    In the 

determination of 𝐷𝑖𝑗𝑘𝑙
∗ , different modes of 𝜅𝑖𝑗

𝑜  are applied 

to the unit cell and the strain energy values of the unit cell 
are determined from structural analysis. These modes of 

𝜅𝑖𝑗
𝑜  are created via periodic boundary conditions 

determined from Eq. (6). The corresponding values of 𝑈𝐶 

and 𝜅𝑖𝑗
𝑜  are then used in Eq. (12) to compute 𝐷𝑖𝑗𝑘𝑙

∗ . 

For mathematical convenience, Eq. (10) is written in 
matrix form as 

 

𝑴𝑜 = {

𝑀11
𝑜

𝑀22
𝑜

𝑀12
𝑜

} = − [

𝐷11
∗ 𝐷12

∗ 0

𝐷22
∗ 0

𝑆𝑦𝑚 𝐷33
∗

] {

𝜅11
𝑜

𝜅22
𝑜

2𝜅12
𝑜

}

= −𝑫∗𝜿𝑜. 

(13) 

 
In Eq. (13), there are four independent effective 

constants, i.e. 𝐷11
∗ , 𝐷22

∗ , 𝐷33
∗ , and 𝐷12

∗ , which can be 
determined from Eq. (12) by prescribing four different 

modes of 𝜅𝑖𝑗
𝑜  to the considered unit cell. A detailed 

methodology for obtaining 𝐷𝑖𝑗
∗  can be found in the work 

by Suttakul et al. [32]. 
The effective elastic constants can then be obtained in 

terms of 𝐷𝑖𝑗
∗  as [32] 

 

𝐸1
∗ =

12𝐷11
∗

ℎ3
[1 −

𝐷12
∗

𝐷11
∗ 𝐷22

∗ ]      𝐸2
∗ =

𝐷22
∗

𝐷11
∗ 𝐸1

∗   

𝜈12
∗ =

𝐷12
∗

𝐷22
∗       𝜈21

∗ =
𝐷12

∗

𝐷11
∗       𝐺12

∗ =
12𝐷33

∗

ℎ3
. 

 

(14) 

Here, 𝜈12
∗  and 𝜈21

∗  denote the effective Poisson’s ratios. 

Note that 𝜈12
∗ 𝐸2

∗ is equal to 𝜈21
∗ 𝐸1

∗. The effective elastic 

moduli 𝐸𝑖
∗ and 𝐺12

∗  in Eq. (14) are used to compute all the 
terms defined in Eqs. (2), (4), and (5). 
 

4. Symbolic Finite Element Program 
 
The relationships between the effective rigidities and 

the area weight density of a 2D-lattice plate describe the 
weight efficiency of the plate. These relationships can be 
used to determine efficient designs of 2D-lattice plates. It 
is preferable that these relationships are given in closed 
forms as they can be used as design formulas. As the 2D-
lattice plates considered in this study consist only of Euler-
Bernoulli beams, it is possible to use symbolic 
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computation to derive these relationships. In this study, a 
symbolic finite element program developed in MATLAB 
by Sam et al. [27] is used to determine the required closed-
form effective properties of 2D-lattice plates. In the 
development of the program by Sam et al. [27], the object-
oriented programming paradigm is used to increase the 
program’s maintainability, extensibility, and reusability. In 
the work by Sam et al. [27], the program is used to 
determine the closed-form effective elastic constants of 
several 2D and 3D frame-like periodic solids that are made 
of various unit-cell patterns. 

As mentioned above, the four independent effective 

constants, i.e. 𝐷11
∗ , 𝐷22

∗ , 𝐷33
∗ , and 𝐷12

∗  in Eq. (13), can be 
obtained from Eq. (12) by prescribing four different 

modes of 𝜅𝑖𝑗
𝑜  to the considered unit cell. By using the 

symbolic finite element program, the analytical 
expressions of strain energy under the four different 
curvature modes are symbolically determined first. After 

that, Eq. (12) is used to symbolically determine 𝐷11
∗ , 𝐷22

∗ , 

𝐷33
∗ , and 𝐷12

∗ . After 𝐷11
∗ , 𝐷22

∗ , 𝐷33
∗ , and 𝐷12

∗  are known, 
the effective elastic constants in Eq. (14) can also be 
symbolically computed. Subsequently, the closed forms of 

𝐸𝑖
∗ and 𝐺12

∗  are used to compute the closed-form effective 
rigidities in Eq. (2), the effective rigidities per area weight 
density in Eq. (4), and the normalized specific effective 
rigidities in Eq. (5). 
 

5. Effective Elastic Constants and Rigidities 
 
In this Section, the closed-form effective elastic 

constants and rigidities of 2D-lattice plates having the 
considered unit-cell topologies are presented. The unit 
cells considered in this study are shown in Fig. 2. They are 
square, body-centered square, diamond-square, triangular, 
hexagonal, diamond, and kagome unit cells. The boundary 
edges of the unit cells are illustrated as dashed lines. The 

directions of the 𝑥1 and 𝑥2 coordinates for all unit cells in 

Fig. 2 are shown in the first unit cell. In the figure, 𝐿 
represents the selected characteristic length of each unit 
cell. Note that proper consideration must be given to edge 
struts that are shared by adjacent unit cells. As an example, 
consider a 2D-lattice plate made of triangular unit cells in 
Fig. 3. The selected unit cell is shown in Fig. 3(b). The 
moment of inertia and the effective polar moment of 

inertia of the struts are denoted, respectively, by 𝐼 and 𝐽𝑒𝑓 . 

In finite element analysis, this unit cell is modeled as a 
frame structure consisting of Euler-Bernoulli beams. The 
bending and torsional rigidities of each horizontal edge 
strut of the triangular unit cell in Fig. 3(b) are only half of 
those of the original strut. This is because each horizontal 
edge strut is shared by two adjacent unit cells. 

Table 1 shows the closed-form effective elastic 
constants of the 2D-lattice plates determined by the 
symbolic finite element program. It can be seen that, in 
most cases, the effective elastic constants are functions of 
the elastic properties of the base material and the sectional 

properties of the struts. In addition, 𝐸𝑖
∗ and 𝐺12

∗  are found 

to be functions of the plate thickness ℎ and the unit-cell 

characteristic length 𝐿. The closed forms in Table 1 are 
written in such a way that the contributions from the 
bending and torsional rigidities of the struts are 
distinguishable from each other. Regarding the elastic 
properties of the base material, if the relationship between 

𝐸 and 𝐺, i.e. 𝐺 = 𝐸/[2(1 + 𝜈)], is used in the solutions 

in Table 1, then 𝐸𝑖
∗ can be rewritten as functions of 𝐸 and 

𝜈, and these functions vary linearly with 𝐸. Similarly, 𝐺12
∗  

can be rewritten as functions of 𝐺  and 𝜈 , and these 

functions vary linearly with 𝐺 . Moreover, 𝜈𝑖𝑗
∗  can be 

rewritten in terms of 𝜈 alone. The exception is only for the 

case of the square unit cell, in which 𝐸𝑖
∗ can be written as 

a linear function of 𝐸 alone, and 𝐺12
∗  can be written as a 

linear function of 𝐺 alone. For the square unit cell, 𝜈12
∗  

and 𝜈21
∗  are equal to zero. 

Except for the effective shear modulus 𝐺12
∗  of 2D-

lattice plates with hexagonal unit cells, the solutions in 
Table 1 agree exactly with the solutions by Suttakul et al. 
[32]. In the work by Suttakul et al. [32], a methodology is 
proposed to obtain the closed-form effective elastic 
constants of 2D-lattice plates from the exact parametric 
forms containing some dimensionless factors by exact 
curve fitting. Their methodology relies on a condition that, 
if all dimensionless factors in the exact parametric forms 
of the effective elastic constants are constant, these factors 
can be determined by exact curve fitting. The 
methodology also includes a validation procedure to 
numerically verify whether each closed-form effective 
elastic constant obtained is valid or not. In their work, the 
methodology is successfully used to determine the closed-
form effective elastic constants of 2D-lattice plates having 
the unit cells considered in this study, except for the 

effective shear modulus 𝐺12
∗  of 2D-lattice plates with 

hexagonal unit cells. This implies that some dimensionless 

factors in the effective shear modulus 𝐺12
∗  of 2D-lattice 

plates with hexagonal unit cells are not constant. In order 
to check the validity of the closed-form effective shear 

modulus 𝐺12
∗  of 2D-lattice plates with hexagonal unit cells 

obtained in this study, the same validation procedure as 
used in the work by Suttakul et al. [32] is performed. By 
considering several different hexagonal unit cells, several 

values of 𝐺12
∗ , obtained numerically from the closed form 

of 𝐺12
∗  in Table 1, are compared with those obtained 

numerically from Eqs. (12) and (14) using the values of 
strain energy from finite element analysis of these unit 
cells under the four curvature modes. Good agreement 
between the two sets of results is observed. Therefore, it 
can be concluded that all closed-form elastic constants in 
Table 1 are accurate. 

Note that periodic boundary conditions used to create 
different curvature modes are in fact constraint equations 
that prescribe relative values between different degrees of 
freedom. In commercial finite element software, 
constraint equations of this kind are called multi-point or 
multi-freedom constraints. They can be incorporated into 
finite element analysis using the method of Lagrange 
multipliers. More details about periodic boundary 
conditions can be found in the work by Suttakul et al. [32]. 
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As in symbolic finite element analysis, in numerical finite 
element analysis used for validating the obtained closed-
form results, two-noded Euler-Bernoulli beam elements 
are used. This type of element employs linear and cubic 
interpolations for axial and transverse displacements, 
respectively. If an Euler-Bernoulli beam element is only 
subjected to end forces, these interpolations yield exact 

solutions of the Euler-Bernoulli beam theory. Since each 
unit-cell strut in this study is only subjected to end forces, 
using one two-noded Euler-Bernoulli beam element per 
strut is sufficient to obtain exact solutions of the Euler-
Bernoulli beam theory. There is no need to use a mesh 
that is finer than that. 

 

 
Fig. 2. Considered unit cells. 

 

 
Fig. 3. 2D-lattice plate made of frame-like triangular unit cells: (a) lattice and (b) unit cell. 
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Table 1. Effective elastic constants of 2D-lattice plates. 
 

Unit cell 𝐸𝑖
∗ 𝜈𝑖𝑗

∗  𝐺12
∗  

Square 
12𝐸𝐼

𝐿ℎ3
 0 

6𝐺𝐽𝑒𝑓

𝐿ℎ3
 

Body-centered square 

& Diamond square 

24𝐸𝐼

𝐿ℎ3
[
(√2 + 1)𝐸𝐼 +  (√2 + 2)𝐺𝐽𝑒𝑓

(√2 + 2)𝐸𝐼 +  √2𝐺𝐽𝑒𝑓

] 
𝐸𝐼 − 𝐺𝐽𝑒𝑓

(1 + √2)𝐸𝐼 +  𝐺𝐽𝑒𝑓

 
6

𝐿ℎ3
[√2𝐸𝐼 +  𝐺𝐽𝑒𝑓 ] 

Hexagon 
16√3𝐸𝐼

𝐿ℎ3
[

𝐺𝐽𝑒𝑓

𝐸𝐼 +  3𝐺𝐽𝑒𝑓

] 
𝐸𝐼 −  𝐺𝐽𝑒𝑓

𝐸𝐼 +  3𝐺𝐽𝑒𝑓

 
4√3𝐸𝐼

𝐿ℎ3
[

𝐺𝐽𝑒𝑓

𝐸𝐼 +  𝐺𝐽𝑒𝑓

] 

Diamond 
24𝐸𝐼

𝐿ℎ3
[

 𝐺𝐽𝑒𝑓

𝐸𝐼 +  𝐺𝐽𝑒𝑓

] 
𝐸𝐼 −  𝐺𝐽𝑒𝑓

𝐸𝐼 +  𝐺𝐽𝑒𝑓

 
6𝐸𝐼

𝐿ℎ3
 

Triangle 
24√3𝐸𝐼

𝐿ℎ3
[

𝐸𝐼 +  𝐺𝐽𝑒𝑓

3𝐸𝐼 +  𝐺𝐽𝑒𝑓

] 
𝐸𝐼 −  𝐺𝐽𝑒𝑓

3𝐸𝐼 +  𝐺𝐽𝑒𝑓

 
3√3

𝐿ℎ3
[𝐸𝐼 +  𝐺𝐽𝑒𝑓] 

Kagome 
12√3𝐸𝐼

𝐿ℎ3
[

𝐸𝐼 +  𝐺𝐽𝑒𝑓

3𝐸𝐼 +  𝐺𝐽𝑒𝑓

] 
𝐸𝐼 −  𝐺𝐽𝑒𝑓

3𝐸𝐼 +  𝐺𝐽𝑒𝑓

 
3√3

2𝐿ℎ3
[𝐸𝐼 +  𝐺𝐽𝑒𝑓] 

 
Table 2. Effective elastic constants of 2D-lattice plates with circular and rectangular struts. 
 

Unit cell 𝐸𝑖
∗ 𝜈12

∗  𝐺12
∗  

Square (C) 
3𝐸𝜋𝐷

16𝐿
 0 

3𝐺𝜋𝐷

16𝐿
 

Square (R) 
𝐸𝐵

𝐿
 0 

𝐺𝐵

𝐿
[6�̅�] 

Body-centered square (C) 

& Diamond square (C) 

3𝐸𝜋𝐷

8𝐿
[

(2√2 + 3) + (√2 + 1)𝜈

(2√2 + 2)  + (√2 + 2)𝜈
] 

√2𝜈

(2√2 + 2) + (√2 + 2)𝜈
 

3𝐺𝜋𝐷

16𝐿
[(√2 + 1) + √2𝜈] 

Body-centered square (R) 

& Diamond square (R) 

2𝐸𝐵

𝐿
[
(√2 + 1)(1 + 𝜈) + (6√2 + 12)�̅�

(√2 + 2)(1 + 𝜈)  +  6√2�̅�
] 

(1 + 𝜈) − 6�̅�

(√2 + 1)(1 + 𝜈)  +  6�̅�
 

𝐺𝐵

𝐿
[√2(1 + 𝜈) + 6�̅�] 

Hexagon (C) √3𝐸𝜋𝐷

4𝐿
[

1

4 + 𝜈
] 

𝜈

4 + 𝜈
 √3𝐺𝜋𝐷

8𝐿
[
1 + 𝜈

2 + 𝜈
] 

Hexagon (R) 
4√3𝐸𝐵

3𝐿
[

6�̅�

(1 + 𝜈) +  18�̅�
] 

(1 + 𝜈) − 6�̅�

(1 + 𝜈)  +  18�̅�
 

4√3𝐺𝐵

𝐿
[

(1 + 𝜈)�̅�

(1 + 𝜈) +  6�̅�
] 

Diamond (C) 
3𝐸𝜋𝐷

8𝐿
[

1

2 + 𝜈
] 

𝜈

2 + 𝜈
 

3𝐺𝜋𝐷

16𝐿
[1 + 𝜈] 

Diamond (R) 
2𝐸𝐵

𝐿
[

6�̅�

(1 + 𝜈) +  6�̅�
] 

(1 + 𝜈) − 6�̅�

(1 + 𝜈)  +  6�̅�
 

𝐺𝐵

𝐿
[1 + 𝜈] 

Triangle (C) 3√3𝐸𝜋𝐷

8𝐿
[

2 + 𝜈

4 + 3𝜈
] 

𝜈

4 + 3𝜈
 

3√3𝐺𝜋𝐷

32𝐿
[2 + 𝜈] 

Triangle (R) 
2√3𝐸𝐵

𝐿
[

(1 + 𝜈) +  6�̅�

3(1 + 𝜈) +  6�̅�
] 

(1 + 𝜈) − 6�̅�

3(1 + 𝜈)  +  6�̅�
 

√3𝐺𝐵

2𝐿
[(1 + 𝜈) +  6�̅�] 

Kagome (C) 3√3𝐸𝜋𝐷

16𝐿
[

2 + 𝜈

4 + 3𝜈
] 

𝜈

4 + 3𝜈
 

3√3𝐺𝜋𝐷

64𝐿
[2 + 𝜈] 

Kagome (R) 
√3𝐸𝐵

𝐿
[

(1 + 𝜈) +  6�̅�

3(1 + 𝜈) +  6�̅�
] 

(1 + 𝜈) − 6�̅�

3(1 + 𝜈)  +  6�̅�
 

√3𝐺𝐵

4𝐿
[(1 + 𝜈) +  6�̅�] 

Note: (C) and (R) denote, respectively, circular and rectangular struts. 
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In this study, 2D-lattice plates with circular and 
rectangular struts are employed to explain the concept of 
the proposed design method. Therefore, the solutions in 
Table 1 are used to compute the effective elastic constants 
of the considered 2D-lattice plates with circular and 
rectangular struts. The obtained results are shown in Table 
2. In the table, (C) and (R) denote, respectively, circular 
and rectangular struts. The diameters of circular struts are 

denoted by 𝐷, while the widths and heights of rectangular 

struts are denoted, respectively, by 𝐵 and 𝐻, as shown in 
Fig. 4. The thickness of plates with circular struts is taken 

as 𝐷, while the thickness of plates with rectangular struts 

is taken as 𝐻. For the calculation of the torsional stiffness 

of a 𝐵 × 𝐻 rectangular strut, the effective polar moment 

of inertia is taken as 𝐽𝑒𝑓 = �̅�𝐵𝐻3 , where �̅� = 𝑘1  when 

𝐻 ≤ 𝐵, and �̅� = 𝑘1𝐵2/𝐻2 when 𝐻 > 𝐵. The coefficient 

𝑘1 is a function of the aspect ratio of the rectangular cross-

section under consideration. A way to determine 𝑘1 can 
be found in the work by Timoshenko and Goodier [40]. 

Since �̅�  is a function of 𝑘1 , it follows that �̅�  is also a 
function of the aspect ratio of the rectangular cross-

section. Some example values of 𝑘1 are shown in Fig. 4. 

In Table 2, the closed forms of 𝐸𝑖
∗ are written as functions 

of 𝐸 and 𝜈, while those of 𝐺12
∗  are written in terms of 𝐺 

and 𝜈. In addition, the closed forms of 𝜈12
∗  are written in 

terms of 𝜈 . It can be seen that 𝐸𝑖
∗  and 𝐺12

∗  are directly 

proportional to a sectional dimension, 𝐷  or 𝐵 , and are 
inversely proportional to the unit-cell characteristic length 

𝐿. With rectangular struts, the effective elastic constants 
generally vary with the aspect ratio of the strut cross-

sections via the coefficient �̅�. This is because the aspect 
ratio of the strut cross-sections affects the torsional 
rigidities of the struts, which in turn affect the values of 
the effective elastic constants. 

Table 3 shows the effective bending and torsional 
rigidities of the considered 2D-lattice plates with circular 
and rectangular struts. In the table, the effective bending 

rigidities 𝑅𝑏𝑖
∗  are written in terms of 𝐸, 𝜈, 𝐷, 𝐵, 𝐻, and 𝐿, 

while the effective torsional rigidities 𝑅𝑡12
∗  are given in 

terms of 𝐺, 𝜈, 𝐷, 𝐵, 𝐻, and 𝐿. As expected, the effective 

rigidities always increase when 𝐷 , 𝐵 , or 𝐻  is increased. 
The effective rigidities are proportional to the fourth-
order product of these sectional dimensions. The effective 

rigidities are inversely proportional to 𝐿. With rectangular 
struts, the effective rigidities are generally found to vary 
with the aspect ratio of the strut cross-sections via the 

coefficient �̅�. 
 

 

 
Fig. 4. 2D-lattice plate with rectangular struts. 
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Table 3. Effective bending and torsional rigidities of 2D-lattice plates with circular and rectangular struts. 
 

Unit cell 𝑅𝑏𝑖
∗ =

𝐸𝑖
∗ℎ3

12
 𝑅𝑡12

∗ =
𝐺12

∗ ℎ3

12
 

Square (C) 
𝐸𝜋𝐷4

64𝐿
 

𝐺𝜋𝐷4

64𝐿
 

Square (R) 
𝐸𝐵𝐻3

12𝐿
 

𝐺�̅�𝐵𝐻3

2𝐿
 

Body-centered square (C) 

& Diamond square (C) 

𝐸𝜋𝐷4

32𝐿
[

(2√2 + 3) + (√2 + 1)𝜈

(2√2 + 2)  + (√2 + 2)𝜈
] 

𝐺𝜋𝐷4

64𝐿
[(√2 + 1) + √2𝜈] 

Body-centered square (R) 

& Diamond square (R) 

𝐸𝐵𝐻3

6𝐿
[
(√2 + 1)(1 + 𝜈) +  (6√2 + 12)�̅�

(√2 + 2)(1 + 𝜈)  +  6√2�̅�
] 

𝐺𝐵𝐻3

12𝐿
[√2(1 + 𝜈) + 6�̅�] 

Hexagon (C) √3𝐸𝜋𝐷4

48𝐿
[

1

4 + 𝜈
] 

√3𝐺𝜋𝐷4

96𝐿
[
1 + 𝜈

2 + 𝜈
] 

Hexagon (R) 
2√3𝐸𝐵𝐻3

3𝐿
[

�̅�

1 + 𝜈 + 18�̅�
] 

√3𝐺𝐵𝐻3

3𝐿
[

(1 + 𝜈)�̅�

1 + 𝜈 + 6�̅�
] 

Diamond (C) 
𝐸𝜋𝐷4

32𝐿
[

1

2 + 𝜈
] 

𝐺𝜋𝐷4

64𝐿
[1 + 𝜈] 

Diamond (R) 
𝐸𝐵𝐻3

𝐿
[

�̅�

1 + 𝜈 + 6�̅�
] 

𝐺𝐵𝐻3

12𝐿
[1 + 𝜈] 

Triangle (C) √3𝐸𝜋𝐷4

32𝐿
[

2 + 𝜈

4 + 3𝜈
] 

√3𝐺𝜋𝐷4

128𝐿
[2 + 𝜈] 

Triangle (R) 
√3𝐸𝐵𝐻3

6𝐿
[

(1 + 𝜈) +  6�̅�

3(1 + 𝜈) +  6�̅�
] 

√3𝐺𝐵𝐻3

24𝐿
[1 + 𝜈 + 6�̅�] 

Kagome (C) √3𝐸𝜋𝐷4

64𝐿
[

2 + 𝜈

4 + 3𝜈
] 

√3𝐺𝜋𝐷4

256𝐿
[2 + 𝜈] 

Kagome (R) 
√3𝐸𝐵𝐻3

36𝐿
[
 1 + 𝜈 +  6�̅�

1 + 𝜈 +  2�̅�
] 

√3𝐺𝐵𝐻3

48𝐿
[1 + 𝜈 + 6�̅�] 

Note: (C) and (R) denote, respectively, circular and rectangular struts. 
 

6. Design Method for Weight Efficiency and 
Example Design Graphs 
 
To design 2D-lattice plates by targeting their weight 

efficiency, the relationships between the effective rigidities 
and the area weight densities of the plates can be 
considered. These relationships are obtained through the 
expressions of the effective rigidities per area weight 

density 𝑅𝑏𝑖
∗ 𝜌𝐴

∗⁄  and 𝑅𝑡12
∗ 𝜌𝐴

∗⁄ . In addition, the efficiency 
of unit-cell patterns in terms of the weight efficiency of 
their resulting plates is obtained through the expressions 

of the normalized specific effective rigidities �̂�𝑏𝑖
∗  and 

�̂�𝑡12
∗ .Table 4 shows the volume fractions 𝑉𝑓 and the area 

weight densities 𝜌𝐴
∗  of the considered 2D-lattice plates. 

For easy presentation, the area weight densities 𝜌𝐴
∗  are 

normalized by the weight density of the base material 𝜌. 
From the expressions of the effective rigidities in Table 3 

and the normalized area weight densities in Table 4, the 
relationships between the effective rigidities and the 
normalized area weight densities can be found. 

Table 5 shows the closed-form effective rigidities per 

area weight density 𝑅𝑏𝑖
∗ 𝜌𝐴

∗⁄  and 𝑅𝑡12
∗ 𝜌𝐴

∗⁄ . The table also 
shows the closed-form normalized specific effective 

rigidities �̂�𝑏𝑖
∗  and �̂�𝑡12

∗ . It can be seen that �̂�𝑏𝑖
∗  and �̂�𝑡12

∗  

are functions of 𝜈 except for square unit cells. In addition, 

in most cases of rectangular struts, �̂�𝑏𝑖
∗  and �̂�𝑡12

∗  vary with 
the aspect ratio of the strut cross-sections via the 

coefficient �̅� . As mentioned above, the normalized 

specific effective rigidities �̂�𝑏𝑖
∗  and �̂�𝑡12

∗  can be used to 
compare the efficiency of unit-cell patterns in terms of the 
weight efficiency of their resulting plates. For example, if 

Poisson’s ratio of the base material 𝜈 is equal to 1/3, from 

Table 5, �̂�𝑏1
∗  and �̂�𝑏2

∗  of 2D-lattice plates having triangular 

unit cells with circular struts are found to be equal to 0.35. 
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In addition, �̂�𝑏1
∗  and �̂�𝑏2

∗  of 2D-lattice plates having 
square unit cells with circular struts are found to be equal 

to 0.375 . This means that, for bending rigidities, the 
square unit-cell pattern yields better weight efficiency of 
2D-lattice plates than the triangular unit-cell pattern when 

𝜈 = 1/3. If a material having 𝜈 = 1/3 is used to create 
different plates that have the same thickness and the same 
area weight density, those plates having square unit cells 
with circular struts will have higher effective bending 
rigidities than those having triangular unit cells with 
circular struts. 

From the relationships between the effective 
rigidities and the normalized area weight densities in Table 
5, the normalized area weight densities are written in terms 
of the effective rigidities in Table 6 and Table 7. These 
expressions of the normalized area weight densities 
written in terms of the effective rigidities enable the weight 
efficiency of different 2D-lattice plates designed for the 
same rigidities to be compared. In Table 6, the normalized 

area weight densities 𝜌𝐴
∗ /𝜌  are written in terms of the 

effective bending rigidity 𝑅𝑏1
∗ , which is equal to 𝑅𝑏2

∗ . In 
addition, in Table 6, three forms of the normalized area 

weight densities are presented. Except for 𝑅𝑏1
∗ , these 

forms have different input parameters for different design 
requirements. For example, to design a 2D-lattice plate 

with rectangular struts, for a required value of 𝑅𝑏1
∗ , it may 

be necessary to first specify the height 𝐻 of rectangular 
struts. In this case, the formulas, whose input parameters 

are 𝑅𝑏1
∗  and 𝐻, can be used to compute the area weight 

densities 𝜌𝐴
∗  for different designs, which may include 

different unit-cell geometry or different materials or both. 

The obtained area weight densities 𝜌𝐴
∗  for different 

designs can then be compared. After the design with the 

lowest 𝜌𝐴
∗  is selected, the values of 𝐻  and its 𝜌𝐴

∗ /𝜌  can 

then be used to select 𝐵 and 𝐿, which must satisfy the 

relationship, 𝜌𝐴
∗ /𝜌 = 2𝐵𝐻/𝐿, in Table 4. For the cases of 

circular struts, the input parameters in Table 6, in addition 

to 𝑅𝑏1
∗ , are 

• 𝐷, or 

• 𝐷/𝐿, or  

• 𝐿. 
For the cases of rectangular struts, the input parameters, 

in addition to 𝑅𝑏1
∗ , are 

• 𝐻, or 

• 𝐻/𝐿 and 𝛽 = 𝐵/𝐻, or 

• 𝐿 and 𝛽. 
Similarly, in Table 7, the normalized area weight densities 

𝜌𝐴
∗ /𝜌 are written in terms of the effective torsional rigidity 

𝑅𝑡12
∗ . 

 
Table 4. Volume fractions and normalized area weight densities of 2D-lattice plates. 
 

Unit cell 
Volume fraction 𝑉𝑓 

Normalized area weight density, 

𝜌𝐴
∗ /𝜌 = 𝑉𝑓ℎ 

(C) (R) (C) (R) 

Square 
𝜋𝐷

2𝐿
 

2𝐵

𝐿
 

𝜋𝐷2

2𝐿
 

2𝐵𝐻

𝐿
 

Body-centered square 

& Diamond square 

(√2 + 1)𝜋𝐷

2𝐿
 

2(√2 + 1)𝐵

𝐿
 

(√2 + 1)𝜋𝐷2

2𝐿
 

2(√2 + 1)𝐵𝐻

𝐿
 

Hexagon √3𝜋𝐷

6𝐿
 

2√3𝐵

3𝐿
 

√3𝜋𝐷2

6𝐿
 

2√3𝐵𝐻

3𝐿
 

Diamond 
𝜋𝐷

2𝐿
 

2𝐵

𝐿
 

𝜋𝐷2

2𝐿
 

2𝐵𝐻

𝐿
 

Triangle √3𝜋𝐷

2𝐿
 

2√3𝐵

𝐿
 

√3𝜋𝐷2

2𝐿
 

2√3𝐵𝐻

𝐿
 

Kagome √3𝜋𝐷

4𝐿
 

√3𝐵

𝐿
 

√3𝜋𝐷2

4𝐿
 

√3𝐵𝐻

𝐿
 

Note: (C) and (R) denote, respectively, circular and rectangular struts. 
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Table 5. Relationships between the effective rigidities and the area weight densities, and the normalized specific effective rigidities of 2D-lattice plates with circular and 
rectangular struts. 
 

Unit cell 
𝑅𝑏𝑖

∗

𝜌𝐴
∗  

𝑅𝑡12
∗

𝜌𝐴
∗  �̂�𝑏𝑖

∗  �̂�𝑡12
∗  

Square (C) 
𝐸𝐷2

32𝜌
 

𝐺𝐷2

32𝜌
 

3

8
 

3

8
 

Square (R) 
𝐸𝐻2

24𝜌
 

𝐺�̅�𝐻2

4𝜌
 

1

2
 3�̅� 

Body-centered square (C) 

& Diamond square (C) 

𝐸𝐷2

16𝜌(√2 + 1)
[

(2√2 + 3) + (√2 + 1)𝜈

(2√2 + 2)  + (√2 + 2)𝜈
] 

𝐺𝐷2

32𝜌(√2 + 1)
[(√2 + 1) + √2𝜈] 

3

4(√2 + 1)
[

(2√2 + 3) + (√2 + 1)𝜈

(2√2 + 2) + (√2 + 2)𝜈
] 

3

8(√2 + 1)
[(√2 + 1) + √2𝜈] 

Body-centered square (R) 

& Diamond square (R) 

𝐸𝐻2

12𝜌(√2 + 1)
[
(√2 + 1)(1 + 𝜈) +  (√2 + 2)6�̅�

(√2 + 2)(1 + 𝜈)  +  6√2�̅�
] 

𝐺𝐻2

24𝜌(√2 + 1)
[√2(1 + 𝜈) + 6�̅�] 

1

(√2 + 1)
[
(√2 + 1)(1 + 𝜈) + (√2 + 2)6�̅�

(√2 + 2)(1 + 𝜈)  +  6√2�̅�
] 

1

2(√2 + 1)
[√2(1 + 𝜈) + 6�̅�] 

Hexagon (C) 
𝐸𝐷2

8𝜌
[

1

4 + 𝜈
] 

𝐺𝐷2

16𝜌
[
1 + 𝜈

2 + 𝜈
] 

3

2
[

1

4 + 𝜈
] 

3

4
[
1 + 𝜈

2 + 𝜈
] 

Hexagon (R) 
𝐸𝐻2

3𝜌
[

�̅�

1
3

(1 + 𝜈) +  6�̅�
] 

𝐺𝐻2

2𝜌
[

(1 + 𝜈)�̅�

(1 + 𝜈) +  6�̅�
] 

4�̅�

1
3

(1 + 𝜈) +  6�̅�
 (1 + 𝜈)6�̅�

(1 + 𝜈) +  6�̅�
 

Diamond (C) 
𝐸𝐷2

16𝜌
[

1

2 + 𝜈
] 

𝐺𝐷2

32𝜌
[1 + 𝜈] 

3

4
[

1

2 + 𝜈
] 

3

8
[1 + 𝜈] 

Diamond (R) 
𝐸𝐻2

2𝜌
[

�̅�

(1 + 𝜈) +  6�̅�
] 

𝐺𝐻2

24𝜌
[1 + 𝜈] 

6�̅�

(1 + 𝜈) +  6�̅�
 

1

2
[1 + 𝜈] 

Triangle (C) 
𝐸𝐷2

16𝜌
[

2 + 𝜈

4 + 3𝜈
] 

𝐺𝐷2

64𝜌
[2 + 𝜈] 

3

4
[

2 + 𝜈

4 + 3𝜈
] 

3

16
[2 + 𝜈] 

Triangle (R) 
𝐸𝐻2

12𝜌
[

(1 + 𝜈) +  6�̅�

3(1 + 𝜈) +  6�̅�
] 

𝐺𝐻2

48𝜌
[(1 + 𝜈) +  6�̅�] 

(1 + 𝜈) +  6�̅�

3(1 + 𝜈) +  6�̅�
 

1

4
[(1 + 𝜈) +  6�̅�] 

Kagome (C) 
𝐸𝐷2

16𝜌
[

2 + 𝜈

4 + 3𝜈
] 

𝐺𝐷2

64𝜌
[2 + 𝜈] 

3

4
[

2 + 𝜈

4 + 3𝜈
] 

3

16
[2 + 𝜈] 

Kagome (R) 
𝐸𝐻2

12𝜌
[

(1 + 𝜈) +  6�̅�

3(1 + 𝜈) +  6�̅�
] 

𝐺𝐻2

48𝜌
[(1 + 𝜈) +  6�̅�] 

(1 + 𝜈) +  6�̅�

3(1 + 𝜈) +  6�̅�
 

1

4
[(1 + 𝜈) +  6�̅�] 

Note: (C) and (R) denote, respectively, circular and rectangular struts
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Table 6. Normalized area weight densities of 2D-lattice plates with circular and rectangular struts, in terms of the effective bending rigidities. 
 

Unit cell 
𝜌𝐴

∗

𝜌
(𝑅𝑏1

∗ , 𝐷) for (C) ,   
𝜌𝐴

∗

𝜌
(𝑅𝑏1

∗ , 𝐻) for (R) 
𝜌𝐴

∗

𝜌
(𝑅𝑏1

∗ ,
𝐷

𝐿
)  for (C) ,   

𝜌𝐴
∗

𝜌
(𝑅𝑏1

∗ ,
𝐻

𝐿
, 𝛽)  for (R) 

𝜌𝐴
∗

𝜌
(𝑅𝑏1

∗ , 𝐿) for (C) ,   
𝜌𝐴

∗

𝜌
(𝑅𝑏1

∗ , 𝐿, 𝛽) for (R) 

Square (C) 
32𝑅𝑏1

∗

𝐸𝐷2
 [

8𝑅𝑏1
∗ 𝜋2

𝐸
(

𝐷

𝐿
)

2

]

1
3

 [
16𝑅𝑏1

∗ 𝜋

𝐸𝐿
]

1
2

 

Square (R) 
24𝑅𝑏1

∗

𝐸𝐻2
 [

96𝑅𝑏1
∗ 𝛽2

𝐸
(

𝐻

𝐿
)

2

]

1
3

 [
48𝑅𝑏1

∗ 𝛽

𝐸𝐿
]

1
2

 

Body-centered square (C) 
& Diamond square (C) 

16𝑅𝑏1
∗ (√2 + 1)

𝐸𝐷2
[
(2√2 + 2)  + (√2 + 2)𝜈

(2√2 + 3) + (√2 + 1)𝜈
] [

4𝑅𝑏1
∗ 𝜋2(√2 + 1)

3

𝐸
[
(2√2 + 2)  + (√2 + 2)𝜈

(2√2 + 3) + (√2 + 1)𝜈
] (

𝐷

𝐿
)

2

]

1
3

 [
8𝑅𝑏1

∗ 𝜋(√2 + 1)
2

𝐸𝐿
[
(2√2 + 2)  + (√2 + 2)𝜈

(2√2 + 3) + (√2 + 1)𝜈
]]

1
2

 

Body-centered square (R) 
& Diamond square (R) 

12𝑅𝑏1
∗ (√2 + 1)

𝐸𝐻2
[

(√2 + 2)(1 + 𝜈)  +  6√2�̅�

(√2 + 1)(1 + 𝜈) + (√2 + 2)6�̅�
] [

48𝑅𝑏1
∗ 𝛽2(√2 + 1)

3

𝐸
[

(√2 + 2)(1 + 𝜈)  +  6√2�̅�

(√2 + 1)(1 + 𝜈) + (√2 + 2)6�̅�
] (

𝐻

𝐿
)

2

]

1
3

 [
24𝑅𝑏1

∗ 𝛽(√2 + 1)
2

𝐸𝐿
[

(√2 + 2)(1 + 𝜈)  +  6√2�̅�

(√2 + 1)(1 + 𝜈) +  (√2 + 2)6�̅�
]]

1
2

 

Hexagon (C) 
8𝑅𝑏1

∗ [4 + 𝜈]

𝐸𝐷2
 [

2𝑅𝑏1
∗ 𝜋2[4 + 𝜈]

3𝐸
(

𝐷

𝐿
)

2

]

1
3

 [
4√3𝑅𝑏1

∗ 𝜋[4 + 𝜈]

3𝐸𝐿
]

1
2

 

Hexagon (R) 
𝑅𝑏1

∗

𝐸𝐻2
[
1 + 𝜈 +  18�̅�

�̅�
] [

4𝑅𝑏1
∗ 𝛽2

𝐸
[
1 + 𝜈 +  18�̅�

3�̅�
] (

𝐻

𝐿
)

2

]

1
3

 [
2√3𝑅𝑏1

∗ 𝛽

𝐸𝐿
[
1 + 𝜈 +  18�̅�

3�̅�
]]

1
2

 

Diamond (C) 
16𝑅𝑏1

∗ [2 + 𝜈]

𝐸𝐷2
 [

4𝑅𝑏1
∗ 𝜋2[2 + 𝜈]

𝐸
(

𝐷

𝐿
)

2

]

1
3

 [
8𝑅𝑏1

∗ 𝜋[2 + 𝜈]

𝐸𝐿
]

1
2

 

Diamond (R) 
2𝑅𝑏1

∗

𝐸𝐻2
[
1 + 𝜈 +  6�̅�

�̅�
] [

8𝑅𝑏1
∗ 𝛽2

𝐸
[
1 + 𝜈 +  6�̅�

�̅�
] (

𝐻

𝐿
)

2

]

1
3

 [
4𝑅𝑏1

∗ 𝛽

𝐸𝐿
[
1 + 𝜈 +  6�̅�

�̅�
]]

1
2

 

Triangle (C) 
16𝑅𝑏1

∗

𝐸𝐷2
[
4 + 3𝜈

2 + 𝜈
] [

12𝑅𝑏1
∗ 𝜋2

𝐸
[
4 + 3𝜈

2 + 𝜈
] (

𝐷

𝐿
)

2

]

1
3

 [
8√3𝑅𝑏1

∗ 𝜋

𝐸𝐿
[
4 + 3𝜈

2 + 𝜈
]]

1
2

 

Triangle (R) 
36𝑅𝑏1

∗

𝐸𝐻2
[
1 + 𝜈 +  2�̅�

1 + 𝜈 +  6�̅�
] [

432𝑅𝑏1
∗ 𝛽2

𝐸
[
1 + 𝜈 +  2�̅�

1 + 𝜈 +  6�̅�
] (

𝐻

𝐿
)

2

]

1
3

 [
72√3𝑅𝑏1

∗ 𝛽

𝐸𝐿
[
1 + 𝜈 +  2�̅�

1 + 𝜈 +  6�̅�
]]

1
2

 

Kagome (C) 
16𝑅𝑏1

∗

𝐸𝐷2
[
4 + 3𝜈

2 + 𝜈
] [

3𝑅𝑏1
∗ 𝜋2

𝐸
[
4 + 3𝜈

2 + 𝜈
] (

𝐷

𝐿
)

2

]

1
3

 [
4√3𝑅𝑏1

∗ 𝜋

𝐸𝐿
[
4 + 3𝜈

2 + 𝜈
]]

1
2

 

Kagome (R) 
36𝑅𝑏1

∗

𝐸𝐻2
[
1 + 𝜈 +  2�̅�

1 + 𝜈 +  6�̅�
] [

108𝑅𝑏1
∗ 𝛽2

𝐸
[
1 + 𝜈 +  2�̅�

1 + 𝜈 +  6�̅�
] (

𝐻

𝐿
)

2

]

1
3

 [
36√3𝑅𝑏1

∗ 𝛽

𝐸𝐿
[
1 + 𝜈 +  2�̅�

1 + 𝜈 +  6�̅�
]]

1
2

 

Note: (C) and (R) denote, respectively, circular and rectangular struts. 𝛽 = 𝐵 𝐻⁄ . 𝑅𝑏1
∗ = 𝑅𝑏2

∗
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Table 7. Normalized area weight densities of 2D-lattice plates with circular and rectangular struts, in terms of the 
effective torsional rigidities. 
 

Unit cell 

𝜌𝐴
∗

𝜌
(𝑅𝑡12

∗ , 𝐷) for (C), 

 
𝜌𝐴

∗

𝜌
(𝑅𝑡12

∗ , 𝐻) for (R) 

𝜌𝐴
∗

𝜌
(𝑅𝑡12

∗ ,
𝐷

𝐿
)  for (C), 

 
𝜌𝐴

∗

𝜌
(𝑅𝑡12

∗ ,
𝐻

𝐿
, 𝛽)  for (R) 

𝜌𝐴
∗

𝜌
(𝑅𝑡12

∗ , 𝐿) for (C), 

 
𝜌𝐴

∗

𝜌
(𝑅𝑡12

∗ , 𝐿, 𝛽) for (R) 

Square (C) 
32𝑅𝑡12

∗

𝐺𝐷2
 [

8𝑅𝑡12
∗ 𝜋2

𝐺
(

𝐷

𝐿
)

2

]

1
3

 [
16𝑅𝑡12

∗ 𝜋

𝐺𝐿
]

1
2

 

Square (R) 
4𝑅𝑡12

∗

𝐺𝐻2�̅�
 [

16𝑅𝑡12
∗ 𝛽2

𝐺�̅�
(

𝐻

𝐿
)

2

]

1
3

 [
8𝑅𝑡12

∗ 𝛽

𝐺𝐿�̅�
]

1
2

 

Body-centered square (C) 

& Diamond square (C) 

32𝑅𝑡12
∗ (√2 + 1)

𝐺𝐷2[(√2 + 1) + √2𝜈]
 [

8𝑅𝑡12
∗ 𝜋2(√2 + 1)

3

𝐺[(√2 + 1) + √2𝜈]
(

𝐷

𝐿
)

2

]

1
3

 [
16𝑅𝑡12

∗ 𝜋(√2 + 1)
2

𝐺𝐿[(√2 + 1) + √2𝜈]
]

1
2

 

Body-centered square (R) 

& Diamond square (R) 

24𝑅𝑡12
∗ (√2 + 1)

𝐺𝐻2[√2(1 + 𝜈) + 6�̅�]
 [

96𝑅𝑡12
∗ 𝛽2(√2 + 1)

3

𝐺[√2(1 + 𝜈) + 6�̅�]
(

𝐻

𝐿
)

2

]

1
3

 [
48𝑅𝑡12

∗ 𝛽(√2 + 1)
2

𝐺𝐿[√2(1 + 𝜈) + 6�̅�]
]

1
2

 

Hexagon (C) 
16𝑅𝑡12

∗

𝐺𝐷2
[
2 + 𝜈

1 + 𝜈
] [

4𝑅𝑡12
∗ 𝜋2

3𝐺
[
2 + 𝜈

1 + 𝜈
] (

𝐷

𝐿
)

2

]

1
3

 [
8√3𝑅𝑡12

∗ 𝜋

3𝐺𝐿
[
2 + 𝜈

1 + 𝜈
]]

1
2

 

Hexagon (R) 
2𝑅𝑡12

∗

𝐺𝐻2�̅�
[
1 + 𝜈 + 6�̅�

1 + 𝜈
] [

8𝑅𝑡12
∗ 𝛽2

3𝐺�̅�
[
1 + 𝜈 + 6�̅�

1 + 𝜈
] (

𝐻

𝐿
)

2

]

1
3

 [
4√3𝑅𝑡12

∗ 𝛽

3𝐺𝐿�̅�
[
1 + 𝜈 + 6�̅�

1 + 𝜈
]]

1
2

 

Diamond (C) 
32𝑅𝑡12

∗

𝐺𝐷2[1 + 𝜈]
 [

8𝑅𝑡12
∗ 𝜋2

𝐺[1 + 𝜈]
(

𝐷

𝐿
)

2

]

1
3

 [
16𝑅𝑡12

∗ 𝜋

𝐺𝐿[1 + 𝜈]
]

1
2

 

Diamond (R) 
24𝑅𝑡12

∗

𝐺𝐻2[1 + 𝜈]
 [

96𝑅𝑡12
∗ 𝛽2

𝐺[1 + 𝜈]
(

𝐻

𝐿
)

2

]

1
3

 [
48𝑅𝑡12

∗ 𝛽

𝐺𝐿[1 + 𝜈]
]

1
2

 

Triangle (C) 
64𝑅𝑡12

∗

𝐺𝐷2[2 + 𝜈]
 [

48𝑅𝑡12
∗ 𝜋2

𝐺[2 + 𝜈]
(

𝐷

𝐿
)

2

]

1
3

 [
32√3𝑅𝑡12

∗ 𝜋

𝐺𝐿[2 + 𝜈]
]

1
2

 

Triangle (R) 
48𝑅𝑡12

∗

𝐺𝐻2[1 + 𝜈 + 6�̅�]
 [

576𝑅𝑡12
∗ 𝛽2

𝐺[1 + 𝜈 + 6�̅�]
(

𝐻

𝐿
)

2

]

1
3

 [
96√3𝑅𝑡12

∗ 𝛽

𝐺𝐿[1 + 𝜈 + 6�̅�]
]

1
2

 

Kagome (C) 
64𝑅𝑡12

∗

𝐺𝐷2[2 + 𝜈]
 [

12𝑅𝑡12
∗ 𝜋2

𝐺[2 + 𝜈]
(

𝐷

𝐿
)

2

]

1
3

 [
16√3𝑅𝑡12

∗ 𝜋

𝐺𝐿[2 + 𝜈]
]

1
2

 

Kagome (R) 
48𝑅𝑡12

∗

𝐺𝐻2[1 + 𝜈 + 6�̅�]
 [

144𝑅𝑡12
∗ 𝛽2

𝐺[1 + 𝜈 + 6�̅�]
(

𝐻

𝐿
)

2

]

1
3

 [
48√3𝑅𝑡12

∗ 𝛽

𝐺𝐿[1 + 𝜈 + 6�̅�]
]

1
2

 

Note: (C) and (R) denote, respectively, circular and rectangular struts. 𝛽 = 𝐵 𝐻⁄  
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Fig. 5. Relationships between the effective bending rigidities and the normalized area weight densities of 2D-lattice 
plates with rectangular struts. 
 

 
Fig. 6. Relationships between the effective torsional rigidities and the normalized area weight densities of 2D-lattice 
plates with rectangular struts. 
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Fig. 7. Clamped square 2D-lattice plate: (a) original lattice and (b) equivalent homogeneous plate. 
 

 
Fig. 8. Normalized deflections of 2D-lattice plates of hexagonal and triangular unit cells. 
 

From a designer’s point of view, better unit-cell 
patterns are those that, for required rigidities, yield lighter 
weights of the resulting lattices. Fig. 5 and Fig. 6 show 
examples of design graphs for 2D-lattice plates. The 
graphs provide the relationships between the effective 

rigidities, normalized by Young’s modulus 𝐸 or the shear 

modulus 𝐺  of the base material, and the area weight 
densities, normalized by the weight density of the base 
material. The graphs are constructed for lattices having 

rectangular struts with 𝐵 × 𝐻 = 6.40 × 13.00 mm  and 

having Poisson’s ratio of the base material 𝜈 = 0.25 . 
Note that the chosen strut sectional dimensions are taken 
from an existing floor grating product. From these design 
graphs, the normalized area weight densities for any 
required rigidities can be determined for lattices 
constructed from different unit-cell patterns. The graphs 

are constructed from the formulas of 𝜌𝐴
∗ /𝜌(𝑅𝑏1

∗ , 𝐻)  in 

Table 6, and 𝜌𝐴
∗ /𝜌(𝑅𝑡12

∗ , 𝐻) in Table 7. To achieve the 

required rigidities, the characteristic length 𝐿 needs to be 

adjusted. Its value can be determined via the values of 

𝜌𝐴
∗ /𝜌 , 𝐵 , 𝐻 , and the expressions of 𝜌𝐴

∗ /𝜌(𝐵, 𝐻, 𝐿)  in 
Table 4. It can be seen from Table 6 and Table 7 that 

𝜌𝐴
∗ /𝜌(𝑅𝑏1

∗ , 𝐻)  and 𝜌𝐴
∗ /𝜌(𝑅𝑡12

∗ , 𝐻)  vary linearly, 

respectively, with 𝑅𝑏1
∗  and 𝑅𝑡12

∗ , which can be clearly 
observed in Fig. 5 and Fig. 6. Each design graph of a unit-

cell pattern is terminated such that 0 ≤ 𝐻/𝐿𝑚𝑖𝑛 ≤ 0.3, 

where 𝐿𝑚𝑖𝑛 denotes the length of the shortest struts of 

the unit-cell pattern. The values of 𝐻/𝐿𝑚𝑖𝑛 above 0.3 are 
not considered, to ensure that the Euler-Bernoulli beam 
theory is still reasonably applicable. It can be seen from 
Fig. 5 and Fig. 6 that the weight efficiency obtained from 
the body-centered square and the diamond-square unit-
cell patterns is the same. The same is true for the triangular 
and kagome unit-cell patterns. In addition, it can be 
observed from Fig. 5 that, for bending, the square unit-
cell pattern yields the best weight efficiency and the 
diamond unit-cell pattern yields the worst. In fact, the 
square and diamond patterns are the same pattern. The 
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difference is only in the relative directions between the 
intended applied loads and the patterns. Although the 
square pattern yields the best weight efficiency for bending, 
the maximum effective bending rigidities that can be 
obtained from this unit-cell pattern without violating the 

limiting value of 𝐻 𝐿𝑚𝑖𝑛⁄ = 0.3 is lower than that of the 
body-centered square pattern. From Fig. 6, for torsion, the 
diamond unit-cell pattern gives the best weight efficiency 
while the square unit-cell pattern gives the worst. Without 

violating the limit value of 𝐻 𝐿𝑚𝑖𝑛⁄ = 0.3, the maximum 
torsional rigidity can be obtained from the body-centered 
square pattern. 

Finally, to demonstrate how the closed-form 
effective properties presented in this study can be used in 
real applications, two 2D-lattice plates of hexagonal and 
triangular unit cells having rectangular struts with 

𝐵 × 𝐻 = 6.40 × 13.00 mm are analyzed. The plates are 

clamped square plates of �̃� × �̃� , where �̃� = 1,600 mm, 

each with a point load 𝑃 = 1,000 N applied at its center, 

as shown in Fig. 7(a). The characteristic length 𝐿 of each 
plate’s unit cells is selected such that the normalized area 

weight density 𝜌𝐴
∗ /𝜌  of the plate is equal to 2.2 ×

10−3 mm . This yields the characteristic length 𝐿 =
43.67 mm for hexagonal unit cells and 𝐿 = 131.01 mm 
for triangular unit cells. The base material of the plates has 

Young’s modulus 𝐸 = 200 GPa and Poisson’s ratio 𝜈 =
0.25. As schematically shown in Fig. 7(b), an equivalent 

homogeneous plate with a thickness of ℎ = 13.00 mm 

and a material having 𝐸𝑖 = 𝐸𝑖
∗, 𝜈𝑖𝑗 = 𝜈𝑖𝑗

∗ , and 𝐺12 = 𝐺12
∗  

is created for each 2D-lattice plate. The effective elastic 

properties, 𝐸𝑖
∗ , 𝜈𝑖𝑗

∗ , and 𝐺12
∗ , are determined from the 

closed-form solutions in Table 2. The equivalent 
homogeneous plates are subjected to the same boundary 
conditions and load as the original ones. Subsequently, the 
deflections of the original lattices and their equivalent 
homogeneous plates, determined by finite element 
analysis, are compared. Fig. 8 shows the normalized 
deflections of the two 2D-lattice plates and their 

equivalent homogeneous plates along the 𝑋 axis, defined 
in Fig. 7. Good agreement between the deflections of the 
2D-lattice plates and of the equivalent homogeneous 
plates is observed. The differences between the load-point 
deflections of the original hexagonal and triangular lattices 

and their equivalent homogeneous plates are only 0.49% 

and 0.04%, respectively. These results demonstrate how 
the closed-form effective properties presented in this 
study can be used to predict the behavior of 2D-lattice 
plates in real applications. It can also be seen in Fig. 8 that 
the deflection of the hexagonal lattice is larger than that of 
the triangular lattice. It can be seen from Fig. 5 and Fig. 6 
that the weight efficiency of triangular lattices is better 
than that of hexagonal lattices in both pure bending and 
torsion modes. Since both lattices have the same weight 
per area, it follows that the hexagonal lattice has smaller 
rigidities and, subsequently, larger deflection than the 
triangular lattice does as observed in Fig. 8. 
 

7. Conclusions 
 
In this study, the relationships between the effective 

rigidities and the area weight densities are used to 
determine the weight efficiency of 2D-lattice plates 
created from different unit-cell patterns. A method to 
design 2D-lattice plates, based on their weight efficiency, 
is proposed. The study considers 2D-lattice plates that 
consist of Euler-Bernoulli beams and can be modeled as 
homogeneous orthotropic Kirchhoff plates. The strain-
energy-based homogenization method is used to 
determine these equivalent orthotropic Kirchhoff plates. 
In the homogenization method, a unit cell of the 
considered 2D-lattice plate is subjected to some curvature 
modes. The resulting analytical expressions of the strain 
energy are used to analytically compute the effective 
properties of the plates. The considered effective 
properties, presented as closed-form solutions, are the 
effective elastic constants, effective bending and torsional 
rigidities, and relationships between the effective rigidities 
and the area weight densities. The proposed design 
method employs the relationships between the effective 
rigidities and the area weight densities of 2D-lattice plates 
to determine their weight efficiency, and design solutions 
are determined from these relationships. Design formulas 
for different design inputs are derived. Examples of design 
graphs for 2D-lattice plates with different unit-cell 
patterns are presented and discussed. From the example 
cases, it is observed that, for bending, the square unit-cell 
pattern yields the best weight efficiency and the diamond 
unit-cell pattern yields the worst. For torsion, the diamond 
unit-cell pattern gives the best weight efficiency and the 
square unit-cell pattern gives the worst. In addition, the 
weight efficiency obtained from the body-centered square 
and the diamond-square unit-cell patterns is the same. The 
triangular and kagome unit-cell patterns also yield the 
same weight efficiency. Finally, the usefulness of the 
obtained weight efficiency is demonstrated through the 
analysis of 2D-lattice plates having different unit-cell 
patterns. 

For future work, the present study can be extended to 
2D-lattice plates that consist of Timoshenko beams and 
can be modeled accurately as frames of Timoshenko 
beams. This extension will allow closed-form design 
equations for 2D-lattice plates having thicker struts to be 
constructed. More significantly, the methodology of the 
present study can also be used to explore the weight 
efficiency of 3D lattices that are made up of beams. 
Closed-form design equations for 3D lattices may be 
constructed by considering their weight efficiency based 
on volume weight densities, instead of area weight 
densities. However, performing symbolic computation for 
3D lattices may not be possible as the derivations can be 
too complex for any symbolic computational platform. In 
this case, the rigidities and weight density can be used to 
evaluate weight efficiency numerically instead. 
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