

Article

Verification-Based Decoding for Rateless Codes in
the Presence of Errors and Erasures

Usana Tuntoolavesta,*, Nabeela Shaheenb, and Visuttha Manthamkarnc

Department of Electrical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900,
Thailand
E-mail: a,*usana.t@ku.th (Corresponding author), bnabeela.s@ku.th, cvisuttha.m@ku.th

Abstract. In this paper, verification-based decoding is proposed for the correction and
filling-in of lost/erased packets for multicast service in data networks, which employs
Rateless codes. Patterns of preferred parity-check equations are presented for the
reduction of the average number of parity-check symbols required. Since the locations of
unverified symbols are known, the effect of erasures and errors is the same in terms of the
overhead required for successful decoding. Simulation results show that for an error-only,
an erasure-only or a combination of both at 10% error/erasure probability, 78% of the
messages can be recovered with a 50% overhead, whereas 99% of the messages can be
recovered with a 100% overhead.

Keywords: Verification-based decoding, multicast, erroneous packets, lost packets,
Rateless code.

ENGINEERING JOURNAL Volume 26 Issue 4
Received 17 November 2021
Accepted 24 March 2022
Published 30 April 2022
Online at https://engj.org/
DOI:10.4186/ej.2022.26.4.37

mailto:nabeela.s@ku.th
mailto:visuttha.m@ku.th

DOI:10.4186/ej.2022.26.4.37

38 ENGINEERING JOURNAL Volume 26 Issue 4, ISSN 0125-8281 (https://engj.org/)

1. Introduction

Real-time multimedia broadcasting/multicasting,

such as audio/video streaming via wireless networks, are
used more widely in numerous applications nowadays. In
particularly, Lightweight User Datagram Protocol (UDP-
Lite) network is designed for both broadcasting and
multicasting services [1] as well as various multimedia
such as H.263+, H.264 and MPEG-4 [2]. Furthermore,
unlike other networks, the UDP-lite network does not
drop corrupted data packets due to its feature [2]. As a
result, both error and erasure packets, caused by either
wireless bursty channels [3][4][5][6] or congested
networks, can occur in this network. Conventionally, to
guarantee the transfer in a communication link, Forward
Error Correction codes (FEC) and Automatic Repeat
Request (ARQ) are standard methods to correct errors
and recover erasures, respectively. In wireless
broadcasting/multicasting networks, the use of ARQ is
not suitable because each of the numerous receivers may
have different channel conditions and limited feedback
channel capabilities. ARQ also cause significant delay [4]
and the retransmission from the sender is becoming less
practical when the number of receivers increases as the
sender needs to maintain one feedback channel for each
receiver. Therefore, recovering the lost and erroneous
packets by ARQ is not practical in wireless
broadcasting/multicasting networks with large number
of receivers. The fountain code, named Raptor codes can
be used to solve this problem as shown in [7].

Fountain codes are suitable “for channels with
erasures such as the internet” [8]. They are also used as
reliable multicasts in data networks in cases where a
sender must send the same message to a large number of
receivers [8]. Since packets can be lost during their
transmission in the network from many reasons such as
congestion or lack of high-speed backbones [5], noises
and interferences [3], different set of packets may be
received by each receiver. The advantage of Fountain
codes is that the decoder at each receiver is capable of
always performing the decoding process, even in the case
of a very-low quality channel. Ideally, there is no need for
ARQ since FEC will always be sufficient if there is no
limit on the redundancy.

Fountain codes are also called “Rateless codes”
because there is no fixed code rate for any of the
receivers [8]. In good channel conditions, a receiver has a
higher effective code rate than a receiver in bad channel
conditions. Therefore, each receiver may have a different
effective code rate. Rateless codes were originally
proposed for packet-erasure channels. However, since
then, a significant amount of research on various noisy
channels has been conducted [9][10][11]. These codes
have been found to be more robust than conventional
fixed-rate codes. Moreover, it has been proved that
Raptor codes can achieve capacity on the Symmetric
Channel [10].

In data networks, the fundamental unit of
transmission is the packet. Thus, it is more appropriate

to treat a packet as the fundamental unit or a symbol
over GF(2r) in the coding scheme. Thus, each packet is
viewed as a non-binary symbol over GF(2r) in this paper.
Luby and Mitzenmacher stated that a large value of r
makes the probability of linearly dependent erroneous
symbols negligible [12]. Another work on Vector symbol
decoding (VSD), which provided an inspiration for the

proposed algorithm, also showed that r ≥ 32 bits are
enough to satisfy the linearly independent error pattern
assumption [13]. This assumption is necessary to avoid
false verifications (FV).

Belief-Propagation-based decoders for non-binary
codes are computationally ineffective when the field size
‘2r’ increases. Other approaches for decoding these codes
have been presented in [12][14][15]. One of these
approaches (i.e., the Verification-based (VB) decoding
[12]), has been applied to Low-density parity-check
(LDPC) codes and other block codes in various decoding
schemes. VB schemes, which are called “Majority-logic-
like decoding,” were developed by Metzner in [16][17]
for block codes. Luby and Mitzenmacher [12] presented
an iterative VB decoder for LDPC codes for the q-ary
symmetric channel (q-SC). Regarding VB decoding of
Rateless schemes, an elegant algorithm for Raptor codes
on the same q-SC was presented in [14], where another
alternative for VB decoding of Rateless codes was
presented.

This paper proposed an alternative decoding scheme
for wireless broadcasting/multicasting networks with no
ARQ that can still guarantee reliable transmission. The
main difference of the proposed scheme from other
works is that it is capable of handling both errors and
erasures by itself in the same algorithm instead of relying
on other layers of the OSI model. This is possible
because the decoding algorithm can verify the correct
symbol positions. The unverified symbols are previously
treated as errors in [12], but they can be treated as
erasures instead since their positions are known while
their values are unknown. This makes errors and erasures
alike to the decoder. Therefore, the proposed decoder
requires the same amount of overhead to treat errors,
erasures and combinations of errors and erasures. This
allows for more flexible scenarios of errors only, erasures
only and a combination of errors and erasures.

In contrast, the method proposed in [12] assumes
errors only, whereas other works on Rateless codes
assume erasures only [8][18]. Some Rateless codes that
assume erasures only may leave the error correction to
another decoding technique such as Reed-Solomon
decoder. The proposed decoding technique shares some
of the verification rules with the technique presented in
[12]. The difference is that the proposed VB decoding
scheme is capable of correctly verifying codes, which
have both short and long cycles in the Tanner graph,
whereas the rules described in [12] suffer from FV in the
presence of short cycles.

In [19], the research conducted on VB decoding for
packet based LDPC codes aimed at reducing the
likelihood of FV by increasing the number of checks

DOI:10.4186/ej.2022.26.4.37

ENGINEERING JOURNAL Volume 26 Issue 4, ISSN 0125-8281 (https://engj.org/) 39

required to verify each symbol. However, by applying the
proposed VB decoding, FV is found to be negligible for
large symbols in consideration. Therefore, only one
check is enough to verify any symbol.

In many protocols, packets usually have either a
simple built-in error-correction or error-detection code.
Regarding error-correction codes, a small number of
erroneous bits due to noises can be corrected, whereas
larger numbers of erroneous bits will result in erroneous
packets. For error-detection codes, any number of
erroneous bits will result in packet erasure or loss. Other
conditions may result in packet loss such as in a
congested network. In this case, low-priority packets may
be dropped. Thus, in this paper, the probability of error
is considered as the probability of an erroneous packet,
whereas the probability of erasure is considered as the
probability of a lost packet.

The background on VB decoding is explained in
Section 2. Fountain codes and the framework of the
Rateless codes are also considered in this section. The
code specifications and preferred parity-check patterns
are described in Section 3. The proposed method is
presented in Section 4, whereas its computation
complexity is presented in Section 5. Simulation results
are presented in Section 6. Finally, a discussion on the
results is presented in Section 7, and the conclusions are
presented in Section 8.

2. VB Decoding Background

2.1. A Note on Verification-based (VB) Decoding

The basic concept in VB decoding is that a check
node can verify its neighbors if the check constraint is
satisfied, given the erroneous symbols are not linearly
dependent. The Exclusive-OR (XOR) sum of all check-
node neighbors being equal to zero is the check
constraint most used. If only one of the symbols during a
check is unverified at any stage during decoding, it is
calculated using this check constraint.

Apart from these basic rules for verification and
correction, individual decoders employ some additional
ways for verification and/or correction [12][20].

Example 1: Consider a nonzero check-node (c) in Eq. (1)
and suppose the received symbols, y1 and y2 are both
verified as v1 and v2, where vi is the ith codeword symbol
and yj is the jth received symbol.

=  1 2 3c v v y (1)

where  is the vector modulo-2 sum.
From Eq. (1), there is only one unverified symbol, y3.

As a result, the check-node can correct y3 by the Eq. (2).

=  3 1 2y v v c (2)

2.2. Rateless Codes

Rateless codes are codes that has no pre-fixed rate

for the code; the encoder can generate as many encoded

symbols as those required for decoding. The well-known
Rateless codes are fountain codes. Fountain codes are
based on the fountain and bucket analogy [18]. Just like a
bucket can be filled by collecting a certain number of
droplets from a fountain, a fountain code can be
decoded if a certain number of encoded units/symbols is
received.

Example 2: Suppose a sender sends packets #1 to #8.
Assume that the decoder can decode successfully if it
receives 5 different packets.

Table 1. Sets of received packets for 3 different receivers.

Rx

1st

received
packet

2nd
received
packet

3nd
received
packet

4th

received
packet

5th
received
packet

1 #1 #3 #4 #6 #7

2 #2 #3 #4 #5

3 #1 #2 #5 #6 #8

From Table 1, the first and the third receivers

receive 5 packets, so they can decode successfully. The
second receiver receives only 4 packets, so it cannot
decode at this time.

3. Code Specifications and Preferred Check
Patterns

The framework of the Rateless code used for testing

the proposed algorithm is described in this section. For
the proof of concept, a code with a degree distribution
chosen by trial and error is generated using the software
developed by Neal and MacKay for the LDPC codes [21].
The code structure is systematic. This allows quick data
recovery in good channel conditions. Optimizations to
find good-degree distributions, which are mostly suited
to the decoding algorithm, are not conducted here.

This paper proposes preferred check-symbol
patterns based on “a divide and conquer” technique,
which has been submitted for a petty patent [22]. Good
results on the decoding overhead are obtained when
preferred check-symbol patterns are transmitted right
after the data symbols in good channel conditions. These
patterns for 20 data symbols are shown in Fig. 1. The
first check symbol is designed to be the sum of all data
symbols. Thus, if all data symbols plus this check symbol
are received correctly, the overhead is minimized to only
one check symbol. The next two check symbols are
designed to be the sum of the first half and the second
half of the data symbols, respectively. In this way, they
can verify half of the data symbols when errors or
erasures occur in the other half. The 4th check symbol is
then the sum of the first 25% and the third 25% of the
data symbols. Finally, the 5th one is the sum of the
second 25% and the fourth 25% of the data symbols.
Basically, half of the data symbols are included with new
check patterns until the last two check symbols of the
preferred patterns are 101010….10 and 010101…01.

DOI:10.4186/ej.2022.26.4.37

40 ENGINEERING JOURNAL Volume 26 Issue 4, ISSN 0125-8281 (https://engj.org/)

4. Description of the Proposed Decoding
Algorithm

When decoding starts, the symbols are either

unverified or marked as erased due to lost packets. The
decoder runs greedily, as the check symbols arrive. The
use of systematic codes allows data symbols to be
transmitted before check symbols. The decoder starts its
decoding process each time it receives a new check
symbol. It then applies the following rules, which are also
depicted in the flowchart shown in Fig. 2.

Equations (3) and (4) are given to show the
calculation of syndrome matrix when the decoder
receives a new symbol.

= S H Y (3)

     
     
     
     

=      
     
     
     
          

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

s h y

s h y

s h y

s h z

s h y

 (4)

where S is the syndrome matrix.

 H is the parity-check matrix.

 Y is the received symbol matrix.
1) For the case of no erased symbols (zi) in the check

equation (hi), if the vector modulo-2 sum of the
received values (syndrome, si) is a zero vector, all
symbols in hi are verified.

2) For the case of only one unverified symbol in hi, that
symbol value is set to make si a zero vector.

3) For the case si is non-zero, its value is recorded in a
list. This is potentially an erroneous symbol value or
a sum of more erroneous symbols. Such
combinations of si’s, which are found to sum to a
zero vector with modulo-2 addition, are called “null
combinations (NB)”. This term was first used by
Metzner in [23]. An NB indicates the canceling out

of the same erroneous symbols from the si ’s
involved. Thus, all symbols, which do not occur in
pairs in the corresponding hi’s, are verified.

4) For the case one or more zi’s in hi exist, a value for
zi or the sum of zi’s is predicted by assuming that the
rest of the data and check symbols are correct. This
value is recorded in a separate list. The prediction of
the same erased symbols from different checks is
summed with modulo-2 addition. If there is an NB,
then, similar to the argument in Rule #3, the
symbols, which do not occur in pairs in the
corresponding hi’s, are verified. Generally, any
number of predicted values expected to result in NB
can be checked if they cause NB. However, it can be
observed that up to five values are enough for the
least amount of overhead.

5. Computational Complexity

Since the code uses symbols over GF(2r), all

computations are performed using modulo-2 arithmetic.
Therefore, the complexity is dominated by symbol-level
operations, especially for large symbol sizes. Regarding
Rule #1 and #2 of the decoding algorithm, the vector
XOR is used to calculate syndromes and the values of
unverified symbols. Regarding Rule # 3, a Gauss-Jordan
reduction is performed to facilitate the search for NB’s.
The corresponding list elements are arranged into a
matrix, where the list elements are the rows of the matrix.
Since modern processors provide 128-bit words [24], a

Fig. 1. Preferred parity-check patterns. The positions of
1’s indicate the positions of data symbols included in the
check equations.

Fig. 2. Flowchart of the proposed decoding algorithm.
Abbreviations: NB = null combination; hi = check

equation; zi = erased symbol, iz = predicted value.

DOI:10.4186/ej.2022.26.4.37

ENGINEERING JOURNAL Volume 26 Issue 4, ISSN 0125-8281 (https://engj.org/) 41

whole column in the matrix can be represented by a
single word. The XOR of two 128-bit words is equal to a
vector XOR of 128-bit symbols. This greatly reduces the
number of operations. Considering that the erasure
positions are already known, the application of Rule #4
can be made simpler. Thus, the step of searching for
NBs can be omitted.

Therefore, the complexity of the decoder is
dominated by the operation described in Rule #3. An
effort is made to keep the entries on the si’s list small.
Once there is an NB between two si’s, one of them is
removed from the list because it will not be useful for
verifying any more symbols. As soon as the erroneous
symbols are corrected, the related entries are also
removed. Implementation of these measures keeps the
list size small throughout the decoding process. The
number of operations depends on the number of check
symbols used in the decoding process. Hence, the
complexity also depends on this same number.

6. Simulation Results

For each value of the probability of error or

probability of erasure, 50,000 decoding runs were
performed. The number of check symbols required for a
complete decoding of k data symbols was recorded each
time. The number of total messages recovered by
increasing the amount of overhead was accumulated and
plotted against the (1 +)k overhead, which is given as a
multiple of k. Therefore, an overhead of  , for example,
means that symbols are received in total. These include
k data symbols and k check symbols.

The performance of the proposed decoding
algorithm is presented in Fig. 3 and 4. The number of
data symbols is k = 20 with 32 bits/symbol. From Fig. 3,
it can be observed that the decoder requires the same
amount of overhead for errors and erasures. This effect
is obvious when a combination of errors and erasures
also provides the same result.

From Fig. 3, it can be observed that 78% of
decoding runs complete the decoding process for a 0.5k
overhead, and 99% of the decoding process is completed
before the overhead of k symbols with an average of
0.4k for a given probability value. The results obtained
for various probabilities for a combination of errors and
erasures are shown in Fig. 4. The numbers shown are the
sum of both, and it is assumed that Pe = Pera. For example,
a probability of error/erasure = 0.08 means that Pe =
0.04 and Pera = 0.04 as well. Assuming no error and
erasure (Pe/era = 0), the decoder is successful with an
overhead of 0.05 or 1 check symbol/20 data symbols.
When the ratio Pe/era increases, the fraction of messages
recovered with the same overhead decreases, as expected.
However, all messages are eventually recovered when the
overhead is 1.5k. A comparison among three different
code lengths for 20, 50, and 100 data symbols is
presented in Fig. 5. In the case of 20 data symbols, the
amount of overhead required to recover the whole
message is the largest.

Figure 6 illustrates the performance comparison of

the proposed VB decoder with other decoders that can
handle packet-sized symbols. Tornado code decoding is
the best in recovering messages given the same overhead,
but it assumes that only erasures can occur. Vector
symbol decoding (VSD) is another nonbinary decoding
for packet-sized symbol, but it can correct errors only
[25][26][27]. The performance of the proposed VB
decoding is better than VSD when the overhead is less
than 0.45 and VSD is better when the overhead is at least
0.45. However, both Tornado code decoding and VSD
are not designed to handle a mixture of errors and
erasures.

7. Discussion

The simulation results verify that the decoder

requires a similar amount of overhead, regardless of the
presence of erroneous or erased symbols. This is
expected because Rule #2, which is the only correction
rule used, makes no distinction between erroneous and
erasure symbols. When checking is performed, a single
unverified data symbol is set to a value that satisfies the

Fig. 3. Fraction of successful decoding completions vs.
overhead for errors only, erasures only, and a
combination of both.

Fig. 4. Fraction of successful decoding completions vs.
overhead for the cases that Pe = Pera, and their sum is in

the range 0 ̶ 0.1.

DOI:10.4186/ej.2022.26.4.37

42 ENGINEERING JOURNAL Volume 26 Issue 4, ISSN 0125-8281 (https://engj.org/)

check constraint. The difference between the effect of
errors and erasures is that the step performed to find
NBs is omitted for erasures, as explained in Section 5.
The complexity is directly related to the list size. The list
size (and hence, the complexity) can be kept low by
removing redundant data from the lists whenever
possible. Hence, the size of these lists keeps changing
and does not necessarily increase with the increase in the
overhead.

From the graphs in Fig. 3, 4, and 5, three regions can
be roughly observed. The first region starts at the
fraction of complete decoding runs with a single received
check symbol. The rising region represents the chain
recovery of data symbols. A recovered symbol increases
the probability of recovering more data symbols. The
saturation region is the region, where approximately 5%
of the decoding attempts require a higher amount of
overhead to complete the decoding process.

In comparison with other decoding techniques that
can handle packet-sized symbols and are suitable for
Rateless codes, Tornado code decoding is better and
VSD is quite similar to the proposed VB decoding.

However, Tornado code decoding is for erasure only,
while VSD is for error only. The main advantage of the
proposed decoding is that it can handle a mixture of
errors and erasures at the same time.

As expected, no FVs were observed during the
simulations. By employing a large enough symbol size,
false verification is avoided with high confidence [12].
The algorithm presented here does not suffer from FV
due to cycles in the code as described in [12].

For the range of probabilities considered, the
maximum amount of overhead observed is k. For higher
probabilities, the messages will be eventually recovered
but the amount of the overhead may be higher. This
situation could be managed by keeping an upper limit on
the overhead allowed before reporting failure. For a
higher number of data packets, the required overhead for
a given fraction of recovered messages decreases after a
certain amount of overhead. Moreover, as shown in [28]
for Raptor codes in Binary Symmetric channels, the
overhead decreases with the code length for a fixed
residual bit error rate.

8. Conclusion

In this paper, an alternative approach for the

decoding of Rateless codes was introduced. The aim was
to present a decoding scheme for multicasting service in
data networks. Various sources of data corruption exist
in these networks. Instead of focusing on a single-
channel model, the overall network conditions are
considered in terms of the probability of lost/erased and
erroneous packets. The ability of the proposed algorithm
to handle errors as well as erasures makes for a relaxed
decoding constraint, as the assumptions of no erroneous
or no lost packet reception may not be practical in many
cases. The proposed decoder utilizes a similar amount of
overhead for the recovery of erroneous and erased
packets. Recovering from erasures usually requires fewer
computations than errors, as their locations are known
beforehand. The proposed algorithm is very flexible, as it
is capable of handling network conditions with errors
only, erasures only or a combination of both.

Varied performances were observed for different
degree distributions. Optimizing for the best-degree
distribution suited for the coding scheme can greatly
improve the performance. This can be investigated in a
future work.

Acknowledgement

The authors would like to thank Kasetsart University

Research and Development Institute for support with
proof reading and comments.

References

[1] G. Fairhurst, B. Trammell, and M. Kuehlewind,

“Services provided by IETF transport protocols

Fig. 5. Effect of code length on overhead.

Fig. 6. Performance comparison of Tornado code
(erasure only), the proposed algorithm (mixture of errors
and erasures) and VSD (error only).

DOI:10.4186/ej.2022.26.4.37

ENGINEERING JOURNAL Volume 26 Issue 4, ISSN 0125-8281 (https://engj.org/) 43

and congestion control mechanisms,” RFC 8095,
2004.

[2] L.-A. Larzon, M. Degermark, S. Pink, L.-E. Jonsson,
and G. Fairhurst, “The lightweight user datagram
protocol (UDP-Lite),” RFC 3828, 2004.

[3] P. Ostovari and J. Wu, “Reliable broadcast with
joint forward error correction and erasure codes in
wireless communication networks,” in 2015 IEEE
12th International Conference on Mobile Ad Hoc and
Sensor Systems, Dallas, USA, 2015.

[4] I.-H. Hou, “Broadcasting delay-constrained traffic
over unreliable wireless links with network coding,”
IEEE ACM Trans. Netw., vol. 23, no. 23, pp. 728-
740, 2015.

[5] D. Chen, B. Rong, N. Shayan, M. Bennani, J. Cabral,
M. Kadoch, and A. K. Elhakeem, “Interleaved
FEC/ARQ coding for QoS multicast over the
internet,” Can. J. Electr. Comput. Eng., vol. 29, no. 3,
pp. 159-166, 2004.

[6] A. Majumda, D. G. Sachs, I. V. Kozintsev, K.
Ramchandran, and M. M. Yeung, “Multicast and
unicast real-time video streaming over wireless
LANs,” IEEE Trans. Circuits Syst. Video Technol., vol.
12, no. 6, pp. 524-534, 2002.

[7] T. Mladenov, S. Nooshabadi and K. Kim,
“Efficient GF(256) raptor code decoding for
multimedia broadcast/multicast services and
consumer terminals,” IEEE Trans. Consum. Electron.,
vol. 58, no. 2, pp. 356-363, 2012.

[8] J. Byers, M. Luby, M. Mitzenmacher and A. Rege,
“A digital fountain approach to reliable distribution
of bulk data,” ACM SIGCOMM Comput. Commun.
Rev, vol. 28, no. 4, pp. 56-67, 1998.

[9] R. Palanki and J. S. Yedidia, “Rateless codes on
noisy channels,” in IEEE International Symposium on
Information Theory, Chicago, USA, 2004.

[10] O. Etesami, M. Molkaraie, and A. Shokrollahi,
“Raptor codes on symmetric channel,” in IEEE
International Symposium on Information Theory, Chicago,
USA, 2004.

[11] J. Castura and Y. Mao, “Rateless coding over fading
channels,” IEEE Commun. lett., vol. 10, no. 1, pp.
46-48, 2006.

[12] M. Luby and M. Mitzenmacher, “Verification-based
decoding for packet-based low-density parity-check
codes,” IEEE Trans. Inf. Theory, vol. 51, no. 1, pp.
120-127, 2005.

[13] U. Tuntoolavest, “A simple method to improve the
performance of convolutional vector symbol
decoding with small symbol size,” in 2004 IEEE
Region 10 Conference TENCON 2004, Chiang Mai,
Thailand, 2004.

[14] R. Karp, M. Luby, and A. Shokrollahi, “Verification
decoding of raptor codes,” in International Symposium
on Information Theory, Adelaide, Australia, 2005.

[15] M. Fossorier and D. Declercq, “Decoding
algorithms for nonbinary LDPC codes over GF(q),”
IEEE Trans. Commun., vol. 55, no. 4, pp. 633-643,
2007.

[16] J. J. Metzner, “Majority-logic-like decoding of
vector symbols,” IEEE Trans. Commun., vol. 40, no.
10, pp. 1227-1230, 1996.

[17] J. J. Metzner, “Majority-logic-like vector symbol
decoding with alternative symbol value lists,” IEEE
Trans. Commun., vol. 48, no. 12, pp. 2005-2013, 2000.

[18] A. Shokrollahi, “Raptor codes,” IEEE ACM Trans.
Netw., vol. 14, no. SI, pp. 2551-2567, 2006.

[19] B. Zhu, D. Huang, and S. Nordholm, “Enhanced
verification-based decoding for packet-based LDPC
codes,” IEEE Commun. Lett., vol. 12, no. 2, pp. 136-
138, 2008.

[20] F. Zhang and H. D. Pfister, “List-message passing
achieves capacity on the q-ary symmetric channel
for large q,” in IEEE Global Telecommunications
Conference, Washington, USA, 2007.

[21] D. MacKay and R. Neal, Software for Low Density
Parity Check Codes. 2012. [Online]. Available:
http://www.cs.toronto.edu/~radford/ftp/LDPC-
2012-02-11/index.html [Accessed: 15 October
2019].

[22] U. Tuntoolavest and N. Shaheen, “Encoding and
decoding method of systematic Rateless Codes with
the predefined first set of parity symbols structure
by the Divide and Conquer technique to resolve
erasures and errors,” (in Thai) submitted for petty
patent no. 2003003424, 2020.

[23] J. J. Metzner and E. J. Kapturowski, “A general
decoding technique applicable to replicated file
disagreement location and concatenated code
decoding,” IEEE Trans. Inf. Theory, vol. 36, no. 4,
pp. 911-917, 1990.

[24] J. Ledin, “The RISC-V Architecture and Instruction
Set,” in Modern Computer Architecture and Organization,
1st ed. Birmingham, United Kingdom: Packt
Publishing, 2020, ch. 11, pp. 293.

[25] U. Tuntoolavest, Vector Symbol Decoding for Wireless
Fading Channels. Saarbrücken, German: VDM
publishing, 2009.

[26] N. Shaheen and U. Tuntoolavest, “Effect of weight
distribution on vector symbol decoder
performance,” in 4th IEEE international Women in
Engineering (WIE) Conference on Electrical and Computer
Engineering 2018, Pattaya, Thailand, 2018, pp. 1-4.

[27] J. J. Metzner, “Vector symbol decoding with list
inner symbol decisions,” IEEE Trans. Commun., vol.
51, no. 3, pp. 371-380, 2003.

[28] A. Shokrollahi and O. Etesami, “Raptor codes on
binary memoryless symmetric channels,” IEEE
Trans. Inf. Theory, vol. 52, no. 5, pp. 2033-2051, 2006.

DOI:10.4186/ej.2022.26.4.37

44 ENGINEERING JOURNAL Volume 26 Issue 4, ISSN 0125-8281 (https://engj.org/)

Usana Tuntoolavest received the B.S. degree in electrical engineering from Chulalongkorn
University in 1995, and the M.S. and Ph.D. degrees from the Pennsylvania State University, PA,
USA in 1997 and 2002, respectively. She is currently an Associate Professor at Kasetsart
University, Bangkok, Thailand. She has received many awards including the Excellence Lecturer of
the 5th ASAIHL-Thailand Award (2017) from the Association of Southeast Asian Institute of
higher learning, Thailand.

Nabeela Shaheen received the B.S degree in electronic engineering in 2011 and The M.Eng
Degree in ‘Information and Communication Technology’ in 2021. She currently works as an
Embedded Software Architect.

Visuttha Manthamkarn received the B.S. degree in electrical engineering from Kasetsart
University in 2019. He is now working as a researcher at Kasetsart University, Bangkok, Thailand.
His current research interests include channel coding and implementation for the LDPC
encoding/decoding.

