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Abstract. In this paper, verification-based decoding is proposed for the correction and 
filling-in of lost/erased packets for multicast service in data networks, which employs 
Rateless codes. Patterns of preferred parity-check equations are presented for the 
reduction of the average number of parity-check symbols required. Since the locations of 
unverified symbols are known, the effect of erasures and errors is the same in terms of the 
overhead required for successful decoding. Simulation results show that for an error-only, 
an erasure-only or a combination of both at 10% error/erasure probability, 78% of the 
messages can be recovered with a 50% overhead, whereas 99% of the messages can be 
recovered with a 100% overhead. 
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1. Introduction 
 
Real-time multimedia broadcasting/multicasting, 

such as audio/video streaming via wireless networks, are 
used more widely in numerous applications nowadays. In 
particularly, Lightweight User Datagram Protocol (UDP-
Lite) network is designed for both broadcasting and 
multicasting services [1] as well as various multimedia 
such as H.263+, H.264 and MPEG-4 [2]. Furthermore, 
unlike other networks, the UDP-lite network does not 
drop corrupted data packets due to its feature [2]. As a 
result, both error and erasure packets, caused by either 
wireless bursty channels [3][4][5][6] or congested 
networks, can occur in this network. Conventionally, to 
guarantee the transfer in a communication link, Forward 
Error Correction codes (FEC) and Automatic Repeat 
Request (ARQ) are standard methods to correct errors 
and recover erasures, respectively. In wireless 
broadcasting/multicasting networks, the use of ARQ is 
not suitable because each of the numerous receivers may 
have different channel conditions and limited feedback 
channel capabilities. ARQ also cause significant delay [4] 
and the retransmission from the sender is becoming less 
practical when the number of receivers increases as the 
sender needs to maintain one feedback channel for each 
receiver. Therefore, recovering the lost and erroneous 
packets by ARQ is not practical in wireless 
broadcasting/multicasting networks with large number 
of receivers. The fountain code, named Raptor codes can 
be used to solve this problem as shown in [7].  

Fountain codes are suitable “for channels with 
erasures such as the internet” [8]. They are also used as 
reliable multicasts in data networks in cases where a 
sender must send the same message to a large number of 
receivers [8]. Since packets can be lost during their 
transmission in the network from many reasons such as 
congestion or lack of high-speed backbones [5], noises 
and interferences [3], different set of packets may be 
received by each receiver. The advantage of Fountain 
codes is that the decoder at each receiver is capable of 
always performing the decoding process, even in the case 
of a very-low quality channel. Ideally, there is no need for 
ARQ since FEC will always be sufficient if there is no 
limit on the redundancy.  

Fountain codes are also called “Rateless codes” 
because there is no fixed code rate for any of the 
receivers [8]. In good channel conditions, a receiver has a 
higher effective code rate than a receiver in bad channel 
conditions. Therefore, each receiver may have a different 
effective code rate. Rateless codes were originally 
proposed for packet-erasure channels. However, since 
then, a significant amount of research on various noisy 
channels has been conducted [9][10][11]. These codes 
have been found to be more robust than conventional 
fixed-rate codes. Moreover, it has been proved that 
Raptor codes can achieve capacity on the Symmetric 
Channel [10]. 

In data networks, the fundamental unit of 
transmission is the packet. Thus, it is more appropriate 

to treat a packet as the fundamental unit or a symbol 
over GF(2r) in the coding scheme. Thus, each packet is 
viewed as a non-binary symbol over GF(2r) in this paper. 
Luby and Mitzenmacher stated that a large value of r 
makes the probability of linearly dependent erroneous 
symbols negligible [12]. Another work on Vector symbol 
decoding (VSD), which provided an inspiration for the 

proposed algorithm, also showed that r ≥ 32 bits are 
enough to satisfy the linearly independent error pattern 
assumption [13]. This assumption is necessary to avoid 
false verifications (FV). 

Belief-Propagation-based decoders for non-binary 
codes are computationally ineffective when the field size 
‘2r’ increases. Other approaches for decoding these codes 
have been presented in [12][14][15]. One of these 
approaches (i.e., the Verification-based (VB) decoding 
[12]), has been applied to Low-density parity-check 
(LDPC) codes and other block codes in various decoding 
schemes. VB schemes, which are called “Majority-logic-
like decoding,” were developed by Metzner in [16][17] 
for block codes. Luby and Mitzenmacher [12] presented 
an iterative VB decoder for LDPC codes for the q-ary 
symmetric channel (q-SC). Regarding VB decoding of 
Rateless schemes, an elegant algorithm for Raptor codes 
on the same q-SC was presented in [14], where another 
alternative for VB decoding of Rateless codes was 
presented. 

This paper proposed an alternative decoding scheme 
for wireless broadcasting/multicasting networks with no 
ARQ that can still guarantee reliable transmission. The 
main difference of the proposed scheme from other 
works is that it is capable of handling both errors and 
erasures by itself in the same algorithm instead of relying 
on other layers of the OSI model. This is possible 
because the decoding algorithm can verify the correct 
symbol positions. The unverified symbols are previously 
treated as errors in [12], but they can be treated as 
erasures instead since their positions are known while 
their values are unknown. This makes errors and erasures 
alike to the decoder. Therefore, the proposed decoder 
requires the same amount of overhead to treat errors, 
erasures and combinations of errors and erasures. This 
allows for more flexible scenarios of errors only, erasures 
only and a combination of errors and erasures.  

In contrast, the method proposed in [12] assumes 
errors only, whereas other works on Rateless codes 
assume erasures only [8][18]. Some Rateless codes that 
assume erasures only may leave the error correction to 
another decoding technique such as Reed-Solomon 
decoder. The proposed decoding technique shares some 
of the verification rules with the technique presented in 
[12]. The difference is that the proposed VB decoding 
scheme is capable of correctly verifying codes, which 
have both short and long cycles in the Tanner graph, 
whereas the rules described in [12] suffer from FV in the 
presence of short cycles.  

In [19], the research conducted on VB decoding for 
packet based LDPC codes aimed at reducing the 
likelihood of FV by increasing the number of checks 
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required to verify each symbol. However, by applying the 
proposed VB decoding, FV is found to be negligible for 
large symbols in consideration. Therefore, only one 
check is enough to verify any symbol. 

In many protocols, packets usually have either a 
simple built-in error-correction or error-detection code. 
Regarding error-correction codes, a small number of 
erroneous bits due to noises can be corrected, whereas 
larger numbers of erroneous bits will result in erroneous 
packets. For error-detection codes, any number of 
erroneous bits will result in packet erasure or loss. Other 
conditions may result in packet loss such as in a 
congested network. In this case, low-priority packets may 
be dropped. Thus, in this paper, the probability of error 
is considered as the probability of an erroneous packet, 
whereas the probability of erasure is considered as the 
probability of a lost packet. 

The background on VB decoding is explained in 
Section 2. Fountain codes and the framework of the 
Rateless codes are also considered in this section. The 
code specifications and preferred parity-check patterns 
are described in Section 3. The proposed method is 
presented in Section 4, whereas its computation 
complexity is presented in Section 5. Simulation results 
are presented in Section 6. Finally, a discussion on the 
results is presented in Section 7, and the conclusions are 
presented in Section 8. 
 

2. VB Decoding Background 
 

2.1. A Note on Verification-based (VB) Decoding 
 

The basic concept in VB decoding is that a check 
node can verify its neighbors if the check constraint is 
satisfied, given the erroneous symbols are not linearly 
dependent. The Exclusive-OR (XOR) sum of all check-
node neighbors being equal to zero is the check 
constraint most used. If only one of the symbols during a 
check is unverified at any stage during decoding, it is 
calculated using this check constraint.  

Apart from these basic rules for verification and 
correction, individual decoders employ some additional 
ways for verification and/or correction [12][20].  

 
Example 1: Consider a nonzero check-node (c) in Eq. (1) 
and suppose the received symbols, y1 and y2 are both 
verified as v1 and v2, where vi is the ith codeword symbol 
and yj is the jth received symbol. 

=  1 2 3c v v y   (1) 

where   is the vector modulo-2 sum. 
From Eq. (1), there is only one unverified symbol, y3. 

As a result, the check-node can correct y3 by the Eq. (2). 

=  3 1 2y v v c   (2) 

 
2.2. Rateless Codes 

 
Rateless codes are codes that has no pre-fixed rate 

for the code; the encoder can generate as many encoded 

symbols as those required for decoding. The well-known 
Rateless codes are fountain codes. Fountain codes are 
based on the fountain and bucket analogy [18]. Just like a 
bucket can be filled by collecting a certain number of 
droplets from a fountain, a fountain code can be 
decoded if a certain number of encoded units/symbols is 
received. 

   
Example 2: Suppose a sender sends packets #1 to #8. 
Assume that the decoder can decode successfully if it 
receives 5 different packets.  
 
Table 1. Sets of received packets for 3 different receivers. 
 

 
Rx 

 

1st 

received 
packet 

2nd 
received 
packet 

3nd 
received 
packet 

4th  

received 
packet 

5th 
received 
packet 

1 #1 #3 #4 #6 #7 

2 #2 #3 #4 #5  

3 #1 #2 #5 #6 #8 

  
From Table 1, the first and the third receivers 

receive 5 packets, so they can decode successfully. The 
second receiver receives only 4 packets, so it cannot 
decode at this time. 
 

3. Code Specifications and Preferred Check 
Patterns 
 
The framework of the Rateless code used for testing 

the proposed algorithm is described in this section. For 
the proof of concept, a code with a degree distribution 
chosen by trial and error is generated using the software 
developed by Neal and MacKay for the LDPC codes [21]. 
The code structure is systematic. This allows quick data 
recovery in good channel conditions. Optimizations to 
find good-degree distributions, which are mostly suited 
to the decoding algorithm, are not conducted here.  

This paper proposes preferred check-symbol 
patterns based on “a divide and conquer” technique, 
which has been submitted for a petty patent [22]. Good 
results on the decoding overhead are obtained when 
preferred check-symbol patterns are transmitted right 
after the data symbols in good channel conditions. These 
patterns for 20 data symbols are shown in Fig. 1. The 
first check symbol is designed to be the sum of all data 
symbols. Thus, if all data symbols plus this check symbol 
are received correctly, the overhead is minimized to only 
one check symbol. The next two check symbols are 
designed to be the sum of the first half and the second 
half of the data symbols, respectively. In this way, they 
can verify half of the data symbols when errors or 
erasures occur in the other half. The 4th check symbol is 
then the sum of the first 25% and the third 25% of the 
data symbols. Finally, the 5th one is the sum of the 
second 25% and the fourth 25% of the data symbols. 
Basically, half of the data symbols are included with new 
check patterns until the last two check symbols of the 
preferred patterns are 101010….10 and 010101…01.  
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4. Description of the Proposed Decoding 
Algorithm 
 
When decoding starts, the symbols are either 

unverified or marked as erased due to lost packets. The 
decoder runs greedily, as the check symbols arrive. The 
use of systematic codes allows data symbols to be 
transmitted before check symbols. The decoder starts its 
decoding process each time it receives a new check 
symbol. It then applies the following rules, which are also 
depicted in the flowchart shown in Fig. 2. 

 

Equations (3) and (4) are given to show the 
calculation of syndrome matrix when the decoder 
receives a new symbol.  

= S H Y    (3) 

     
     
     
     

=      
     
     
     
          

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

s h y

s h y

s h y

s h z

s h y

     (4) 

where  S  is the syndrome matrix.  

 H  is the parity-check matrix.  

 Y  is the received symbol matrix. 
1) For the case of no erased symbols (zi) in the check 

equation (hi), if the vector modulo-2 sum of the 
received values (syndrome, si) is a zero vector, all 
symbols in hi are verified. 

2) For the case of only one unverified symbol in hi, that 
symbol value is set to make si a zero vector.  

3) For the case si is non-zero, its value is recorded in a 
list. This is potentially an erroneous symbol value or 
a sum of more erroneous symbols. Such 
combinations of si’s, which are found to sum to a 
zero vector with modulo-2 addition, are called “null 
combinations (NB)”. This term was first used by 
Metzner in [23]. An NB indicates the canceling out 

of the same erroneous symbols from the si ’s 
involved. Thus, all symbols, which do not occur in 
pairs in the corresponding hi’s, are verified.  

4) For the case one or more zi’s in hi exist, a value for 
zi or the sum of zi’s is predicted by assuming that the 
rest of the data and check symbols are correct. This 
value is recorded in a separate list. The prediction of 
the same erased symbols from different checks is 
summed with modulo-2 addition. If there is an NB, 
then, similar to the argument in Rule #3, the 
symbols, which do not occur in pairs in the 
corresponding hi’s, are verified. Generally, any 
number of predicted values expected to result in NB 
can be checked if they cause NB. However, it can be 
observed that up to five values are enough for the 
least amount of overhead.  

 

5. Computational Complexity 
 
Since the code uses symbols over GF(2r), all 

computations are performed using modulo-2 arithmetic. 
Therefore, the complexity is dominated by symbol-level 
operations, especially for large symbol sizes. Regarding 
Rule #1 and #2 of the decoding algorithm, the vector 
XOR is used to calculate syndromes and the values of 
unverified symbols. Regarding Rule # 3, a Gauss-Jordan 
reduction is performed to facilitate the search for NB’s. 
The corresponding list elements are arranged into a 
matrix, where the list elements are the rows of the matrix. 
Since modern processors provide 128-bit words [24], a 

 
 

Fig. 1. Preferred parity-check patterns. The positions of 
1’s indicate the positions of data symbols included in the 
check equations. 

 
 

Fig. 2. Flowchart of the proposed decoding algorithm. 
Abbreviations: NB = null combination; hi = check 

equation; zi = erased symbol, iz  = predicted value. 
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whole column in the matrix can be represented by a 
single word. The XOR of two 128-bit words is equal to a 
vector XOR of 128-bit symbols. This greatly reduces the 
number of operations. Considering that the erasure 
positions are already known, the application of Rule #4 
can be made simpler. Thus, the step of searching for 
NBs can be omitted. 

Therefore, the complexity of the decoder is 
dominated by the operation described in Rule #3. An 
effort is made to keep the entries on the si’s list small. 
Once there is an NB between two si’s, one of them is 
removed from the list because it will not be useful for 
verifying any more symbols. As soon as the erroneous 
symbols are corrected, the related entries are also 
removed. Implementation of these measures keeps the 
list size small throughout the decoding process. The 
number of operations depends on the number of check 
symbols used in the decoding process. Hence, the 
complexity also depends on this same number. 
 

6. Simulation Results 
 
For each value of the probability of error or 

probability of erasure, 50,000 decoding runs were 
performed. The number of check symbols required for a 
complete decoding of k data symbols was recorded each 
time. The number of total messages recovered by 
increasing the amount of overhead was accumulated and 
plotted against the (1 + )k overhead, which is given as a 
multiple of k. Therefore, an overhead of  , for example, 
means that  symbols are received in total. These include 
k data symbols and k  check symbols. 

The performance of the proposed decoding 
algorithm is presented in Fig. 3 and 4. The number of 
data symbols is k = 20 with 32 bits/symbol. From Fig. 3, 
it can be observed that the decoder requires the same 
amount of overhead for errors and erasures. This effect 
is obvious when a combination of errors and erasures 
also provides the same result. 

From Fig. 3, it can be observed that 78% of 
decoding runs complete the decoding process for a 0.5k 
overhead, and 99% of the decoding process is completed 
before the overhead of k symbols with an average of 
0.4k for a given probability value. The results obtained 
for various probabilities for a combination of errors and 
erasures are shown in Fig. 4. The numbers shown are the 
sum of both, and it is assumed that Pe = Pera. For example, 
a probability of error/erasure = 0.08 means that Pe = 
0.04 and Pera = 0.04 as well. Assuming no error and 
erasure (Pe/era = 0), the decoder is successful with an 
overhead of 0.05 or 1 check symbol/20 data symbols. 
When the ratio Pe/era increases, the fraction of messages 
recovered with the same overhead decreases, as expected. 
However, all messages are eventually recovered when the 
overhead is 1.5k. A comparison among three different 
code lengths for 20, 50, and 100 data symbols is 
presented in Fig. 5. In the case of 20 data symbols, the 
amount of overhead required to recover the whole 
message is the largest. 

 

 
Figure 6 illustrates the performance comparison of 

the proposed VB decoder with other decoders that can 
handle packet-sized symbols. Tornado code decoding is 
the best in recovering messages given the same overhead, 
but it assumes that only erasures can occur. Vector 
symbol decoding (VSD) is another nonbinary decoding 
for packet-sized symbol, but it can correct errors only 
[25][26][27]. The performance of the proposed VB 
decoding is better than VSD when the overhead is less 
than 0.45 and VSD is better when the overhead is at least 
0.45. However, both Tornado code decoding and VSD 
are not designed to handle a mixture of errors and 
erasures. 

  
7. Discussion 

 
The simulation results verify that the decoder 

requires a similar amount of overhead, regardless of the 
presence of erroneous or erased symbols. This is 
expected because Rule #2, which is the only correction 
rule used, makes no distinction between erroneous and 
erasure symbols. When checking is performed, a single 
unverified data symbol is set to a value that satisfies the 

 
 

Fig. 3. Fraction of successful decoding completions vs. 
overhead for errors only, erasures only, and a 
combination of both. 

 
 

Fig. 4. Fraction of successful decoding completions vs. 
overhead for the cases that Pe = Pera, and their sum is in 

the range 0  ̶  0.1. 
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check constraint. The difference between the effect of 
errors and erasures is that the step performed to find 
NBs is omitted for erasures, as explained in Section 5. 
The complexity is directly related to the list size. The list 
size (and hence, the complexity) can be kept low by 
removing redundant data from the lists whenever 
possible. Hence, the size of these lists keeps changing 
and does not necessarily increase with the increase in the 
overhead. 

From the graphs in Fig. 3, 4, and 5, three regions can 
be roughly observed. The first region starts at the 
fraction of complete decoding runs with a single received 
check symbol. The rising region represents the chain 
recovery of data symbols. A recovered symbol increases 
the probability of recovering more data symbols. The 
saturation region is the region, where approximately 5% 
of the decoding attempts require a higher amount of 
overhead to complete the decoding process. 

In comparison with other decoding techniques that 
can handle packet-sized symbols and are suitable for 
Rateless codes, Tornado code decoding is better and 
VSD is quite similar to the proposed VB decoding. 

However, Tornado code decoding is for erasure only, 
while VSD is for error only. The main advantage of the 
proposed decoding is that it can handle a mixture of 
errors and erasures at the same time. 

As expected, no FVs were observed during the 
simulations. By employing a large enough symbol size, 
false verification is avoided with high confidence [12]. 
The algorithm presented here does not suffer from FV 
due to cycles in the code as described in [12]. 

For the range of probabilities considered, the 
maximum amount of overhead observed is k. For higher 
probabilities, the messages will be eventually recovered 
but the amount of the overhead may be higher. This 
situation could be managed by keeping an upper limit on 
the overhead allowed before reporting failure. For a 
higher number of data packets, the required overhead for 
a given fraction of recovered messages decreases after a 
certain amount of overhead. Moreover, as shown in [28] 
for Raptor codes in Binary Symmetric channels, the 
overhead decreases with the code length for a fixed 
residual bit error rate. 
 

8. Conclusion 
 
In this paper, an alternative approach for the 

decoding of Rateless codes was introduced. The aim was 
to present a decoding scheme for multicasting service in 
data networks. Various sources of data corruption exist 
in these networks. Instead of focusing on a single-
channel model, the overall network conditions are 
considered in terms of the probability of lost/erased and 
erroneous packets. The ability of the proposed algorithm 
to handle errors as well as erasures makes for a relaxed 
decoding constraint, as the assumptions of no erroneous 
or no lost packet reception may not be practical in many 
cases. The proposed decoder utilizes a similar amount of 
overhead for the recovery of erroneous and erased 
packets. Recovering from erasures usually requires fewer 
computations than errors, as their locations are known 
beforehand. The proposed algorithm is very flexible, as it 
is capable of handling network conditions with errors 
only, erasures only or a combination of both. 

Varied performances were observed for different 
degree distributions. Optimizing for the best-degree 
distribution suited for the coding scheme can greatly 
improve the performance. This can be investigated in a 
future work.  
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