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Abstract. This paper presents real-time health prediction of induction motors (IMs) utilised 
in a petrochemical plant through the application of intelligent sensors and machine learning 
(ML) models. At present, maintenance engineers of the company implement time-based and 
condition-based maintenance techniques in periodically examining and diagnosing the 
health of IMs which results in sporadic breakdowns of IMs. Such breakdowns sometimes 
force the entire production process to stop for emergency maintenance resulting in a huge 
loss in the company’s revenue. Hence, top management decides to switch the operational 
practice to real-time predictive maintenance instead. Intelligent sensors are installed on IMs 
to collect necessary information related to their working statuses. ML exploits the real-time 
information received from intelligent sensors to flag abnormalities of mechanical or 
electrical components of IMs before potential failures are reached. Four ML models are 
investigated to evaluate which one is the best, i.e. Artificial Neural Network (ANN), Particle 
Swarm Optimization (PSO), Gradient Boosting Tree (GBT) and Random Forest (RF). 
Standard performance metrics are used to compare the relative effectiveness among 
different ML models including Precision, Recall, Accuracy, F1-score, and AUC-ROC curve. 
The results reveal that PSO not only obtains the highest average weighted Accuracy but also 
can differentiate the statuses (Class 0 – Class 3) of the IM more correctly than other 
counterpart models.      
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1. Introduction 
 
In the petrochemical industry, the maintenance team 

usually performs time-based maintenance (i.e. scheduled 
maintenance and scheduled replacement whereby the 
maintenance is undertaken on equipment based on a fixed 
interval or schedule without considering equipment 
conditions) and condition-based maintenance (i.e. actual 
condition of the equipment is analysed to determining 
what kind of maintenance should be done). Condition-
based maintenance needs to be performed only when 
symptoms of deteriorating performance or imminent 
failure are notified. The most famous techniques used in 
condition-based maintenance are condition monitoring 
maintenance and fault diagnosis. Moreover, condition-
based maintenance can be further categorised into offline 
and online assessments. Various critical process 
parameters are normally monitored during the condition 
monitoring maintenance, e.g. speed, sound, vibration, 
electrical signal and temperature. The irregularities of 
these parameters are used as an early warning signal of 
potential failures in the key equipment and/or production 
process. In addition, they could be utilised in gauging 
equipment's health index which is an indicator to judge 
whether any proper maintenance operation is needed or 
not before a critical failure of the equipment will occur.  

An asynchronous motor, normally referred to as an 
AC induction motor (IM), has been widely used as a 
machine driver in the petrochemical industry for many 
decades due to its stable speed control. Besides, the IM is 
relatively inexpensive and convenient to maintain because 
there is no carbon brush and commutator like in a DC 
electrical motor. The speed of the IM depends on the 
frequency of the AC power source. When the IM is 
operated with a variable speed drive controller, the speed 
can be easily adjusted from zero to its rated speed. The 
critical factors that cause IM breakdowns arise from both 
mechanical and electrical problems, e.g. the changes in 
vibration level, three-phase current, three-phase voltage, 
percentage of load, speed, and operating temperature. The 
allowable levels of changes are crucial inputs for 
determining the health index (status) of the IM.  

One of the problems encountered in the case study 
petrochemical company is sporadic unplanned downtimes 
of the IMs. According to the historical data kept in the 
corrective/emergency maintenance (CM) datalogger 
(Table 1), it is observed that CM has been constantly 
performed on the IMs every year. However, at present, 
manual spot data collection is the only technique used by 
maintenance officers. As a result, these data are prone to 
human errors and inaccuracies due to the discrepancy in 
the qualification, competency and skills that exist among 
maintenance officers. Moreover, the failure mode and 
effect analysis focus mostly on mechanical damages, 
whereas only a few electrical parameter check-points are 
considered. Unsurprisingly, breakdowns are still 
something often witnessed in the production process. 
Such unplanned breakdowns not only could disrupt the 
entire production system, but also result in production 

loss, unacceptable product quality, and incur substantial 
repair costs.  

To improve the aforementioned situation, real-time 
maintenance in which equipment can communicate its 
operating condition, particularly abnormal signs, in real-
time with the control room through smart sensors is 
implemented. Since the status of the equipment is 
continuously monitored, the predictive maintenance plan 
can be developed more effectively and faster than 
condition-based maintenance.  Consequently, a real-time 
data collection system through smart sensors is 
additionally installed on the IMs of the case study 
company to increase the accuracy of the collected data and 
to rectify the human error problem. This system enables 
the data collections of both mechanical and electrical 
parameters of the IMs to be done much easier resulting in 
more reliable motor health index levels to be observed. 
Since the ultimate goal of the maintenance department is 
to switch from time-based and conditioned-based 
maintenances to real-time predictive maintenance, 
machine learning (ML) is employed to categorise and flag 
possible abnormalities in the mechanical or electrical 
components of the IMs before potential equipment or 
system failures are reached. Note that the real-time 
maintenance in this study is 1 hour of operation.   

To predict the health index levels of the IMs in 
dynamic operating conditions, several input parameters 
retrieved from the intelligent sensors attached to the IMs 
are utilised. For example, the parameters like the swinging 
amplitude of the vibration, input current and temperature 
are among the key factors that affect the health 
degradation of the IMs. If the vibration amplitude of an 
IM is high, an unbalance or misalignment of the 
machinery may probably occur. This could subsequently 
result in a malfunction or breakdown of the IM shortly. 
Therefore, these parameters need to be identified by 
maintenance officers since they are necessary for an 
effective IM health prediction and diagnosis.  

In this research, four ML models are employed to 
predict the health index levels and notify abnormalities of 
the IM including two computational models, i.e. Artificial 
Neural Network (ANN) and Particle Swarm Optimization 
(PSO), and two ensemble models which integrate different 
models in their prediction processes, i.e., Gradient Boost 
Tree (GBT) and Random Forest (RF). Several standard 
performance measurements are used to benchmark the 
relative effectiveness among different ML models, i.e, 
Precision, Recall, Accuracy, F1-score and AUC-ROC 
curve.   

The remaining section of the paper is organised as 
follows. Section 2 provides a comprehensive review of 
related literature. Section 3 explained the experimental 
design which illustrates how data are gathered, clean, and 
prepared before embarking on the training process of the 
ML. ANN, PSO, GBT and RF used in the prediction of 
the IM health index levels are presented in Section 4. 
Section 5 discusses the experimental results and compares 
the effectiveness of different ML models. Finally, the 
conclusion is given in Section 6.   
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2. Literature Review  
 
This section provides a comprehensive review of 

related literature on the methodology for predicting the 
health index levels and abnormalities of the IM using the 
machine learning model. Seera et al. [1] provided a hybrid 
intelligent model that can be used to monitor the state of 
IMs. This model consists of an ensemble of classification 
and regression trees. A hybrid intelligent model combining 
the fuzzy min-max neural network and the random forest 
model. Tao et al. [2] combined three classifiers to diagnose 
faults in IMs, i.e. naive Bayes classifier, random forest 
classifier, and the support vector machine classifier. The 
states of the motor were accurately predicted using a 
multi-classifier algorithm. Toma et al. [3] adopted a hybrid 
motor-current data-driven approach for bearing fault 
diagnosis, which incorporated statistical features, genetic 
algorithms, and ML models. Three distinct classification 
algorithms, namely the k-nearest neighbour algorithm, 
decision tree, and random forest were used to generate 
experimental results indicating that all three classifiers 
achieved greater than 97% accuracy.  

Ghate et al. [4] developed a novel method for 
intelligent fault detection and classification in three-phase 
IMs using radial basis function - multilayer perceptrons 
cascade neural network. When tested on testing data and 
cross-validation data, it was discovered that the network 
could detect faults in an induction motor with an average 
classification accuracy of 98.41% and 98.11%, 
respectively. Su et al. [5] provided a system that computed 
the fault indicator by comparing a vibration spectrum 
model generated using a multilayer perceptron neural 
network to the standard technique and the root mean 
square values. Martins et al. [6] demonstrated the use of an 
unsupervised Hebbian-based neural network-based 
algorithm to perform a fully automatic online diagnosis of 
three-phase induction motor stator faults. The direction 
of the neural network eigenvectors indicated the phase 
during which the fault occurred. The relationship between 
the eigenvector space components was used to determine 
whether or not the motor was healthy.  

Noel [7] introduced the gradient penalties to select the 
structure method, a hybrid optimisation technique that 

combines PSO and gradient-based local search 
algorithms. Its objective was to accomplish faster 
convergence and improve the accuracy of the final 
solution while avoiding becoming caught in local minima. 
The PSO method converged faster to a much more 
accurate final solution for a range of benchmark test 
functions. Qolomany et al. [8] employed the PSO 
approach which could optimise parameter settings and 
conserve significant computational resources throughout 
the deep learning model tuning process. Compared to the 
grid search method, it was proven to be a more efficient 
way to set the ideal number of hidden layers and neurons 
in each layer of the deep learning algorithm. Kim et al. [9] 
built a deep neural network model and used it in 
conjunction with two well-known ML techniques, i.e. 
logistic regression and random forest, to predict the motor 
outcome six months after stroke. The current study has 
shown that by employing fourteen input variables 
clinicians. Notably, the deep neural network could be 
beneficial for predicting motor outcomes in the upper and 
lower limbs at six months after stroke.  

Tama et al. [10] studied how a gradient boosted 
machine could be used to increase the detection 
performance of an anomaly-based intrusion detection 
system. The gradient boosted machine was then compared 
against the performance of four well-known classifiers, i.e. 
random forest, deep neural network, support vector 
machine, and classification and regression tree. The 
experimental results demonstrated that the gradient 
boosted machine significantly outperformed intrusion 
detection system approaches. Krauss et al. [11] developed 
and applied a statistical arbitrage technique based on deep 
neural networks, gradient-boosted trees, random forests 
from various ensembles methods to deploy with the S&P 
500 constituents dataset. Calzavara et al. [12] extended 
adversarial training to gradient-boosted decision trees and 
demonstrated its efficacy on a publicly available dataset. 
Raja [13] deployed the diabetes dataset on the standard 
UCI Pima Indian and found that the gradient boosting 
classifier outperformed random forest and neural 
networks. The standard measurements like AUC, Recall, 
and Accuracy were used to evaluate the constructed 
models. Manna et al. [14] examined the effectiveness of 

Table 1. Corrective maintenance history. 
 

IM Class 

Number of Corrective Maintenances 

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 
Grand 
Total 

S  - - - - 3 1 - - 1 2 1 8 

A 8 16 7 10 8 17 4 5 2 2 7 86 

B 10 17 19 14 18 11 16 14 12 13 11 155 

C 12 13 5 8 2 7 6 7 2 3 5 70 

Grand Total 30 46 31 32 31 36 26 26 17 20 24 319 

 
(Note: IM Class is the criticality class assessment when the equipment is malfunction; S = having an impact on people 
or environment, A = suddenly causing production disruption and/or off-specification product, B = causing production 
disruption and/or off-specification product but not suddenly, C = not causing a direct effect on product specification)  
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this successful paradigm in predicting air traffic delays. 
The gradient boosted decision tree modelled sequential 
data exceptionally accurately. Selvi et al. [15] developed a 
novel map-reduce-based optimal data classifier technique 
for efficiently diagnosing diabetic Mellitus. The simulation 
results demonstrated that the map-reduce-based optimal 
data classifier model, which incorporated multiple stages 
of the Hadoop ecosystem, data collecting, and 
classification using the gradient boosting tree, consistently 
outperformed the compared methods.  

Pal [16] recommended that the random forest 
classifier outperformed the support vector machine in 
classification accuracy and training time when applied to 
Landsat enhanced thematic mapper plus data for an area 
in the United Kingdom with seven distinct land cover 
types. Rodriguez-Galiano et al. [17] investigated the 
random forest classifier's effectiveness in classifying the 
land cover of a complex area. The study took numerous 
factors into account, including mapping accuracy, 
sensitivity to data set size, and noise.  

Cheevachaipimol et al. [18] applied conventional ML, 
classical feed-forward deep learning, and a novel hybrid 
deep learning approach to predict the on-time 
performance of domestic flights departing from the top 
ten busiest airports in the United States. The purpose of 
this study was to evaluate the hybrid deep learning model's 
efficacy to those of a feed-forward ANN and gradient 
boosted tree machine learning.  

From the review of literature, it is obvious that none 
of the articles has compared the effectiveness of 
computational and ensemble models of ML on the IM 
dataset before. Additionally, under the context of the IM 
health index prediction, PSO has never been applied. The 
closest article to this research was conducted by Tao et al. 
[2]. However, their IM parameters were substantially 
fewer than those presented in this research and also 
different ML models were used as the prediction tool.   

 

3. Experimental Design  
 
The dataset used in this research is collected from the 

IM which has specifications as follows: 475 kW, 2 Poles, 
50 Hz, 3 Phase, 6.6 kV, 2988 rpm, squirrel cage class S. 
The one-hour interval dataset which combines both 
mechanical and electrical parameters from Yr 2016 to Yr 
2021 include the vibration level, temperature, input 
current, input power and flow rate. 
 
3.1. Data Cleansing 

 
Data cleansing is the process of identifying and 

resolving corrupt, inaccurate, or irrelevant data caused by 
sensor errors or data entry errors by maintenance officers. 
This critical stage of data processing, also referred to as 
data scrubbing or data cleaning, is a vital step to improve 
the consistency and reliability of data before constructing 
operation and maintenance schedules. Inaccuracies in data 
usually include missing values and typographical errors. In 
many cases, that requires certain values to be filled in or 

corrected. On the other hand, in some circumstances, the 
values will need to be removed.  

While conducting the data cleansing process, the 
considered attributes of the IM include the vibration 
(acceleration and velocity units) in three-dimensional 
(axial, horizontal and vertical) and surface temperature, 
input current, input power and flow rate of the system. 
The directional measurements of the IM are depicted in 
Fig. 1, and the attributes/parameters (inputs) collected in 
the IM health index dataset are shown in Table 2. 

 

 
Fig. 1. Dimensional measurement of the IM. 
 
3.2. Feature Extraction  
 

The international standards used to evaluate the IM 
health index levels in this study are shown in Table 3, 
including the vibration, temperature, current, power and 
flow rate. The health index level is classified into four 
groups (i.e. Class 0, Class 1, Class 2, and Class 3), the 
details of which are explained in Table 4. Note that Class 
2 and Class 3 are the health indexes that are the most 
important categories for the company since they indicate 
the prone-to-failure state of the IM. 
 
3.3. Data Preprocessing  
 
3.3.1. Data normalisation 
 

Data normalisation is the process of converting the 
attributes with a mixture of different unit scales into the 
same scale. One of the famous data normalisation 
processes is called feature scaling. The standard data 
normalisation method is defined as follows. 
 

                (1) 
 
 
where x is the original measured value, µ is the mean of 
the samples, and σ is the standard deviation of the 
samples. The formulations of µ and σ are shown in Eq. (2) 
and Eq. (3), respectively. Note that N is the number of 
members in the dataset. 
 

                 (2) 
 
Note that all data in the IM dataset are 
converted into normalised data before further 
processing. 

μ =  
1

N
 xi

N

i=1

 

z =  
x−  μ

σ
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(3)        
 
 
 
3.3.2. Multi-class imbalanced classification 

 
The class imbalance problem has drawn growing 

interest recently due to the classification difficulty caused 

by the imbalanced class distributions [19]. To rectify the 
problem of the oversampling imbalanced classification 

dataset, in this study, the synthetic minority oversampling 
technique (SMOTE) is applied. Although SMOTE could 
help balance the class distribution, it does not provide any 

additional information to the ML model [20]. The datasets 
before and after applying the SMOTE technique are 
shown in Fig. 2 and Fig. 3, respectively. It is noticeable 
that the dataset obtained after the SMOTE technique is 
applied is perfectly balanced and ready to be used in 
training the ML. The summarised description of the 
dataset is listed in Table 5. 
 

 
 

 

 
 

 
Table 2. The attributes/parameters used in the dataset for the IM health prediction. 
 

Attribute Name Parameter Unit Direction Location 

Acc_DE_Ax Acceleration m/s² Axial Drive end 

Acc_DE_RH Acceleration m/s² Horizontal Drive end 

Acc_DE_RV Acceleration m/s² Vertical Drive end 

Acc_NDE_Ax Acceleration m/s² Axial Non drive end 

Acc_NDE_RH Acceleration m/s² Horizontal Non drive end 

Acc_NDE_RV Acceleration m/s² Vertical Non drive end 
Temp_DE Temperature degrees Celsius Horizontal Drive end 

Temp_NDE Temperature degrees Celsius Horizontal Non drive end 

Vel_DE_Ax Velocity mm/s Axial Drive end 
Vel_DE_RH Velocity mm/s Horizontal Drive end 

Vel_DE_RV Velocity mm/s Vertical Drive end 

Vel_NDE_Ax Velocity mm/s Axial Non drive end 

Vel_NDE_RH Velocity mm/s Horizontal Non drive end 

Vel_NDE_RV Velocity mm/s Vertical Non drive end 

I_SYS Current Ampere - System 
P_SYS Power kW - System 
Q_SYS Flow Rate m³/h - System 
     

 
Table 3. Standard and specification of IM health index. 
 

Attribute Standard and specification 

Vibration  ISO-10816 Part 3 

Temperature  ANSI/NETA MTS-2019 

Current, Voltage 
and Flow rate 

Machine specifications and 
manufacturing guidelines 

  

 
  

Table 4. IM health index level classifications. 
 

Health 
index levels 

Definitions 

Class 0 New machine or new installation. 

Class 1 Acceptable for long-term operation. 
Class 2 Unacceptable for long-term 

operation. Need to create condition 
monitoring program or mitigation 
plan. 

Class 3 Need to adjust operating condition 
or perform corrective action 
immediately. 

 
  

σ =   
1

N
 (xi − μ)2

N

i=1
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3.4. Evaluation Metrics  
 

The evaluation of the ML model plays an essential role 
in identifying how effectively the ML model works. ML 
models are mainly classified into two types, i.e., 
classification and regression. Due to the problem of 
interest, this study focuses on the classification category. 
As such, the relative effectiveness evaluation of the ML 
model includes Precision, Recall, Accuracy, F1-Score, and 
Area Under the Curve (AUC) - Receiver Operating 
Characteristics (ROC) curve.  

The AUC - ROC curve is the performance evaluation 
metric to demonstrate how well the ML model can classify 
the output into different categories across a range of 
threshold values. ROC is a probability curve, whereas 

AUC represents a measure of separability degree. When 
AUC approaches 1, it indicates that the ML model has a 
high degree of separability. In contrast, the ML model has 
no potential for class separation if its AUC is less than 0.5 
[21]. 

The confusion matrix is another performance 
measurement that demonstrates how well the predicted 
labels of the ML model are matched with the true labels. 
A good ML model will have only the diagonal elements 
(from left to right) of the confusion matrix, whereas the 
other elements are 0. The structure and definition of the 
confusion matrix are shown in Fig. 4 and Table 6, 
respectively. 

 

 

 
The formulations to compute Accuracy, Precision, Recall, 
and F1-score metrics are shown in Eq. (4) - Eq. (7), 
respectively [22]. 
 

(4) 
        

 
                     (5) 

 
                       (6) 
 

 
                       (7) 

 
 
 

4. Machine Learning Models  
 

At the beginning of the research, abundant IM 
parameters (attributes) expected to affect the IM health 
index and the prediction accuracy of the ML model are 
often available for consideration. However, in reality, 
several of them may later be proved not significant by 
considering the result of the experiments. Therefore, the 
IM parameter selection through the application of 
statistical analyses is necessary. After the potential 

 

 
 
 

Fig. 2. The IM health index level before applying SMOTE. 

 
 

 

Fig. 3. The IM health index level after applying SMOTE. 
 

Table 5. Summarised Description of the Dataset. 
 

Description Value 

Number of instances 16,388 
Number of attributes 17 
Number of health index levels 4 
% Class 0  25% 
% Class 1 25% 
% Class 2 25% 
% Class 3 25% 

 
  

           

Fig. 4. The structure of the confusing matrix. 

 

Table 6. The definitions of the confusion matrix. 
 

Values Definitions 

TP Predicted positive and the actual 
result is true. 

TN Predicted negative and the actual 
result is true. 

FP Predicted positive and the actual 
result is false. 

FN Predicted negative and the actual 
result is false.  

 
  

Accuracy =  
TP + TN

TP + TN + FP + FN
 

Precision =  
TP

TP + FP
 

Recall =  
TP

TP + FN
 

F1 score =  2 ∗
Precision ∗ Recall

Precision + Recall
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parameters for modelling are identified, the next step is to 
establish the appropriate settings for each of them.  

 
4.1. Parameter Selection  

 
Parameter selection is an essential process that is used 

to find the smallest subset of the IM parameters that 
significantly affects the IM health index. First, in this 
study, the Pearson Correlation Coefficient (PCC) 
technique, which measures the strength of a linear 
association between two or more variables, is applied. 
Such correlations enable us to see how the behaviour of 
one parameter is varied in relation to another. If the value 
of PCC between any two or more variables is more than 
0.95 (highly correlated parameters), the strength of 
association among them is significant. Consequently, the 

only parameter x with the highest effect on the response 

y (severity) is selected as a representative of the group and 
the others are dropped from further consideration. Fig. 5 

shows the PPC between 17 different parameters (x) of the 
IM health data. Obviously, none of the elements in Fig. 5 
is more than 0.95. This means that their correlations are 
not high enough to group any of them.  

The next step is to apply multiple regression to the IM 
health index dataset to find if there exist any significant 
parameters and to create a regression equation that 
expresses the statistical relationship between one or more 
significant IM parameters and the response variable 
(severity). The Minitab software is a tool to analyse 
multiple regression. The analysis of variance (ANOVA) 
obtained from Minitab is shown in Table 7. It is observed 
that the P-values of the IM parameters including 
Acc_DE_RV, ACC_NDE_Ax, and VelDE_RH are 
greater than 0.05 (significance level). This means these 
parameters are not statistically affected by the IM health 
index and therefore they are removed from the dataset 
[23],[24]. 

 

 

 

 

 
Fig. 5. PPC between different parameters for the IM health index prediction. 
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4.2. Artificial Neural Network 
 

Artificial Neural Network (ANN) is an information 
processing and computing technique inspired by the 
human brain's information processing, called “biological 
nervous systems”. ANN comprises several nodes and 
layers which is analogous to neural in the human brain. 
Layers in ANN are categorised into input, (at least one) 
hidden and output layers. Several nodes often exist in each 
layer. The input nodes are connected to several nodes in 
the hidden layer which are subsequently coupled with the 
output nodes. A typical example of the ANN architecture 
is shown in Fig. 6. A weight and a threshold appear 
between linking nodes. If the output of an individual node 
(summing junction as shown in Fig. 7) exceeds a 
prespecified threshold value, that node is activated and 
data is allowed to transmit to the next layer. Otherwise, no 
data is sent to the next network’s layer at all. While 
developing the model, weights and hidden layers are 
adjusted to maximise the effectiveness of the ML model. 

 

 

4.2.1. Mathematical model 

 
Consider a set of input nodes (signals), their 

respective weights, a bias, and an output as shown in Fig. 

7, the formula to compute the output yk of the k neuron 
is given in Eq. (8).  
 

           (8) 
 
 
 
where φ denotes the activation (or transfer) function, N 
denotes the number of input neurons, wkj  denotes the 

weight, xj denotes the input to the input neuron, and Tk
hid 

denotes the hidden neurons' threshold terms. 
 

 
4.2.2. Backpropagation algorithm 
 

Backpropagation modifies the weights of the network 
connections repeatedly to minimise the difference 

Table 7. Analysis of variance (ANOVA).  

 
 

 

 

 

 
 

Fig. 6. ANN architecture. 

Input Layer

Hidden Layer 1 Hidden Layer 2 Hidden Layer 3

Output Layer 

 

 
 

Fig. 7. Mathematical model of ANN. 

yk =   φ wkjxj +  Tk
hid

N

j=1
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between the network's actual and desired output vectors 
[25]. Backpropagation seeks to reduce the cost function by 
modifying the network's weights. The gradients of the cost 
function for all those weights determine the level of 
adjustment. The goal is to identify the network that is most 
closely matches the observed data. 
 
4.2.3. ANN model 
 

In this research, the ANN model is developed under 
the Python programming language installed in the Jupyter 
notebook. Scikit-learn which is a free Python library is 
used in the model construction. Optuna is used as a 
framework for automated hyperparameter tuning to 
dynamically select a set of hyperparameters suitable for the 
learning process of the algorithm. Besides, Optuna also 
allows the user to specify a search space for 
hyperparameter tuning. The hyperparameters of ANN in 
this research are shown in Table 8. Note that the default 
values are used for those that do not appear in Table 8. 
The ranges of the hyperparameters are adopted from [18].     

An activation function in ANN, also known as a 
transfer function, is used to determine the output of the 
neural. In this study, Rectified Linear Unit (ReLU), as 

shown in Eq. (9), which is the non-linear activation 
function mostly utilised in convolutional neural networks 
or deep learning, is used. It has become the default 
activation function for many types of neural networks 
because of its simplicity in model training and often 
achieves a better result. In addition, Stochastic Gradient 
Descent (SGD), a solver in ANN, is used to optimise the 
weights and generate updated parameters that minimise 
the loss function of the model. 

 
           (9) 

 
 
When the Optuna process is completed, the 

hyperparameter indicates how important the model is 
built from the IM dataset (Hyperparameter Importance). 
Where the number of trials (n_trials) is set to 30 due to the 
calculation limitation. The resultant Hyperparameter 
Importance is shown in Fig. 8. The hyperparameter that 
mainly affects the model is learning_rate_int which 
controls the step size to update weights. The final 
hyperparameters used in the ANN model to create the 
output from the IM dataset are shown in Table 9. 
 

 

 

 
 

Table 8. Hyperparameter search space of the ANN model. 
 

Parameter Parameter keys Range 

Hidden layer 
size 

hidden_layer_sizes 
[16,4], [32,4], 
[64,4], [128,4], 
[256,4] 

Activation 
function for 
hidden layer 

activation 
[‘logistic’, 
‘tanh’, ‘relu’]  

The solver for 
weigh 
optimisation 

solver [‘lbfgs’, ‘sgd’] 

Learning rate learning_rate_int 
[0.01,1.00, 
step=0.05] 

Maximun 
number of 
iterations 

max_iter 
[50,500, 
step=50] 

   

   
   
   
   

 
  
 

 

Table 9. Final hyperparameter of the ANN model. 
 

Parameter keys Range 

hidden_layer_sizes (64,4) 
activation ‘relu’ 
solver ‘sgd’ 
learning_rate_int 0.35 
max_iter 150 

   

   
   
   
   

 
  
 



DOI:10.4186/ej.2022.26.5.91 

100 ENGINEERING JOURNAL Volume 26 Issue 5, ISSN 0125-8281 (https://engj.org/) 

 
 
4.3. Particle Swarm Optimisation 
 

Particle swarm optimisation (PSO) is an evolutionary 
algorithm that is used to find the global maximum or 
minimum of a function by utilising a model of social 
interaction between independent agents (particles) that 
make use of social knowledge (also known as swarm 
intelligence) [25].  It has established itself as a practical 
global optimisation algorithm and a formidable 
competitor to the standard benchmark for function 
optimisation as a genetic algorithm.  

PSO has been extensively used to solve a variety of 
different types of optimisation problems. In meta-
heuristic algorithms, population initialisation is very 
important [26]. PSO places several simple entities called 
“particles” in the search space of a problem or function, 
and each evaluates the objective function at its current 
location. Each particle then determines its path through 
the search space by combining some aspect of its current 
and optimal (best-fit) locations with those of one or more 
swarm members, along with some random perturbations. 
After all, the particles have been moved, the next iteration 
begins. Eventually, the swarm as a whole, similar to a flock 
of birds foraging for food collectively, is likely to approach 
an optimal fitness function [27].  

The traditional PSO searches through a population of 
particles corresponding to GA individuals. Each particle i 
represents a possible solution and is equipped with a 
current position vector  xi , a velocity vector  vi , and the 
best personal position pi  [28]. With the epoch t , the 
swarm consists of n  particles travelling into the n-
dimensional search space. Each particle calculates the cost 
function during each epoch, which is used to determine 
the particle's local best fitness, and then the least cost is 
used to determine the swarm's global best fitness. Eq. (10) 
is used by particles to update their position and velocity 
vectors. 

 
(10) 

 
 
where w denotes the inertia weight, c1 and c2 denote the 
acceleration coefficients, r1  and r2 are uniformly 
distributed random numbers in the range (0,1). The 

particle i  can search around its individual best position pi, 
and the global best position pg . Based on the updated 

velocities is defined in Eq. (11). Note that xi(t) and  vi(t) 
are the position vector and the velocity vector of the  

tthspeed and the position components of  ith particle. 
 

    (11) 
 

The search space of the hyperparameters for PSO to 
experiment are adopted from [26],[29] as shown in Table 
10. The final hyperparameters after the completion of the 
tuning process are shown in Table 11.  

 

 

 

 

 
 

Fig. 8. Hyperparameter Importance of the ANN model. 

Table 10. Hyperparameter search space of the PSO model. 
 

Parameter Parameter keys Range 

Hidden layer 
size 

n_hidden [16, 32, 64, 
128] 

Acceleration 
coefficients 

c1 [0.5, 1.49, 2.5] 

 c2 [0.5, 1.49, 2.5] 
Inertial weight w [0.4, 0.9] 

   

   
   
   
   
   

 
  

 

Table 11. Final hyperparameter of the PSO model. 
 

Parameter Parameter keys Range 

Input Layer input values (14, ) 
 output values (14, ) 
Hidden Layer input values (14, ) 
 output values 32 
 Activation function relu 
Output Layer Input values (14, ) 
 Output values 32 
 Activation function softmax 
Acceleration 
coefficients 

c1 
c2 

0.5 
0.5 

Inertial weight w 0.4 
Number of 
particles 

Num of particles 500 

Number of 
iterations 

iter 400 

   
 

vi(t + 1) = wvi(t)+ c1r1 pi(t) − xi(t)  

                                                                                 +c2r2(pg(t) − xi(t)) 

xi(t + 1) =  xi(t)+ vi(t + 1) 
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4.4. Gradient Boosting Tree 
 
The decision tree is a rule-based model that creates an 

if-then-else rule from each feature's value without a formal 
relationship equation between the features and the target. 
The vital thing about decision tree construction is the 
selection of splits for each feature that results in the 
minimised cost function. Gradient boosting tree (GBT) is 
a technique that can be used for regression and 
classification. It consists of several decision trees that are 
connected in sequential order. Each decision tree learns 
errors from the previous trees and exploits this 
information to improve its prediction accuracy. When the 
learning of decision trees is deep enough, the model is 
stopped because no more error patterns from the previous 
trees to learn. In this study, GradientBoostingClassifier 
which is a multi-class classification decision tree is used. 

Let x be the set of input variations., x =  {xi, … , xn} 
and the output is defined as y, y =  {yi, … , yn} . So, the 
input data used for training are {xi , yi}i=1

n . The loss 
function is defined in Eq. (12). Note that p is referred to 
the predicted probability, and N is the number of samples. 

 
 

(12) 
 
 
 
 
The initialised model with a constant value F0(x)  is 
defined in Eq. (13). 
 

 
(13) 

 
     
Similar to the ANN model, the Optuna framework is used 
to search for the appropriated parameters of the GTB 
model. The search space of the hyperparameters to 
experiment are shown in Table 12. The final 
hyperparameters and the hyperparameter importance for 
the GBT model are shown in Table 13 and Fig. 9, 
respectively.  

 

 
 

Table 12. Hyperparameter search space of the GBT model. 
 

Parameter Parameter keys Range 

The rate of learning reduces the contribution of 
each tree. 

learning_rate [0.01,1.00, step=0.01] 

The number of boosting stages to be performed n_estimators  [0, 500,  
step=1] 

The sample size fraction will be used to fit the 
individual base learners. 

subsample [0.1,1.0, step=0.1] 

The minimum sample size is required to split an 
internal node. 

min_samples_split [2,5] 

The minimum sample size is required to split an 
internal node. 

min_sample_leaf [1,5] 

Individual regression estimators' maximum 
depth. 

max_depth [2,5] 

   
 

Table 13. Final hyperparameter of the GBT model. 
 

Parameter keys Range 

learning_rate 1.69 
n_estimators 350 
subsample 0.7 
min_samples_split 5 
min_sample_leaf 5 
max_depth 5 

   

   
   
   
   

 
  
 

L yi , F(x) =  − yi ∙ log(p)

N

i=1

 

                                    + (1− yi) ∙ log(1− p) 

F0(x) =
argmin

γ
 L(yi , γ)

n

i=1
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4.5. Random Forest  
  

As a competitor to GBT, random forest (RF) have 
been developed. RF is a tree-based combination that relies 
on a set of random variables for each tree. As implied by 
its name, the RF algorithm is a supervised classification 
algorithm that classifies data by constructing multiple 
classifiers to improve prediction accuracy [30].  

The RF classifier is made up of several different tree 
classifiers. A random vector sampled independently from 
the input vector is used to create each classifier. To classify 
an input vector, each tree casts a unit vote for the most 
popular class [16]. The final prediction, the mode of the 
classes for classification, is made by combining the 
predictions from all trees.  

In the RF model, each tree in the ensemble is 
constructed from a sample drawn from the training set 
with a replacement, called a bootstrap sample. 
Furthermore, the best split is found either from all input 
features or a random subset of size max features when 
splitting each node during tree construction, from which 
the best parameter of the model can be found. Fig. 10 
depicts the RF model. Instead of letting each classifier 
vote for a single class, the Scikit-learn method combines 
different classifiers by averaging their probabilistic 
predictions. 

Once again, the Optuna framework is used to find the 
hyperparameter importance of the RF model. Table 14 
shows the search space of the hyperparameters, some of 
which are adopted from [31]. The final values of the 
hyperparameters used for the RF model are shown in 
Table 15, and the hyperparameter importance is shown in 
Fig. 11. 

 

 

 
 

Fig. 9. Hyperparameter Importances of the GBT model. 

 
 

Fig. 10. Architecture of RF. 

Table 14. Hyperparameter search space of the RF model. 
 

Parameter Parameter keys Range 

Number of trees 
in the forest 

n_estimators [200, 2000, 
step=10] 

Max number of 
features 
considered for 
splitting a node 

max_features ["auto","sqrt"] 

Max number of 
levels in each 
decision tree 

max_depth [10, 110, 
step=10] 

min number of 
data points 
placed in a node 
before the node 
is split 

min_samples_split [2,5] 

min number of 
data points 
allowed in a leaf 
node 

min_samples_leaf [1,4] 

method for 
sampling data 
points (with or 
without 
replacement) 

bootstrap ["True","False"] 
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5. Result and Discussion 
 

This section presents the relative performances of 
different ML models that are experimented on the IM 
dataset with the following specification, i.e. 475 kW, 2 
Poles, 50 Hz, 3 Phase, 6.6 kV, 2988 rpm, squirrel cage. The 
IM operates under various daily load conditions specified 
by the case study petrochemical company. The ratio 
between the training dataset and the test dataset is 70:30. 
The parameters of all contestant algorithms are set at their 
optimal values to ensure that all of them are executed at 
their best performances to classify the IM health index 
into four categories. The metrics used in the evaluation of 
different methods include the classification report (i.e. 
Precision, Recall, F1-score and Accuracy) and confusion 
matrix. 

 
5.1. Classification Report 

 
As mentioned earlier, the objective of this study is to 

use ML to categorise the statuses of the IM into different 
health index levels ranging from Class 0 (new machine 
installation) to Class 3 (need immediate corrective action). 
Moreover, Class 2 and Class 3 must be given special 
attention since they are related to the near-failure states of 
the IM. As a result, a better model should have the values 
of precision, recall and F1-score metrics as close to 1 as 
possible. Table 16 - Table 18 show the classification 
reports of ANN, PSO, GBT and RF, respectively. 

 Considering in terms of the ability to predict the 
statuses of the IM, PSO is the most effective model since 

the distribution of the Precision, Recall and F1-score 
metrics are quite uniform across four different classes 
(Class 0 to Class 3). Besides, these values are very close to 
1. Although the performance of RF looks slightly inferior 
to PSO, it is much better than GBT and ANN.  

 The F1-score metric is a hybrid measurement. It is 
defined as a harmonic mean between the Precision and 
Recall metrics. As a result, F1-score is given higher priority 
than Precision and Recall and is often used to evaluate the 
overall performance of the ML model. From Table 16 - 
Table 19, it is obvious that the weighted average accuracy 
of PSO in terms of F1-score is the highest (0.97), followed 
by RF (0.96), GBT (0.93) and ANN (0.61), respectively. 
This means that PSO apart from having an excellent ability 
to classify data into different categories, such categories 
are higher accurate than the other competing ML models. 

 

 

Table 15. Final hyperparameter of the RF model. 
 

Parameter keys Range 

n_estimators 160 
max_features auto 
max_depth 100 
min_samples_split 5 
min_sample_leaf 4 
bootstrap True 

   

   
   
   
   

 
  

 

 

 

 

Fig. 11. Hyperparameter Importance of the RF model. 

Table 16. Classification Report for the ANN Model. 
 

 precision recall 
F1-

score 
support 

Class 0 0.43 1.00 0.60 1195 
Class 1 0.00 0.00 0.00 1253 
Class 2 1.00 0.73 0.84 1241 
Class 3 1.00 1.00 1.00 1228 

accuracy   0.68 4917 
Macro 

avg 
0.61 0.68 0.61 4917 

Weighted 
avg 

0.61 0.68 0.61 4917 
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5.2. Confusion Matrix and AUC-ROC curve 

 
Another two metrics that can be used in measuring 

the ability to classify groups of data are the confusion 
matrix and the AUC-ROC curve. If the model is effective 
in categorising data into the correct groups, its confusion 
matrix should have data only on the diagonal elements 
(from left to right) of the matrix and the values of AUC of 
the ROC curve should be greater than 0.5. Note that the 
elements in the diagonal of the confusion matrix represent 
the matching between predicted positive and the actual 

result is true or predicted negative and the actual result is 
false. 

Figures 12 - 15 show the confusion matrixes and 
AUC-ROC curves of ANN, PSO, GBT, and RF, 
respectively. Again, PSO is superior to the other ML 
models in distinguishing groups of data since its confusion 
matrix has dark blue highlights (high values) on all 
diagonal elements and all of its AUCs are greater than 0.5. 
This means the predicted labels (Class 0 – Class 3) of PSO 
is matched very well with the true labels. The second best 
is RF, followed by GBT and ANN, respectively. Among 
these four models, ANN is the worst and high predicted 
errors are often obtained from this model. 
 
 

 

 
 
Fig. 12. Confusion Matrix and ROC curve for ANN. 
 
 

Table 17. Classification Report for the PSO Model. 
 

 precision recall 
F1-

score 
support 

Class 0 0.94 1.00 0.97 1195 
Class 1 1.00 0.94 0.97 1253 
Class 2 0.98 0.98 0.98 1241 
Class 3 0.98 0.98 0.98 1228 

accuracy   0.97 4917 
Macro 

avg 
0.98 0.97 0.97 4917 

Weighted 
avg 

0.98 0.97 0.97 4917 

 
 

Table 18. Classification Report for the GBT Model. 
 

 precision recall 
F1-

score 
support 

Class 0 1.00 1.00 1.00 1195 
Class 1 0.99 1.00 0.99 1253 
Class 2 0.82 0.94 0.88 1241 
Class 3 0.94 0.79 0.86 1228 

accuracy   0.93 4917 
Macro 

avg 
0.94 0.93 0.93 4917 

Weighted 
avg 

0.94 0.93 0.93 4917 

 
 

Table 19. Classification Report for the RF Model. 
 

 precision recall 
F1-

score 
support 

Class 0 0.99 1.00 1.00 1195 
Class 1 1.00 0.99 0.99 1253 
Class 2 0.95 0.92 0.94 1241 
Class 3 0.92 0.95 0.94 1228 

accuracy   0.96 4917 
Macro 

avg 
0.97 0.96 0.96 4917 

Weighted 
avg 

0.96 0.96 0.96 4917 
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Fig. 13. Confusion Matrix and ROC curve for PSO. 
 

 

 
Fig. 14. Confusion Matrix and ROC curve for GBT. 

 

 
Fig. 15. Confusion Matrix and ROC curve for RF. 
 
 
6. Conclusions 
 

This study combines data science and machine 
learning technique to predict the health index levels (Class 
0 – Class 3) of the IM to help maintenance officers of the 
case study company to identify the need for appropriate 
maintenance actions in real-time. Intelligent sensors are 
used as a means for big data collection. Currently, such 
enormous information makes maintenance officers more 
prone to making wrong and non-timely decisions. Data 
cleansing is needed before the IM dataset is used in the 
training and prediction processes of ML to identify and 
resolve corrupt, inaccurate, or irrelevant data caused by 
sensor errors. In addition, the parameters (attributes) of 
the IM have to be checked for independence to determine 
if these attributes can be combined and reduced. Four 
predictive ML models are used including two 
computational models (i.e. ANN and PSO) and two 
ensemble models (i.e. GBT and RF). The performance 
measures used in benchmarking different ML models 
comprise Precision, Recall, F1-Score, Accuracy, confusion 
matrix and AUC-ROC curve. The experimental results 
indicate that PSO outperforms the other comparative ML 
models in terms of its ability to differentiate the statuses 
of the IM (i.e. highest values of the diagonal elements of 
the confusion matrix) as well as its discrimination accuracy 
(i.e. highest weighted average accuracy based on F1-score). 
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The results of this study are of great benefit to the 
performance of maintenance officers since the real-time 
health index status prediction, especially Class 2 (medium-
risk severity level) and Class 3 (high-risk severity level), 
enable them to instantly make corrective or emergency 
maintenance on time. Besides, this information is very 
useful for consulting with experts for possible corrective 
maintenance solutions, rescheduling the maintenance 
plan, spare part procurement planning, etc. to prevent 
unplanned shutdowns of the plant.  

In terms of financial benefits, the installation cost of 
the real-time data collection system including intelligent 
sensors connected to the IMs is around 700,000 baht. This 
system is utilised to predict and prevent unplanned 
equipment and/or production system downtime. The cost 
for equipment breakdown is approximated around 
720,000 baht/time. Under the historical data of Yr 2020, 
seven breakdowns (class A) have occurred, which exclude 
the entire system disruption (class S). The payback period 
is less than one year (only 1.7 months) which is a very good 
figure for such an investment. Due to the successful 
implementation is achieved in this research, the company 
has a plan to extend this concept to cover other critical 
equipment such as rotating machinery. Moreover, a new 
computer server is also planned to purchase in the fiscal 
Yr 2022 to facilitate hourly predictive health monitoring 
of the entire system realisable. 
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