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Abstract. Food image classification is a challenging problem, the solution of which can be of great
benefit to many real-world applications such as nutrition and allergy estimation. Most of the previous
studies proposed to use variations of convolutional neural networks to tackle the problem. However,
due to the limited number of annotated food image datasets, there is still some room for improvement,
especially in terms of accuracy and speed. Generally speaking, neural networks trained to solve image
classification problems on a small dataset benefit from utilizing the weights of the networks that have
been pre-trained on a large image classification dataset such as ImageNet. In this paper, we compare the
trade-offs between training networks from scratch, deploying pre-trained networks as feature extractors,
and fine-tuning the networks for Thai food image classification. By utilizing Transfer Learning with
EfficientNetV1, wewere able to achieve higher accuracy for Thai Food Image Classification on the largest
publicly available Thai food image dataset, THFOOD-50. In particular, our proposed method improves
upon the accuracy of the previous state-of-the-art method from 84.06% to 91.49% while maintaining
the speed for the prediction at 103 ms and 1205 ms for GPU and CPU, respectively.
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1. Introduction

Thai cuisine is one of the most well-known in the
world. In 2017, Seven Thai dishes made it onto CNN
Travel’s list of the “World’s 50 Best Foods”, and Thai-
land was the country with the most dishes included
in the top 100. These famous dishes included “Tom
Yam Goong”, “Pad Thai”, and “Som Tam”. Accord-
ing to MasterCard’s Global Destination Cities Index,
Bangkok, the capital of Thailand, has been the most vis-
ited city since 2016. More than 38 million international
travelers visit Thailand each year, and most of them are
not native Thai speakers. Communicating and order-
ing food for them can be troublesome. Hence, a model
that can accurately classify Thai food images will be very
useful. Similar to the general image classification prob-
lem, Thai food image recognition has been solved by
using convolutional neural networks [1, 2, 3, 4]. In this
work, we propose to further improve the performance
by employing Transfer Learning.

Since the introduction of AlexNet [5] in 2012, Deep
Convolutional Neural Networks (DCNNs) have been
the predominant method for image classification prob-
lems because they can achieve superior accuracy by ex-
ploiting the availability of large labeled datasets with
their millions of parameters. Following the success,
many subsequent works such as VGG16 [6], Inception-
Net [7], and ResNet [8] explored different network ar-
chitectures to further improve the performance in terms
of accuracy, memory usage, and inference speed. Par-
ticularly, DCNNs refer to artificial neural networks
containing multiple convolutional and other linear and
non-linear layers. They are commonly applied to com-
puter vision problems due to their translation equivari-
ant property from the convolution operation. Addi-
tionally, DCNNs have also been adopted to solve many
other machine learning problems such as Image Detec-
tion [9, 10, 11, 12], Voice Recognition [13, 14, 15, 16],
and Natural Language Processing [17, 18, 19].

Recently, food image classification has gained more
attention from researchers because they have many real-
world applications including nutrition estimation, al-
lergy trace recommendation, foreign food prediction,
and automatic food logging and searching. Due to the
ubiquity of smartphones and social media, millions of
food images are easily available and the need for auto-
matic labeling is in high demand. Multiple food image
datasets have been collected in the past few years. For
instance, Food-11 [20] contains 16,643 images labeled
into 11 major food categories such as bread, meat, and
dessert. Food-101 [21] consists of 101 food categories
and contain 101,000 images. FoodX-251 [22] is a dataset
of 251 fine-grained food categories that has more than
150,000 images. ISIA Food-500 [23] is a large dataset

with 399,726 images annotated into 500 classes. In addi-
tion, many local food datasets were studied. For exam-
ple, KenyanFood13 [24] is a Kenyan food dataset that
contains 8,174 images labeled into 10 classes. Chine-
seFoodNet [25] contains more than 180,000 images of
208 categories of Chinese food images. FOOD-AI [26]
consists of 400,000 Singaporean food images, which are
annotated into 756 classes. As for our focus, Thai Food
image classification, THFOOD-50 [1] is the largest pub-
licly available dataset which contains 15,770 images of
50 kinds of famous Thai food. These large food image
datasets help speed up the development of food recog-
nition models tremendously. Compared to general im-
age classification, food image classification can be more
challenging as there is great variation among food im-
ages from the same class. Conversely, food images that
belong to different classes may appear similar or contain
common ingredients that can be hard even for a person
to distinguish between them.

Typically, solving image classification problems on
smaller datasets benefits from Transfer Learning, in
which the weights of the networks that were pre-trained
on a large image classification dataset such as ImageNet
[27] are reused. In this paper, we studied the trade-
off in terms of accuracy, training time, and inference
time forMobileNets [28, 29, 30], EfficientNets [31, 32],
and ResNets [8, 33]. Since Thai foods consist of
many cultural dishes, and the size of the biggest data
set, THFOOD50 is still lack behind other food image
datasets, we propose to explore training the networks
from scratch, deploying their pre-trained version as fea-
ture extractors, and fine-tuning them for Thai food im-
age classification.

This paper is organized as follows. Related works
are summarized in Section 2. Section 3 presents a Thai
food image dataset used in our experiments. Pre-trained
networks’ architectures and their training procedure are
explained in Section 4. Experiments and results are ex-
plained in Section 5. Finally, the conclusion and discus-
sions are summarized in Section 6.

2. Related Works

The first paper that pioneered Thai food image
recognition is [1] in 2017. It introduced THFOOD-
50, the first and currently the largest Thai food image
dataset. They proposed a novel network called NU-
InNet1.1 which adopts the Inception module [7] with
appropriate depth in order to maintain the model’s ac-
curacy while reducing the processing time and model
size. The proposed model exceeds the performance of
the GoogLeNet [7] and reaches an accuracy of 69.8%
while reducing the prediction time to 18.16 ms.

An updated version of NU-InNet1.1 was proposed
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in [34]. The paper explored stacking multiple ad-
justed inception modules and found that 4 stacks per-
formed best, reaching the accuracy of 80.34% on the
THFOOD-50 dataset.

The NU-InNet1.1 Depth 4 was later upgraded into
a NU-ResNet1.1 Depth 4 in [35] by adopting the con-
cept of residual layers from ResNet [8]. Skip layers were
applied between the beginning and the end of each incep-
tion module. It became the best classification model for
the THFOOD-50 dataset at 83.07% accuracy with an
inference time of 44.60 ms.

There are also other works on Thai food image clas-
sification. For instance, [2] focused on classifying images
of small Thai desserts and snacks with a simple 7-layer
CNN and was able to achieve 86.00 % accuracy.

[3] proposed another Thai food image dataset with
3,961 images that were grouped into 11 classes. They
fine-tuned a GoogLeNet, which had been pre-trained
on an ImageNet dataset, and reached an accuracy of
88.33%.

A food recognition application was developed by [4]
to classify Thai food images into 13 kinds. Based on
their own Thai food image dataset of 7,632 images, they
deployed Transfer learning with a VGG19 network [6]
and were able to reach an accuracy of 82.00%. Since the
VGG19 network was quite big (144× 106 parameters),
the predictions were performed on the server and the
results were sent back to clients’ devices.

From these previous works, we can gather some key
information here. First, all of them rely on training
neural networks in order to achieve state-of-the-art re-
sults. Secondly, Transfer learning can boost the per-
formance of classifiers on a small dataset significantly.
However, there has never been an extensive study of
applying Transfer Learning for the largest Thai food
dataset, THFOOD-50. This research objective is to
compare the results of Transfer Learning with different
networks, training strategies, and augmentations.

3. Dataset Analysis

3.1. THFOOD-50 Dataset

The THFOOD-50 dataset [1] is the largest publicly
available dataset for Thai food image classification with
images collected from Google, Bing, and Flickr. The
dataset contains 15,770 images of 50 famous Thai dishes.
Most of the dishes are starters or main courses such
as “Tom Yum Kung”, “Pad Thai”, and “Thai Green
Curry”. There is only one dessert class, which is “Khao
Niew Ma Muang” (Mango sticky rice). The dataset is
separated into two parts, 90% for the training set and
10 % for the test set. A sample image from each kind of
the dishes is shown in Fig. 1. The images in the dataset
are collected at different sizes and ratios. They are also

captured under various lighting and coloring conditions.
The proportion of each class in the training set is de-
picted in Fig. 2. We can notice that the numbers of each
type of food are quite balanced, with the greatest imbal-
ance being “Kuay Jab” (Chinese roll noodle soup) and
“Kor Moo Yang” (Grilled Pork Neck) which are in the
ratio 609:164 (3.71:1).

Fig. 1. Sample images from 50 famous Thai dishes
from the THFOOD-50 dataset [1].
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Fig. 2. Distributions of all 50 Thai dishes in the
THFOOD-50 dataset. The numbers of each type of
food are quite balanced with the greatest ratio between
different dishes being 609:164 (3.71:1) for KuayJab
(Chinese roll noodle soup) and KorMooYang (Grilled
Pork Neck).

4. Methods

In this section, we describe networks that are used in
our experiments, namely MobileNet and ResNet. We
then explain the training procedure used in our experi-
ments such as training networks from scratch and Trans-
fer Learning. Lastly, we extensively describe the imple-
mentation details of our experiments.

4.1. MobileNet

MobileNet [28] was originally proposed in 2017,
which helped kick-start research on neural networks for
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embedded systems. Owing to its success, MobileNetV2
[29] and MobileNetV3 [30] were subsequently studied.

4.1.1. MobileNetV1

MobileNetV1 replaced regular convolutional layers
with depthwise separable convolutions layers, which
were proven to be highly efficient in terms of the pro-
duced accuracy compared to the number of required pa-
rameters. Specifically, a standard convolutional layer,
which takes a DF × DF × M input and produces an
output with shapeDF ×DF ×N , will require the num-
ber of parameters as

DK ×DK ×M ×N (1)

where DF and DK indicate the spatial size of a square
input and a convolutional kernel size, andM and N re-
fer to the feature size of the input and output, respec-
tively. The standard convolutional layers would also
have a computational cost of

DK ×DK ×M ×N ×DF ×DF (2)

Whereas, a depthwise separable convolutional layer
would require the number of parameters as small as

DK ×DK ×M +M ×N (3)

with the computational cost as

DK ×DK ×M ×DF ×DF +M ×N ×DF ×DF (4)

The paper also introduced two simple strategies to fur-
ther reduce the model’s size and computational cost.
First, each intermediate feature can be shrunk by a factor
of α ∈ (0, 1]. Secondly, the input image can be spatially
reduced by a factor of ρ ∈ (0, 1]. In our experiments,
we simply set both α and ρ to 1. More details about the
full network architecture can be found in [28].

4.1.2. MobileNetV2

MobileNetV2 modified the way a depthwise sepa-
rable convolutional layer in MobileNetV1 worked and
further improved the efficiency and accuracy of the net-
works. Firstly, it introduced two types of layer blocks:
a residual block and a downsizing block. Both of these
blocks contain 3 layers. Unlike the MobileNetV1, the
first layer is a 1×1 convolutional layer with RELU [36]
as a non-linear activation function. The second layer is
a depthwise convolutional layer. Lastly, the third layer
is another 1× 1 convolutional layer with a linear activa-
tion function. The residual block additionally contains
a residual skip connection within the block. The full
architecture is clearly explained in [29].

4.1.3. MobileNetV3

MobileNetV3 is the most recent enhancement to the
MobileNets architecture. Compared to MobileNetV1
and MobileNetV2 whose architectures were manually
developed, the architecture of MobileNetV3 were au-
tomatically searched by using reinforcement learning
methods MnasNet [37] and NetAdapt [38]. First, the
global structure of the networks’ blocks was optimized
with the MnasNet. Then, each layer was sequentially
fine-tuned with the NetAdapt. Additionally, the inclu-
sion of a squeeze-and-excite inside the residual blocks
improved the accuracy while reducing the number of
parameters. Lastly, the last stage of the networks was
manually optimized to reduce computational time and
parameters while maintaining similar accuracy. Details
of the whole architecture can be found at [30].

4.2. EfficientNet

4.2.1. EfficientNetV1

EfficientNet is a convolutional neural network de-
signed to proportionally scale a network’s depth, width,
and resolution dimensions with a compound coefficient.
Particularly, if more computational resources with coef-
ficient ϕ are allowed, we can increase the network depth
by αϕ, width by βϕ, and image size by γϕ, where α,
β, and γ are constant coefficients determined by a small
grid search. The original paper [31] proposed 8 different
scale networks. In this paper, we only focus on the one
whose image input size is 224× 224 in order to make a
fair comparison with other methods.

4.2.2. EfficientNetV2

EfficientNetV2 improves EfficientNetV1 in terms
of computational time, network size, and prediction ac-
curacy. To speed up training time and reduce the net-
work’s size, it restricts the maximum image scaling size
to 480 × 480 and skips unnecessary search options dis-
covered by the original EfficientNetsV1 such as pool-
ing skip ops. The paper [32] also introduced a con-
cept of progressive learning, in which the networks pro-
gressively increase regularization as the network learns
longer. Similarly to EfficientNetsV1, multiple networks
size were proposed, but we only keep the network
whose image size is 224× 224.

4.3. ResNet

4.3.1. ResNetV1

ResNet is the most highly-cited paper between 2015
and 2019. The proposed models won the ILSVRC and
COCO competitions in 2015. The paper introduced
the idea of a residual skip connection between layers
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which was experimentally shown to have a few bene-
fits. First, the skip connection alleviates the issue of
the vanishing gradient. Secondly, it enables layers to
keep the identity function rather than being forced to
transform the features. These effects allow a deeper net-
work to be trained effectively. Multiple versions with
different depths were introduced in the paper. Namely,
ResNet18, ResNest50, and ResNet152. In this pa-
per, we focused on exploring the mid-size network i.e.
ResNet50V1.

4.3.2. ResNetV2

ResNetV2 extensively studied the residual building
block proposed in ResNetV1 and proposed a novel
residual unit that made the training even more stable and
improved accuracy. Particularly, non-linear activation
functions such as RELU were moved to the beginning
of the residual block. The last non-linear activation layer
was also removed in the second version. The full details
of the residual block and architecture can be found at
[33]. In order to allow for network comparison, we also
select ResNet50V2 as a model of choice.

4.4. Training Networks from Scratch

When a deep neural network is trained from scratch,
its weights from each layer are initialized randomly, and
they are updated iteratively using the stochastic gradi-
ent descent method and back-propagation. The weight
optimization process is demonstrated in Fig. 3. From
the figure, we can see that we separated the networks
into two parts: a feature extractor and a classifier. The
feature extractors usually refer to the convolutional lay-
ers at the beginning of the networks while the classifiers
are normally implemented using fully connected layers.
Additionally, we highlighted the whole network in red
to represent the fact that every layer’s parameters are
updated during training.

Fig. 3. When a network is trained from scratch, the
parameters in all layers including a feature extractor
and a classifier are updated. This is represented by the
highlighted red blocks.

4.5. Transfer Learning

In general, training a deep neural network from
scratch takes a long time and requires high computa-
tional resources. Additionally, a large amount of data
is required to achieve good results. These restrictions
can be overcome by Transfer Learning, an alternative

approach for training deep neural networks that offer
good results even with small datasets.

Transfer learning in the context of deep learning
refers to utilizing model weights obtained from a net-
work pre-trained on relatively large datasets to help
solve new tasks for which little training data is avail-
able. For instance, ImageNet-1k [27] and ImageNet-
21k [39] are extremely large image recognition datasets
that contain millions of images, each of which is an-
notated with one of the thousands of labels. As a re-
sult, they are commonly used to pre-train neural net-
works for computer vision problems. For image clas-
sification, deep networks usually consist of many con-
volution layers followed by a few fully connected lay-
ers. Correspondingly, early layers of the pre-trained
networks are known to extract generic low-level fea-
tures from the photographs. As the layers progress,
the networks tend to learn more abstract representa-
tions of the images. Hence, the weights of the network
trained on large image classification datasets usually give
a good starting point for training networks on a similar
dataset with a smaller size. There have been many stud-
ies [40, 41, 42] that tried to improve the ways transfer
learning can optimally benefit smaller problems. In this
paper, we consider the following setups.

4.5.1. Features extractors

The simplest way that a pre-trained network can be
utilized for a smaller dataset is to use them as feature ex-
tractors. Particularly, images from the smaller dataset
will be passed through the pre-trained networks once,
and the output from the last convolutional layer is typ-
ically used as intermediate features. These features can
then be used as input for any machine-learning model.
In this paper, we simply used a fully connected layer
to make the predictions in order to compare the results
with other training strategies. With this approach, the
computational cost is much less expensive as each image
in the small dataset can be passed through the pre-trained
network once. The extracted feature of each image then
can be trained with smaller machine-learning models.
The training strategy is depicted in Fig. 4. The top part
of the figure represents a deep neural network that was
pre-trained on the ImageNet dataset. The convolutional
layers of the network are reused as depicted in the bot-
tom part of the figure. We can see that the weight of the
feature extractor is kept frozen during training, and only
the classifier is updated. In the figure, the blue blocks
represent frozen weights, and the red blocks mean that
they are being trained.
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Fig. 4. When a pre-trained network is used as a fea-
ture extractor, the parameters of the feature extractors
layers are kept frozen while the weight of the classifier
is updated during training. This is demonstrated using
the colors blue and red, respectively.

4.5.2. Networks fine-tuning

Typically, the numbers of labeled classes of a large
dataset and the smaller dataset are different for image
classification. Hence, the first step of fine-tuning a pre-
trained deep neural network is to adjust the last output
layer to have the same size as the available class in the tar-
get dataset. This first step is essentially the same as using
the convolutional layers as a feature extractor, and only
the fully connected layer is updated. This initial classifier
training is necessary for stable training in the next step
where the whole network is fine-tuned. The training
procedure is demonstrated in Fig. 5. The top network
depicts pre-training a network on the ImageNet dataset.
The weights of the parameters from the convolutional
layers are reused in the second network in the middle,
where only the fully connected layer is trained. The net-
work at the bottom demonstrates the whole network be-
ing fine-tuned. Both convolutional layers and the fully
connected layer are trained end-to-end. Normally, a rel-
atively lower learning rate is used during fine-tuning.

4.6. Implementation

In this session, we discuss the implementation de-
tails regarding training the neural networks from scratch
as well as fine-tuning the networks. Our experiments
are implemented entirely with Python 3 [43] using the
framework Keras [44].

4.6.1. Image pre-processing

To allow for model comparison, we followed the
image pre-processing setup used in the networks pre-
trained on the ImageNet dataset, in which image pix-
els are re-scaled to have values between 0 and 1. This is
simply done by dividing each image pixel by 255. Specif-
ically, let X be the pixel values of a given image and X ′

be the normalized pixel values, then the normalization
is performed as

X ′ =
X

255
(5)

Since the dataset contained images of different sizes
and in different ratios, we adjusted all of the input im-
ages for all of the networks in our experiments to be
224 × 224, which was achieved by center cropping and
bi-linear interpolation.

Fig. 5. In order to fine-tune a pre-trained deep neural
network, the fully connected layer must first be trained
from scratch. Then the whole network can be fine-
tuned with a much lower learning rate. The top net-
work depicts pre-training a network on the ImageNet
dataset. The second network in the middle represents
training the fully connected layer. The network at the
bottom demonstrates fine-tuning the whole network.
In this figure, the blue blocks represent frozen weights,
and the red blocks mean that they are being trained.

4.6.2. Image augmentations

Image augmentations [45, 46, 47, 48] have been
proven to enhance the effectiveness of training deep neu-
ral networks by increasing the amount of training data
by adjusting the images geometrically or coloristically.
In addition, when they are deployed in an online man-
ner during training, they can also prevent the networks
from over-fitting on the small datasets. For our experi-
ments, we only performed geometric augmentations to
the images during training because any color augmenta-
tion could interfere with the semantics of the Thai food
images. In particular, we explored random horizontal
flipping, random rotation, random zoom, and random
translation. Each of these random augmentation inten-
sities can be adjusted using a parameter “ratio” in the
framework Keras. For simplicity, we only explored the
same value of ratio among these augmentations at four
different levels of 0.05, 0.10, 0.15, and 0.20.
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4.6.3. Hyper-parameters setting

Training deep networks tends to be time and
resource-expensive, and one of the causes is hyper-
parameters tuning. We avoided a few of these hyper-
parameter searches by setting them to sensible values.
Specifically, we set the batch size to 64 and used Adam
optimizer [49] as our stochastic optimizer due to its ro-
bustness for training deep neural networks. For training
from scratch and training the last fully connected layer,
the learning rates were set to 1 × 10−3, and the β1 and
β2 were set to 0.9 and 0.999, respectively. For fine-
tuning the networks, we only adjusted the learning rates
to be lower at 1×10−5 in order to prevent the networks
from making any drastic changes to the weights. For all
the training, we let the networks learn for 100 epochs.
Lastly, the weight decay was set to 5× 10−4.

4.6.4. Loss function

Let y be a one-hot ground-truth label vector, ŷ be
the predicted probabilities of each class from the net-
works, and let c refer to each possible class. We utilized
the commonly-used multi-class cross entropy as our loss
function. Mathematically, it is defined as

L(y, ŷ) = −
∑
c

yc log ŷc (6)

5. Results and Discussion

5.1. Evaluation of Models

Since the proportion of each label is quite balanced,
we measured the performances of the networks using ac-
curacy. Specifically,

Accuracy =
TP + TN

TP + FP + TN + FN
(7)

where TP is the number of true positive examples, TN
is the number of true negative examples, FP is the num-
ber of false positive examples, and FN is the number of
false negative examples.

5.2. Internal Results

We conducted multiple experiments and reported
the results on the THFOOD-50 dataset. Specifically,
we compared the performances of different models when
they were trained with each strategy. Various levels of
image augmentations were examined. Finally, the com-
parison between the accuracy against inference time of
all models is reported.

5.2.1. Networks comparison

In total, the seven aforementioned networks were
trained on the THFOOD-50 dataset. In particular,
they wereMobileNetV1, MobileNetV2, MobileNetV3,
EfficientNetV1, EfficientNetV2, ResNetV1, and
ResNetV2. Each of these networks was trained with
three strategies. Firstly, they were trained from scratch.
Then, two procedures were utilized for transfer learning
where only the last fully-connected layer or the whole
network was fine-tuned as described in Section 4.5. The
performances in terms of the number of trained param-
eters, training time, and accuracy are reported in Table
1. Generally, we can notice that the size of the Mo-
bileNets, EfficientNet, and ResNets are significantly
different based on the number of parameters and the
training time. Comparing the training procedures, fine-
tuning only the last layer took the least amount of time
for training, and the MobileNetV1 took the shortest
time at 41milliseconds per iteration. Training the whole
network both from scratch or fine-tuning took around
300 milliseconds per iteration for most of the networks.
In terms of accuracy, the performance of EfficientNets
is always better than those of MobileNets and ResNets.
This may be because MobileNets are too small and un-
derfit the dataset while ResNets are too deep and contain
a much larger number of parameters, allowing for over-
fitting the THFOOD-50 dataset. This phenomenon
is consistent with the results reported in [1, 34, 35],
in which larger networks seemed to perform worse on
the THFOOD-50 dataset. When the networks were
trained differently, the accuracy of fine-tuning only the
last layer was the worst, followed by training the whole
network from scratch and fine-tuning the whole net-
work, respectively. The validation accuracies during
training of these seven networks trained with different
strategies were shown in Fig. 6. From the experiments,
the best model is the fully fine-tuned EfficientNetV1
reaching an accuracy of 90.87%. The validation accura-
cies during training of these networks when they were
fully trained were explicitly compared in Fig. 7.

5.2.2. Image augmentations

We conducted four levels of image augmentations at
0%, 5%, 10%, and 15%. All the models were fully
fine-tuned and their accuracies are presented in Table
2. From the table, we can see that augmentations had
a positive effect on the accuracies. For MobileNets and
EfficientNets, the benefits are most notable at interme-
diate levels of augmentations either at 5% or 10 %. The
best performing model reached the accuracy of 91.49%,
which is EfficientNetV1 with an augmentations level
of 10%. On the other hand, deeper networks such as
ResNets gained higher accuracies as the level of augmen-
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Table 1. The performances of the proposed methods when they were trained using different strategies.

Models
Training from scratch Fine-tuning last layer Fine-tuning whole network

Params Training Acc Params Training Acc Params Training Acc
(M) (ms/it) (%) (M) (ms/it) (%) (M) (ms/it) (%)

MobileNetV1 3.280 284 82.93 0.051 41 81.43 3.280 284 89.49
MobileNetV2 2.322 317 84.37 0.064 46 78.67 2.322 317 87.55
MobileNetV3 4.291 282 86.49 0.064 43 84.80 4.291 282 89.93
EfficientNetV1 4.113 336 88.24 0.063 98 85.12 4.113 336 90.56
EfficientNetV2 5.922 321 89.06 0.071 86 86.64 5.922 321 90.87
ResNet50V1 23.663 294 73.80 0.102 80 75.30 23.663 294 85.87
ResNet50V2 23.667 297 75.55 0.102 90 71.92 23.667 297 82.80

tation increased. This is because deeper networks have
a larger number of parameters compared to the amount
of available data. This typically leads to over-fitting, and
a higher level of regularization can overall lead to better
performance. However, their performances were still
far behind those of EfficientNetV1. The ResNet50V1
only achieved an accuracy of 85.87%.

Fig. 6. The validation accuracies of different models
when they were trained from scratch, partially fine-
tuned, and fully fine-tuned.

Fig. 7. The comparison of validation accuracies when
models were fully fine-tuned.

Models
Accuracy (%)

Aug Aug Aug Aug
0% 5% 10% 15%

MobileNetV1 89.49 89.99 90.12 89.93
MobileNetV2 87.55 88.93 87.93 88.24
MobileNetV3 89.93 90.43 90.18 90.12
EfficientNetV1 90.56 90.12 91.49 91.43
EfficientNetV2 90.87 90.74 90.99 90.06
ResNet50V1 85.85 85.62 85.30 85.87
ResNet50V2 82.80 84.12 83.99 81.18

Table 2. The accuracies of the models when they were
trained with various levels of image augmentations.

5.2.3. Accuracy vs run times

The performance of the models was additionally
compared between accuracies and run times. During
testing, an image was cropped and resized to 224 × 224.
The run times were measured by using both a CPU
and a GPU. The CPU used for testing was the Intel(R)
Xeon(R) @ 2.00GHz. For the GPU, an NVIDIA Tesla
P100 with 16 GB of RAM was used for measuring the
inference speed. The comparison is shown in Table 3.
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As shown in the table, the GPU inference times of the
MobileNets were around 80 ms and the accuracies were
maximum at 90.43% for the MobileNetV3. For Ef-
ficientNets, the GPU inference time is around 95 ms
while reaching an accuracy of 91.49%. Whereas the
GPU prediction times of the ResNets were around 120
ms and only reached just 85.87% for the ResNet50V1.
The CPU inference times demonstrate similar trends
between MobileNets, EfficientNets, and ResNets with
around 700 ms, 1100 ms, and 3000 ms, respectively.
The experimental results confirmed that the architec-
tures of the EfficientNets are more suitable for the prob-
lem of Thai food image classification compared to Mo-
bileNets and ResNets in terms of optimal training speed,
inference speed, and accuracy.

Models FLOPs Inference (ms) Acc
(G) CPU GPU (%)

MobileNetV1 0.57 740 74 90.12
MobileNetV2 0.34 635 79 88.93
MobileNetV3 0.24 650 81 90.43
EfficientNetV1 0.40 1205 103 91.49
EfficientNetV2 0.71 1097 91 90.99
ResNet50V1 3.92 2993 116 85.87
ResNet50V2 4.21 3115 128 84.62

Table 3. The comparison of different models in terms
of inference times and accuracies.

5.3. Comparison with State-of-the-Art Models

Here, the proposed methods are compared with re-
cent models from [1, 34, 35]. The performances are
measured in terms of a number of model parameters and
image classification accuracy. The results are shown in
Table 4. From the table, we can observe that the previ-
ous state-of-the-art model was the NU-ResNet from [35]
with an accuracy of 83.07%. Considering our proposed
models, we can notice that Transfer Learning allows the
models to perform better. For example, the accuracy of
the ResNet50V1 trained from scratch reported in [35]
at 72.88% can be boosted significantly with fine-tuning
to reach 85.87% which is already better than the NU-
ResNet. Our best-performing model is EfficientNetV1
which can achieve noticeably higher accuracy than pre-
vious methods, achieving a new state-of-the-art result of
91.49%.

Regarding the number of parameters, we can no-
tice that the models’ size is not necessarily propor-
tional to the accuracies of the models. Previous works
[1, 34, 35] demonstrated that while the size of the mod-
els was still relatively low, increasing the model size
seemed to improve the accuracies as shown in NU-
InNet 1.0, NU-InNet 1.1, and NU-ResNet. We can

also see a similar trend with our MobileNetV1, Mo-
bileNetV2, MobileNetV3, EfficientNetV1, and Effi-
cientNetV2. On the other hand, extremely large models
such as ResNet50V1 and ResNet50V2 tended to over-fit
the small dataset and performed worst even with higher
levels of image augmentations. From Table 4, we can
see that the EfficientNetV1 can achieve 91.49% accu-
racy using 4.11 million parameters while the previous
stat-of-the-art NU-ResNet reached 83.07% while using
1.48 million parameters.

Models Params Acc
(M) (%)

NU-InNet 1.0 [1] 0.88 69.80
NU-InNet 1.1 [34] 0.94 80.34
NU-ResNet [35] 1.48 83.07
ResNet50V1 [35] 23.66 72.88
Our MobileNetV1 3.28 90.12
Our MobileNetV2 3.32 88.93
Our MobileNetV3 4.29 90.43
Our EfficientNetV1 4.11 91.49
Our EfficientNetV2 5.92 90.99
Our ResNet50V1 23.66 85.87
Our ResNet50V2 23.66 84.62

Table 4. Comparison with previous state-of-the-art
models in terms of model parameters and accuracies.

5.4. Qualitative Results

In this section, we qualitatively demonstrate the re-
sult of the EfficientNetV1 prediction using Gradient-
weighted Class Activation Mapping (Grad-CAM) [50],
which localizes parts of the image that contribute the
most to the model’s classification. Throughout the ex-
periments, the output heat maps of the Grad-CAMwere
overlaid on top of the input images whose transparency
values were set to 0.8. The areas that contributed more
toward the prediction were highlighted in red while
parts of the images that contributed less were colored
blue. The outputs in the figures are best viewed in color.

5.4.1. Correctly classified Images

In order to understand how our network made pre-
dictions, we first investigate the results fromGrad-CAM
on correctly classified images. We intentionally selected
ten images with the highest probabilities and ten images
with the least probabilities. Their results are demon-
strated in Fig. 8 and Fig. 9, respectively.

In Fig. 8, we can notice that all the images were
classified with high probabilities reaching nearly 100%.
Additionally, the focuses of the model on these images
seem sensible as they tended to localize to the features of
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the images that are specific to the food label. For exam-
ple, considering the first and the ninth images, which de-
pict “Gaeng Jued” (Clear soup with egg tofu and minced
pork), the EfficientNetV1 consistently focused on the
egg tofu locations. A similar pattern occurs in the dish
“Phat Kaphrao” (Stir-fried pork and basil) shown in the
seventh and the eighth columns. Both images’ classifica-
tions seemed to be mainly influenced by the pork and
basil parts.

In Fig. 9, all of the images were correctly classified
with a probability as small as 50%. Although the proba-
bilities in this figure are relatively low, the output of the
Grad-CAM still tended to localize well specifically to
the food label. Particularly, the model paid attention to
the bitter melon in the Bitter-melon soup of the first im-
age, the crab’s craw in “Boo Pad Pong Gali” (Stir-friend
Crab curry) of the second image, and the egg part of
the “Kai Jeow Moo Saap” (Omelette with minced pork)
in the third image. Again, in the ninth image, the egg
tofu of the “Gaeng Jued” (Clear soup with egg tofu and
minced pork) was correctly focused.

5.4.2. Misclassified images

We also studied the behavior of our model when it
misclassified food images. We purposely selected ten im-
ages that were incorrectly recognized with the highest
probabilities and show their Grad-CAM output in Fig.
10. We can notice from the figure that the model could
misclassify Thai food images with a high probability of
almost 100%. Nevertheless, five out of ten images also
had their correct label as the top five predictions, and
the correct labels are colored in green. Some of the im-
ages’ predictions seem to be completely misunderstood
by the model. For example, the prawn in the first and
the fourth images were mistaken for “Khao Niew Ma
Muang” (Mango with sticky rice). For those whose cor-
rect labels were among the top five predictions, the re-
sults from the Grad-CAM tended to localize and paid
attention to parts of the images that could be ambiguous
between labels that are semantically and visually similar.
In particular, two close dishes such as “KorMhoo Yang”
(Grilled pork’s neck) and “Num Tok Mhoo” (Spicy
grilled pork) were misjudged by the model in the sec-
ond and the third images.

Additionally, we studied the output of the Grad-
CAM on ten misclassified images that had the lowest
probabilities as shown in Fig. 11. In some of the im-
ages, the model seemed to already focus on the core fea-
ture part of the images but misinterpreted them. For in-
stance, the crab shell in the “Boo Pad Pong Gali” (Crab
curry) dish was the main focus of the model, but it was
misjudged as “Tom Kha Gai” (Thai chicken coconut
soup). Similarly, in the second image, the model local-

ized the egg part of the “Son in law eggs” (Fried eggs with
tamarind sauce) but classified the image as “Gai Yang”
(Grilled chicken). This confirms the difficulty of the
food image classification problem.

6. Conclusion

In this paper, we studied extensively the effects of
network size, training strategies, and the level of im-
age augmentation on the accuracies of Thai food im-
age classification for the THFOOD-50 dataset. Our
experiments confirmed that utilizing Transfer Learning
by fine-tuning the whole network on EfficientNetV1 at
the image augmentation level of 10% can greatly push
the limit of the accuracy up to 91.49%, about 10%more
than the previous state-of-the-art model, while maintain-
ing the testing time with a GPU and a CPU to 103
ms and 1205 ms, respectively. Our qualitative results
fromGrad-CAM also confirmed the localization reason-
ing of the proposed training method. For future works,
a study on how the network can utilize co-occurrence
information of the ingredients may improve the perfor-
mance of the networks further as we can notice from
the output of the Grad-CAMmethod that the proposed
model only tends to look for a specific key feature in the
images in order to make the predictions.
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