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Abstract. This research introduces a finite element method, considering size-dependent 
effect via nonlocal elasticity to analyze the buckling load of columns subjected to 
concentrated, distributed, and combined load cases. Two types of columns are considered: 
columns with a constant moment of inertia and nonuniform cross-section. The end 
conditions of columns comprise the following: clamped-free, hinged–hinged, clamped–
hinged, and clamped–clamped. This paper illustrates the computational results using the 
relationship between buckling load normalized via the classical eigenvalue buckling load. 
The current findings show that the buckling load dramatically decreases at the normalized 
material length scale between 1 and 10. The most and least considerable effects on buckling 
load reduction are clamped–clamped and clamped-free end conditions. For the case of 
combined loads, a buckling concentrated load decreased proportionally as applied uniformly 
distributed force increased. An increase in concavity (or convexity) of parabolic columns 
will influence the buckling of the concentrated and uniformly distributed buckling loads. 
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1. Introduction 
 
Structural behavior considering the bending, buckling, 

and vibration of beam–column-like components of micro-
electro-mechanical systems (MEMSs) and nano-electro-
mechanical systems (NEMSs) has been widely 
investigated in previous works [1-3]. Such a wide 
investigation is due to the numerous real-world 
applications of these systems, such as 3D-printed micro-
trusses, electrically-driven semiconductor lasers, 
optomechanical resonators, photonic crystals, transistors, 
and vibration shock sensors [4-9]. Many researchers have 
proposed various mathematical frameworks for modeling 
the structural behavior of micro/nano-beam–column 
members in minuscule structures to avoid time-
consuming and uneconomical experiments. An analysis of 
structural members in MEMSs and NEMSs requires 
additional assumptions of continuum theories to capture 
the small-scale effect and long-distance interaction. Many 
approaches are also used to predict a type of mechanical 
behavior of atomic structures. Well-known examples of 
size-dependent continuum theories include modified 
couple stress elasticity theory [10-12], strain gradient 
theory [13, 14], stress-driven elasticity theory [15, 16], and 
doublet mechanics theory [17, 18]. A simple and 
longstanding theory, known as Eringen’s nonlocal model, 
exists [19]. This theory has been recognized as an 
alternative to address the size-dependent response of any 
system through a kernel function that captures 
microstructural effects using material length scale 
parameters. 

Beam theories were initially reformulated by 
considering the nonlocal differential constitutive relations 
of Eringen to solve the buckling load of beams with 
simply supported ends [20, 21]. A nonlocal strain gradient 
theory was developed and the geometric nonlinear effect 
due to the mid-plane stretching was also considered to 
perform buckling analysis of simply supported size-
dependent beams [22]. The differential form of Eringen’s 
model was subsequently found to be inadequate in 
addressing the size-dependent effect of columns, except 
for the column with hinged ends. Thus, the literature 
focused on the buckling analysis of minuscule columns 
using different kinds of analysis schemes, such as the 
integral form of Eringen’s equation [23], discrete singular 
convolution method [24], and finite element formulation 
based on the minimum total potential energy principle [25,  
26]. Three boundary conditions of columns containing 
hinged–hinged, clamped–hinged, and clamped–clamped 
ends were then used in the buckling analysis via a 
conformable fractional nonlocal model [27]. Published 
data concerning the influence of material length scale on 
the variation of critical buckling load in the case of 
distributed and combined load scenarios are limited. The 
buckling load of minuscule columns with a nonuniform 
moment of inertia, which is often encountered in real 
applications, should also be examined. 

The governing equations of columns are formulated 
in the current research within the framework of Eringen’s 

nonlocal elasticity. Due to the complexity induced by the 
nonlocal constitutive law in an integral form for any 
selected attenuation kernel, the analytical or closed-form 
solution of the key governing equation cannot be, if it is 
not impossible, readily obtained. Therefore, it is more 
appealing to adopt a numerical solution procedure to 
tackle such problem. In the present study, the finite 
element method is chosen due to its vast features, 
capability to handle general data, and simplicity in the 

formulation and numerical implementations. Columns 
with a uniform moment of inertia and those with a 
nonuniform cross-section are investigated herein to 
understand the effects of boundary conditions and 
material length scale on the buckling load of nanocolumns. 
 

2. Theoretical Formulation 
 
The eigenproblem governing the buckling state of the 

nonprismatic and nonlocal column (Fig. 1) can be 
formulated on the basis of the following basic equations: 

 ( ) ( )x w x =  (1) 
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where E  denotes Young’s modulus; ( )I I x=  denotes 

the moment of inertia of the cross-section; ( )0,K x l−  

is the selected attenuation function with 0l  representing 

the internal length scale of the material; ( )M x  denotes 

the bending moment of the cross-section; P  is the 
compression force applied at the top of the column; and 
( ) ( )0q x q x=  is the distributed load represented by 

the load factor   and the variation function ( )0q x . 

( )V x  and ( )w x , respectively, denote the shearing 

force and the deflection of the cross-section. 
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Fig. 1. Schematic of a perfectly straight column considered 
in this research. 
 

The weak-form equation of Eq. (3), together with the 
kinematics given by Eq. (1) and the nonlocal moment–
curvature relation given by Eq. (2), is given by 
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where v  is any sufficiently smooth test function. 
Substituting Eq. (4) into Eq. (5) yields: 
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where the function ( )p x  is defined as 
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By introducing the following normalizations, 
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weak-form equation (6) then becomes: 
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where the function ( )f x  is defined as 

 ( ) ( ) = −
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Let the normalized interval  0,1  be partitioned into 

n  finite elements, that is,  
1,

0,1
=

=  e
e n

, where 

 1,e e ex x− = , 
0 0x = , and 1nx = , and the 

normalized deflection and test function over a generic 
element 

e  can be approximated by: 
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where 1

e

e eh x x −= −  and /e e ex h = ; and 
eu  is an 

arbitrary vector. The normalized moment of inertia 

( )A x  is represented by a piecewise constant function 

over the finite element mesh; in particular, the normalized 

moment of inertia of a generic element 
e  is denoted by 

a constant eI    Based on the discretization (10) and the 

representation of the normalized moment of inertia by a 
piecewise constant function, the weak-form equation (8) 
then becomes: 

 ( ) 01 2K M M UP − − =  (11) 
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where U  is a vector containing all degrees of freedom of 

the discretized column and the elastic stiffness matrix K  

and geometric stiffness matrix M  are defined by 

 
( ) ( )

1 1 1

, ˆK k k
n n n

p q pq p

p q p

I I
= = =

= +   (12) 

 
( )

1

1 1M m
n

p

p=

=  (13) 

 
( )

1

2 2M m
n

p

p=

=  (14) 

 

where ( ),
k

p q
, 

( )k̂
p

, 
( )
1m

p
 and 

( )
2m

p
 are respectively 

defined locally by: 
 

( )

( )( ) ( ) ( )( ) ( )    
 

=

− 

,
k

C , C

p q

p q

T
q q p q q q q pK x x l d dx

 

  (15) 

 

( )

( )( )  ( )( ) ( )


=

− 1

k̂

C C

p

p

T
p p p p p pf x x x x dx

 (16) 

 ( ) ( )1m B B

p

Tp p p pdx


=   (17) 

 ( ) ( )( )( )2m B B

p

Tp p p p pp x x dx


=   (18) 

 

where 1

q

qx  −= − , 
p p pd dx=B N / , and 

C B /p p pd dx= . Note that 
( ),

k
p q

 and 
( )k̂

p
 can be 

viewed as the elastic stiffness matrices contributed from a 
pair of elements p, q and an element p, respectively, 

whereas ( )
1m

p
 and 

( )
2m

p
 are the geometric stiffness 

matrixes contributed from an element p due to the 
presence of the concentrated and distributed loads, 

respectively. The function p  ( x  (
px )) on the element 

p  in Eq. (18) can be further approximated by linear 

interpolation functions as shown below to simplify the 

calculations of the matrix 
( )
2m

p
: 
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where ( )1 1p p px = − , ( )2

p p px = , and 1

pp , 2

pp  

are values of the function p  ( x  (
px )) at the left and right 

end of the element p , respectively. By Substituting Eq. 

(19) into Eq. (18) results in: 
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where the matrices 
( )
21m

p
 and 

( )
22m

p
 are defined as in Eqs. 

(21) and (22), respectively. 
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Notably, all the matrices ( ),
k

p q
, 

( )k̂
p

, 
( )
1m

p
, 

( )
21m

p
, and 

( )
22m

p
 can be derived in a closed form. 

 
3. Numerical Results and Discussions 

 
The obtained results from the current computational 

work are initially compared with those of classical column 
theory to verify the formulation. Three types of end 
conditions, such as clamped end (C), hinged end (H), and 
free end (F), have been investigated in the research: 

 Clamped end: 0 0,
dw

w
dx

= =   

 = =Hinged end: 0 0,w M   

 Free end: 0 0,V M= =   

 
The load cases observed in the current work are listed as 
follows: 

 ( )
0

0Uniform ( 0): 1 1m q x= = − =   

 ( )
1

0Linear ( 1): 1m q x= = −   

 ( )
2

0Quadratic ( 2): 1m q x= = −   

 
where m  is the exponent number controlling axial load 
distribution in columns. In the numerical study, the 

following attenuation function ( )− =0,K x l

− − 0/

0/ 2
x l

e l  is considered. 

The numerical results presented in Tables 1–4 aim to 
determine the convergence behavior for solutions of 
columns with a uniform moment of inertia subjected to 
various loading scenarios throughout this research. Herein, 
a convergence indicator is defined as the calculated 
buckling load from each normalized mesh considering 
those obtained from the case using 128 elements. It is seen 
that the convergence behavior of numerical solutions 
depends on the boundary conditions, normalized length 

parameter l , and applied loads. In particular, buckling 
solutions of the C-F column converge faster than that of 
the other three boundary conditions for all load cases 
considered and finer meshes are generally required as the 

length scale parameter l  decreases and load cases with 
the presence of distributed axial force. The mesh 
containing 32 elements then meets the minimum 
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requirement of convergence validity with a relative error 
of less than 1%. 

A component with a nonuniform cross-sectional area 
and moment of inertia (Fig. 2) has found broad application 
in optomechanical sensing and laser beam scanning 
systems [6, 28]. Note that nano-elements with variable 
cross sections serve either to tune a system to a specific 
frequency spectrum or enhance its mechanical sensitivity 
to external excitations. Predicting physical responses of 
nano-beams such as buckling phenomena, taking their 
geometry and nano-scale influences into account, is an 
essential issue in the design of nano-mechanical systems. 

 
 

 
 

Fig. 2. Schematic of a perfectly straight column with the 
parabolically varying cross-sectional area. 
 

The cross-section is rectangular with constant 

thickness h , and the height varies as a function such that: 

 ( ) ( )( ) 2

0 1 4 1b x b x x= + − −  (23) 

 
where   denotes the dimensionless parameter for 
classifying the degree of convexity (or concavity) of the 

parabolic curve, and 0b  represents the maximum width at 

end columns. The height function (23) can be rewritten 
considering normalized moment of inertia as follows: 

 ( ) ( )( ) 
3

21 4 1I x x x= + − −  (24) 

 
The convergence of computed buckling loads for a 
parabolic column is also investigated for C-F, H-H, C-H, 

and C-C end conditions, {1,10}l , and various load 

cases, and results are reported in Tables 5–8. A similar 
conclusion on the convergence behavior of numerical 
solutions to the case of the uniform column can be drawn 
except that finer meshes are generally required for this 
particular column to achieve the same level of accuracy. 
 
3.1. Column Subjected to Concentrated Loading 

 
The normalized buckling concentrated load, which is 

the buckling concentrated load at a considered material 

length scale (
0

crP ) divided by the classical eigenvalue 

buckling concentrated load (
0c

crP ) [29], is defined to assess 

the variation of the buckling resistance capacity of 
columns while focusing on the size effect and the positive 
dimensionless parameter controlling the parabolic curve 

shape of columns. As observed in Fig. 3, a buckling load 
converges to the classical eigenvalue buckling load for 

substantially small (i.e.,  0.1l ) and large (i.e.,  50l ) 
values of material length scale. The buckling load for all 
four boundary conditions is dramatically decreased at the 
normalized material length scale between 1 and 10. The 
C–C column provides the strongest influence of 
decreasing a buckling concentrated load of columns, while 
the least effect is revealed in those with C–F end 
conditions. The increase in the dimensionless parameter 
controlling the shape of the parabolic curve will raise the 
normalized concentrated buckling load of columns, 
except for the C–F end condition, in which the effect of 
column shape on buckling load is insignificantly changed. 

When 2 = , size-dependent behavior has the lowest 
impact on normalized buckling concentrated load in most 
boundary conditions, particularly in the case of H–H 
columns. However, different from the C–F column, 

uniform columns ( = 1 ) exhibit the slightest influence 
of size-dependent buckling concentrated load on 
normalized buckling compared to those with nonuniform 
columns. 
 

 
 

Fig. 3. Normalized buckling concentrated load versus 
normalized material external length scale of columns 
subjected to concentrated loading. 
 
3.2. Column Subjected to Distributed Loading Along 

its Length 
 
The normalized buckling distributed load is defined 

by the ratio between the buckling distributed load at a 

considered material length scale (
0

cr ) and the classical 

eigenvalue buckling distributed load (
0c

cr ) to observe the 

buckling load capacity of columns subjected to distributed 
loading [29]. A nearly similar behavior, with a column 
subjected to concentrated loading, is also found in Fig. 4. 
Columns subjected to the distributed loads (i.e., uniformly 
distributed, linearly distributed, and parabolic distributed 
loads) demonstrate a quite similar trend for the decrease 

l

h

b0

0.5l

x

b(x)
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in buckling distributed load at the normalized material 
length scale between 1 and 10. The uniformly distributed 

load ( 0m = ) and the parabolic distribution ( 2m = ) of 
the axially applied force are respectively the most and the 
least buckling distributed load except for the H–H end 
condition, which is the opposite of findings in three 
previous end conditions.  
 

 
 

Fig. 4. Normalized buckling distributed load versus 
normalized material external length scale of uniform 
columns subjected to various distributed loadings. 
 

The effect of the positive dimensionless parameters 
controlling the shape of the parabolic curve on normalized 
distributed buckling loads is also investigated in Fig. 5. For 
all considered distributed loading configurations, the C–F 
and H–H columns respectively demonstrate the least 
prominent size-dependent effect on normalized 

distributed buckling load at  = 0.5  and 2 = . The 
size-dependent effect has a negligible influence on the 
normalized distributed buckling loads of C–H and C–C 

columns with 2 =  compared to those with  = 0.5  
and the case of uniform columns, while the normalized 
material length scales are less than eight. However, the 
results are paradoxical when the normalized material 
length scales exceed eight. The uniform columns are then 
the case wherein size-dependent buckling load has a 
negligible effect on normalized distributed buckling load. 

 

 

(a) Uniformly distributed load 
 

 

(b) Linearly distributed load 
 

 

(c) Parabolic distributed load 
 
Fig. 5. Effect of dimensionless parameter controlling the 
shape of the parabolic curve on normalized buckling 
distributed load of columns subjected to various 
distributed loadings. 
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Table 1. Normalized buckling load of uniform columns subjected to concentrated loading for convergence study. 
 

n  

( ) (128)/nP P  

C–F column H–H column C–H column C–C column 

= 1l  = 10l  = 1l  = 10l  = 1l  = 10l  = 1l  = 10l  

2 1.000786 1.000474 1.006573 1.005558 1.024692 1.012779 1.015662 1.020261 
4 1.000052 1.000015 1.000666 1.000109 1.002332 1.000683 1.008186 1.003032 
8 1.000004 1.000001 1.000045 1.000013 1.000155 1.000041 1.000544 1.000111 
16 1.000001 1.000000 1.000003 1.000001 1.000010 1.000002 1.000035 1.000006 
32 1.000001 1.000000 1.000001 1.000000 1.000001 1.000000 1.000002 1.000000 
64 1.000001 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 
128 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 

 

Table 2. Normalized buckling load of uniform columns subjected to uniformly distributed loading for convergence 
study. 
 

n  

( ) (128 )/n   

C–F column H–H column C–H column C–C column 

= 1l  = 10l  = 1l  = 10l  = 1l  = 10l  = 1l  = 10l  

2 1.004234 1.001779 1.026398 1.016893 1.012962 1.014164 1.041234 1.026724 
4 1.000319 1.000132 1.001334 1.000231 1.006943 1.004085 1.011862 1.007208 
8 1.000021 1.000005 1.000089 1.000025 1.000481 1.000158 1.000855 1.000277 
16 1.000002 1.000000 1.000006 1.000002 1.000031 1.000009 1.000055 1.000017 
32 1.000001 1.000000 1.000001 1.000000 1.000002 1.000001 1.000004 1.000001 
64 1.000001 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 
128 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 

 

Table 3. Normalized buckling load of uniform columns subjected to linearly distributed loading for convergence study. 
 

n  

( ) (128 )/n   

C–F column H–H column C–H column C–C column 

= 1l  = 10l  = 1l  = 10l  = 1l  = 10l  = 1l  = 10l  

2 0.828233 0.815990 0.953317 0.944753 0.885912 0.892710 0.940061 0.939415 
4 0.951953 0.948037 0.980602 0.978759 0.976572 0.978831 0.986873 0.989497 
8 0.987551 0.986539 0.994754 0.994582 0.992795 0.993083 0.995029 0.994945 
16 0.996893 0.996643 0.998677 0.998652 0.998071 0.998208 0.998529 0.998621 
32 0.999259 0.999199 0.999684 0.999678 0.999531 0.999569 0.999634 0.999664 
64 0.999852 0.999840 0.999937 0.999936 0.999906 0.999913 0.999926 0.999932 
128 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 

 

Table 4. Normalized buckling load of uniform columns subjected to 50% of the classical eigenvalue concentrated 
buckling load together with uniformly distributed loading for convergence study. 
 

n  

( ) (128 )/n   

C–F column H–H column C–H column C–C column 

= 1l  = 10l  = 1l  = 10l  = 1l  = 10l  = 1l  = 10l  

2 1.004095 1.001417 1.024679 1.017581 1.040015 1.018394 1.071559 1.060748 
4 1.000274 1.000106 1.001786 1.000290 1.009935 1.003884 1.034669 1.010740 
8 1.000020 1.000005 1.000120 1.000034 1.000664 1.000162 1.002311 1.000391 
16 1.000004 1.000000 1.000008 1.000002 1.000043 1.000009 1.000148 1.000022 
32 1.000003 1.000000 1.000001 1.000000 1.000003 1.000001 1.000010 1.000001 
64 1.000003 1.000000 1.000001 1.000000 1.000001 1.000000 1.000001 1.000000 
128 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 
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Table 5. Normalized buckling load of parabolic columns with  = 2  subjected to concentrated loading for 
convergence study. 
 

n  

( ) (128)/nP P  

C–F column H–H column C–H column C–C column 

= 1l  = 10l  = 1l  = 10l  = 1l  = 10l  = 1l  = 10l  

2 1.325382 1.290219 0.687875 0.710026 0.919501 0.950991 1.167209 1.153105 
4 1.240282 1.221980 0.879768 0.883226 0.993672 1.008412 1.233898 1.233554 
8 1.088680 1.083160 0.966528 0.968035 1.005443 1.012444 1.079631 1.071137 
16 1.025250 1.023823 0.992055 0.992272 1.002786 1.004659 1.021696 1.019305 
32 1.006277 1.005932 0.998164 0.998193 1.000793 1.001243 1.005303 1.004739 
64 1.001271 1.001201 0.999636 0.999641 1.000166 1.000256 1.001068 1.000956 
128 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 

 

Table 6. Normalized buckling load of parabolic columns with  = 2  subjected to uniformly distributed loading for 
convergence study. 
 

n  

( ) (128 )/n   

C–F column H–H column C–H column C–C column 

= 1l  = 10l  = 1l  = 10l  = 1l  = 10l  = 1l  = 10l  

2 1.642382 1.601371 0.762583 0.760758 1.002284 1.063712 1.237752 1.219612 
4 1.362146 1.345820 0.894627 0.880497 1.144030 1.193958 1.259746 1.283034 
8 1.121812 1.117155 0.967127 0.966300 1.057225 1.060017 1.091175 1.083769 
16 1.033621 1.032506 0.992150 0.992177 1.015734 1.015727 1.024252 1.021411 
32 1.008280 1.008020 0.998204 0.998203 1.003829 1.003826 1.005866 1.005185 
64 1.001672 1.001619 0.999646 0.999644 1.000770 1.000770 1.001178 1.001042 
128 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 

 

Table 7. Normalized buckling load of parabolic columns with  = 2  subjected to linearly distributed loading for 
convergence study. 
 

n  

( ) (128 )/n   

C–F column H–H column C–H column C–C column 

= 1l  = 10l  = 1l  = 10l  = 1l  = 10l  = 1l  = 10l  

2 1.559517 1.523849 0.759419 0.753360 0.989054 1.075045 1.231706 1.258016 
4 1.398483 1.385319 0.890533 0.865431 1.188304 1.249844 1.290879 1.310091 
8 1.136392 1.131837 0.962937 0.959729 1.080633 1.085207 1.114011 1.110410 
16 1.037593 1.036498 0.991047 0.990891 1.021659 1.021022 1.029852 1.026499 
32 1.009246 1.008993 0.997965 0.997937 1.005200 1.005030 1.007138 1.006314 
64 1.001866 1.001815 0.999600 0.999594 1.001041 1.001008 1.001428 1.001264 
128 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 

 

Table 8. Normalized buckling load of parabolic columns with  = 2  subjected to 50% of the classical eigenvalue 
concentrated buckling load together with uniformly distributed loading for convergence study. 
 

n  

( ) (128 )/n   

C–F column H–H column C–H column C–C column 

= 1l  = 10l  = 1l  = 10l  = 1l  = 10l  = 1l  = 10l  

2 1.720671 1.664022 0.728798 0.730966 0.977509 1.048686 1.267372 1.241028 
4 1.412261 1.387819 0.883951 0.871003 1.143249 1.197197 1.310373 1.324836 
8 1.139064 1.131831 0.964388 0.963777 1.058381 1.062121 1.107645 1.095595 
16 1.038417 1.036610 0.991504 0.991548 1.016246 1.016466 1.028772 1.024739 
32 1.009465 1.009035 0.998054 0.998054 1.003970 1.004018 1.006977 1.006009 
64 1.001912 1.001824 0.999616 0.999615 1.000799 1.000809 1.001402 1.001208 
128 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 
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3.3. Column Under Combined Concentrated and 
Uniformly Distributed Loads 

 
The diagrams showing the interaction between 

normalized buckling concentrated and normalized 
uniform distributed loads are demonstrated in Fig. 6. This 
interaction is evident from Eq. (11) because the buckling 
concentrated load always has a simple linear relationship 
with the buckling distributed load. This finding also 
indicates that the interaction curves are unaffected by 
boundary conditions, column shapes, and material length 
scale parameters. 
 

 
 

Fig. 6. Interaction diagrams of columns subjected to 
combined concentrated and uniformly distributed loads. 
 

4. Conclusions 
 
This research employs a direct technique based on the 

conventional finite element discretization and the size-
dependent behavior via nonlocal elasticity to capture the 
effects of boundary conditions and material length scale 
parameters on the buckling load of columns. The 
approximate buckling load obtained using finite element 
analysis is compared with the exact solution based on the 
classical eigenvalue buckling load. The following 
conclusions are drawn. 

- The buckling load is significantly reduced for 
concentrated and distributed load scenarios when 
the normalized material length scale is between 1 
and 10. 

- A buckling concentrated load of columns is 
reduced proportionally to the increase in an 
applied buckling uniform distributed load for all 
end conditions and the normalized material 
length scales. The effect is similar to that of 
columns subjected to a prescribed concentrated 
load, which is less than the classical eigenvalue 
concentrated buckling load. 

- An increase in the concavity (or convexity) of 
parabolic columns will impact the concentrated 
and uniformly distributed buckling loads. 
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