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Abstract. The problem of weight functions for an edge crack in semi-infinite bilayer 
materials was revisited. The research aimed to develop the empirical equations for 
geometrical factors for reference SIFs associated with the weight functions, which covered 
a wider range of elastic mismatches. The weight functions in consideration covered the 
cases of a crack tip in a surface layer as well as in a substrate. The direct adjustment 
method was employed to derive the weight function coefficients. The reference SIFs for 
calculating the weight function coefficients were determined by finite element analysis with 
a systematic variation of the crack depth and the elastic mismatch parameters. The 
accuracies of the empirical equations for geometrical factors for the cases of a crack tip in 
coating and substrate were better than 1.3% and 4%, respectively. The weight functions 
were applied to bilayer materials with an edge crack under various crack face loading 
profiles. The SIFs predicted by the weight function method agreed with those from the 
FE method or the literature. 
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1. Introduction 
 
Bilayer materials have been used in diverse 

applications, such as corrosion protective coating [1], 
wear-resistant coating [2], and cold-spray restoration of 
worn or eroded parts in aircraft engines [3], as well as 
improvement of the strength and stiffness of aluminum 
alloy by the cladding of aluminum-based composite [4]. 
Under service loads, failure of the coating or surface 
layer can develop in many forms, such as interface 
delamination, tunneling (internal) crack, and channeling 
(edge) crack [5]. Edge cracking in bilayer materials 
becomes dominant if the tensile stress field presents in 
the surface layer, which may come from the mechanical 
load [4] or thermal load [6]. 

Integrity assessment of a cracked body requires a 
solution for a crack driving force, i.e., the stress intensity 
factor (SIF) or the energy release rate. There are many 
studies concerning the effect of various parameters, such 
as cracking configuration and loading type, on the mode-
I SIF for edge cracking in bilayer material. The cracking 
configurations included edge crack in a surface layer [7-
13], edge crack terminated at an interface [7-9, 13-15], 
and edge crack crossing an interface [7, 10, 11, 13]. The 
applied loadings concerned were a uniform crack face 
pressure [7], uniform tensile stress in a surface layer [9-11, 
14, 15], linear stress distribution in a surface layer [14], 
remote tension [11, 13] and bending [13], and thermal 
transient [8, 12]. However, these SIFs are specific to 
loading type, which means that it is necessary to 
recalculate the SIF if the crack face is under an arbitrarily 
distributed stress. Practical methods to determine the SIF 
for arbitrarily distributed stress are the influence function 
method and the weight function (WF) method [16]. The 
first method, which relies on the superposition principle, 
is easier to implement and provides accurate SIF if a 
polynomial function (typically the fourth order) can 
accurately represent the applied stress profile. While the 
WF method requires much more computational effort, it 
has no restriction on the form of function for expressing 
the stress profile. Moreover, accurate representation of 
the thermal stress profile by a polynomial function is 
inefficient under a thermal (or cold) shock scenario. 
Therefore, the WF approach is more versatile. 

Fett et al. [17] applied the direct adjustment method 
to derive the WFs for a single edge crack in a coating-
substrate system, which covered partially cracked coating 
and partially cracked substrate, respectively. 
Determination of the WF coefficients for partially 
cracked coating used two reference SIFs, which were 1) 
uniform stress applied on the crack face and 2) 
concentrated force applied at the crack mouth, and the 
geometrical property of the crack at its mouth. For a 
crack that penetrated a substrate, the reference SIFs were 
the previous two loading cases and one additional 
loading case that was a concentrated force at the 
interface. Chen et al. applied the WF developed by Fett 
et al. [17] to various problems such as a semi-infinite 
substrate with multiple edge cracks in coating [18] and 

coated cylinder with multiple axial cracks at the inner 
wall [19]. Eventually, they developed an empirical 
equation for the WF of these problems. 

The crack morphology in a bilayer material depends 
on the Dundurs’ elastic mismatch parameters and 
interface toughness [5]. Cracking nucleated in a coating 
may propagate into the substrate [2, 20-24]. Otherwise, it 
may arrest before reaching the interface [25] or deflect 
and propagate along the interface [3, 20, 22, 24]. 
Therefore, the application of WF for the cracking 
beyond the coating is also important.  

This research revisited the problem of WF for a 
single edge crack perpendicular to an interface of an 
elastic isotropic bilayer material originally studied by Fett 
et al. [17]. The form of the WFs and the conditions for 
deriving their coefficients are identical to those in the 
literature. The main objective of this research is to 
develop empirical equations for the reference SIFs based 
on more complete cases of crack depth and a wider range 
of the Dundurs’ elastic mismatch parameters. The 
present equations also included the second Dundurs’ 
parameter since some researchers mentioned its role in 
the SIFs [9, 14, 15], but usually disregarded it due to its 
minor role. The proposed equations covered the cases of 
crack tip in coating and crack tip in the substrate.  
 

2. Problem Description 
 
Figure 1 illustrates the bilayer material in this study. 

The surface layer or coating with a thickness t is bonded 
to a semi-infinite substrate. The interface between two 
materials is abrupt and perfectly bonded. The coating has 

an elastic modulus and Poisson’s ratio of E1 and 1, 

respectively, and those for the substrate are E2 and 2, 
respectively. Both layers are assumed to be homogeneous 
linear-elastic isotropic materials. A single edge crack with 
a depth of a starts from the coating. The crack tip is 
located either in the coating but does not reach the 
interface (Fig. 1(a)) or in the substrate (Fig. 1(b)). The 
state of stress at the crack tip is set as a plane strain. Note 
that the plane strain assumption is suitable for a 
channeling crack having a length (perpendicular to the 
paper) that exceeds a few times the coating thickness [5]. 
Furthermore, the multiple edge cracks can be treated as 
isolated or a single crack when the crack spacing is more 
than 8 times the coating thickness [26]. 
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 (a)  (b) 
Fig. 1. Edge crack in the coating-substrate system: (a) 
crack tip in the coating, (b) crack tip in the substrate. 
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3. Weight Function Derivation 
 
This section presents the derivation of the WFs for 

an edge crack in the bilayer material where the crack tip 
was in either a coating or substrate. Details for deriving 
the WF coefficients were presented briefly since they 
were almost identical to Fett et al. [17]. 

The pure mode-I SIF for a cracked body subjected 
to an arbitrarily normal stress profile can be calculated 
from [27] 

 
I I

0

( ) ( , )
a

K x m x a dx=   (1) 

 

where a is crack depth, (x) is normal stress distribution 
on the crack face (equal to the normal stress acting on 
the crack plane when the body is uncracked), and mI(x,a) 
is the pure mode-I WF. 

A general form of mI(x,a) can be derived by 
substituting the analytical solution of the crack opening 
displacements into the definition of the WF. The derived 
WF is expressed as an infinite series with a singularity at 
the crack tip (i.e., x = a). However, keeping only the first 
3 or 4 terms of the series is usually sufficient to provide 
good accuracy for SIFs determination. For the case of a 
crack tip in coating (Fig. 1(a)), the WF with 4 terms (3 
unknown coefficients) was chosen and could be 
expressed as  
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where M1, M2, and M3 are the WF coefficients. For a 
crack tip in the substrate, i.e., a > t (Fig. 1(b)), Fett et al. 
[17] found that the crack opening displacement shows a 
change in the slope at interface (x = t). As a result, the 
derived WF shows a change in the slope at the interface. 
Therefore, they established the WF for each section of 

the crack separately, i.e., 0  x  t and t < x  a, as 
follows: 
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where N1, N2, N3, and N4 are the WF coefficients. The 
WF for a crack section in the substrate (x > t) has only 
two terms. Therefore, it is suitable for a shallow crack in 
the substrate. For a deep crack (crack depth more than a 
several times the coating thickness), it is necessary to add 
higher-order terms like those in Eq. (2), though the 
determination of coefficients will be more laborious. WF 

for a crack section in the coating (0  x  t) has a similar 
form as Eq. (2) but has fewer terms to simplify 
coefficient determination. In addition, the first 

coefficient (N2) is not set to unity to make the slope of 
the WF at the interface more adaptive. 

Determination of the WFs coefficients Mi (i = 1, 2, 3) 
and Ni (i = 1, 2, 3, 4) requires several references SIFs 
from which the crack face is subjected to a variety of 
simple loading cases such as uniform stress, linearly 
distributed stress, and point force. In some cases, the 
geometrical condition of the crack face profile can be 
used in the coefficient determination process. Once these 
coefficients are known, the WFs can be used to 
determine SIFs under arbitrarily distributed normal stress 

(x) acting on the crack face of the cracked body.  
Three conditions for determining M1, M2, and M3 

consist of two references SIFs for the problems in Fig. 2; 
their SIFs can be written respectively as 
 

 I c cK a F  =   (4) 

and  I ,0 ,0

2
Pc Pc

P
K F

a
=   (5) 

 

where Fc and FPc,0 are the geometrical factors for 
partially cracked coating under uniform stress on the 
crack face, and concentrated force at the crack mouth, 
respectively. Note that the reference SIF for the third 
condition is a crack face curvature of zero at its mouth, 
which is 
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Substituting Eqs. (2), (4), and (5) into Eq. (1) and 
applying the condition in Eq. (6) to Eq. (2) leads to three 
algebraic equations with 3 unknowns, i.e., M1, M2, and 
M3. Solving these equations yields [17] 
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Fig. 2. Reference SIFs for mIc (Eq. (2)). (a) uniform stress 
on the crack face, (b) concentrated force on the crack 
mouth. 
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Determination of N1, N2, N3, and N4 requires four 
conditions. The first three conditions are reference SIFs 
for the problems in Fig. 3, which can be expressed as 
 

 I s sK a F  =   (10) 

 I ,0 ,0

2
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P
K F

a
=   (11) 

and I , ,

2
Ps t Ps t

P
K F

a
=   (12) 

 

where Fs, FPs,0 and FPs,t are the geometrical factors for 
substrate cracking under uniform stress on the crack face, 
concentrated force at the crack mouth, and concentrated 
force at the interface, respectively. The fourth condition 
is each part of the WF in Eq. (3) requiring the same value 
at x = t or satisfying the C0 continuity condition.  

Substituting Eqs. (3), (10) - (12) into Eq. (1) and 
applying the C0 continuity condition leads to a system of 
equations with 4 unknowns, i.e. N1, N2, N3, and N4. 
Solving these equations yield the WF coefficients as 
shown in Eqs. (13) – (16). All coefficients except for N4 
are identical to the results by Fett et al. [17] but are 
expressed in different forms. The coefficient N4 was 
corrected for the misprint in the original work. 
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Fig. 3. Reference SIFs for mIs (Eq. (3)). (a) uniform stress 
on the crack face, (b) concentrated force on the crack 
mouth, (c) concentrated force at the interface. 
 

4. Finite Element Analysis 
 
4.1. Finite Element Model and Post-Processing 

 
The finite element (FE) method was used to 

calculate five reference SIFs for the problems shown in 

Figs. 2 and 3, i.e. KIc, KIPc,0, KIs, KIPs,0, and KIPs,t. These 
SIFs were then used to determine the corresponding 

geometrical factors, Fc, FPc,0, Fs, FPs,0, and FPs,t by Eqs. 
(4), (5), (10) - (12), respectively. The analysis model 
shown in Fig. 4(a) was the upper half of the body due to 
symmetrical geometry and loading. This half-model has a 
width W and height H of 20 times the coating thickness 
to sufficiently represent the semi-infinite substrate. The 
uncracked ligament (i.e., a line from crack tip to point A) 
was restrained in the y-direction. Further, point A was 
restrained in the x-direction. 

The domain was divided into 3 zones as shown in 
Fig. 4(b): internal zone (area 1), transition zone (areas 2 
and 4), and external zone (areas 3, 5, 6). The entire 
domain was discretized by the 8-node quadrilateral 
element. The mesh sizes in the internal, transition and 
external zones were kept below 0.5 mm, 0.5 mm, and 4 
mm respectively. The crack tip was encompassed with 12 
elements of a quarter-point singularity element with a 
size of t/100. Figure 4(c) shows an example of the FE 
mesh created from this setting. The chosen crack-tip 
mesh size was derived from the mesh convergence 

studied for the case of E2/E1 = 1/50, 1 = 0.4, and 2 = 
0.1 as shown in Table 1. The results indicated that a 
crack tip mesh size of t/100 or finer was sufficient.   
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Fig. 4. FE model for edge cracking in the coating-
substrate system. (a) domain of the problem to be 
analyzed by the FE, (b) partitioning of the domain for 
setting mesh size, (c) FE mesh (the numbers shown are 
the area numbers in Fig. 4(b)).  
 
 

Table 1. Effect of crack tip mesh size on the SIFs for an 

edge crack in bilayer material with E2/E1 = 1/50, 1 = 

0.4, and 2 = 0.1. 
 

a/t Crack tip 
mesh size 

SIF 

( MPa mm ) 

Convergence 
rate (%) 

0.1   t/50 2.0680 - 
   t/100 2.0649 0.15 
   t/150 2.0608 0.20 
   t/200 2.0647 0.19 
0.9   t/50 18.247 - 
   t/100 18.222 0.14 
   t/150 18.208 0.08 
   t/200 18.178 0.17 
1.1   t/50 5.3378 - 
   t/100 5.3308 0.13 
   t/150 5.3219 0.17 
   t/200 5.3052 0.31 

 
The FE analysis cases are summarized in Table 2. 

Seven values of an elastic modulus ratio were chosen 
from 50 to 1/50. The Poisson’s ratio of coating and 
substrate varied from 0.1 to 0.4. The relative crack depth 
was divided into 2 groups: from 0.1 to 0.9 for the crack 
tip in the coating, and from 1.1 to 1.5 for the crack tip in 
the substrate. The relative crack depth varied with a step 
of 0.1 for both groups. The total number of analyses is 
3,696 cases. 

For all analysis cases, the coating thickness t was set 
to 10 mm, while the applied stress and applied 
concentrated force were set to 1 MPa and 1 N/mm, 
respectively. Additionally, both coating and substrate 
were assumed to be isotropic linear-elastic material. 

ANSYS Mechanical APDL 2022 R1 was used in the 
FE modeling and analysis. A two-dimensional plane 
strain linear-elastic stress analysis was performed. The 
SIF was extracted from the FE solution by a 
displacement extrapolation method. 

 
Table 2. FE analysis cases. 
 

E2/E1 1 2 a/t 
crack tip 

in 
coating 

crack tip 
in 

substrate 

50, 10, 3, 1, 
1/3, 1/10, 
1/50 

0.1, 0.2, 
0.3, 0.4 

0.1, 0.2, 
0.3, 0.4 

0.1, 0.2, 
…, 0.9 

1.1, 1.2, 
…, 1.5 

 
4.2. Validation of the Finite Element Model 

 
Preliminary FE analyses were carried out to evaluate 

the FE model. The analysis cases covered a/t = 0.6, 0.9, 

1.1, and 1.5, 1 = 2 = 0.3, and all values of E2/E1 listed 
in Table 2. The SIFs of the present analyses were close to 
those in the literature [17]. The maximum difference 
percentage was less than 0.7%, as shown in Fig. 5. 
Therefore, the present FE models were suitable. 



DOI:10.4186/ej.2023.27.3.37 

42 ENGINEERING JOURNAL Volume 27 Issue 3, ISSN 0125-8281 (https://engj.org/) 

 
(a) 

 
(b) 

 
(c) 

 

Fig. 5. Percentage difference between the geometrical 
factors from the present analysis and those from the 
literature [17]. (a) crack face under uniform stress, (b) 
concentrated force at the crack mouth, (c) concentrated 
force at the interface. 
 
4.3. Development of the Empirical Equations for 

the Geometrical Factors 
 
The dimensional analysis by Chen et al. [18] 

suggested that the geometrical factors of the reference 
problems are dependent on the relative crack depth a/t 

and Dundurs’ parameters,  and . These parameters in 
a plane strain condition are defined as: 
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The analysis cases listed in Table 2 are expressed in 

terms of parameters  and  covering −0.97 ≤  ≤ 0.97 

and −0.43 ≤  ≤ 0.43. 
The proposed empirical equations of the geometrical 

factors for the case of crack tip in coating (Eqs. (4) and 
(5)) and those for the crack tip in a substrate (Eqs. (10) – 
(12)) were adapted from the originals proposed by Bueth 
[9], and Chakravarthy et al. [11], respectively. 
Modifications were done to include the effect of the 

mismatch parameter , and to improve the fitting 
accuracy of the equations to the FE results. 

For the crack tip in the coating, i.e. 0.1 ≤ a/t ≤ 0.9, 
the following equations are proposed. 
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For the crack tip in the coating, i.e. 1.1 ≤ a/t ≤ 1.5, 

the following equations are proposed. 
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where A, B, C, D, E, F, G, H, and I are the array of the 
best-fit coefficients obtained from a multivariate 

regression analysis,  = t/a (as defined in Eq. (17)), and s 
is the stress singularity exponent, which is the root of the 
following equation [9].  

 

 
2

2

2
cos( ) 2 (1 ) 0

1 1
s s

   


 

− −
− − + =

− −
  (29) 

 
The procedure for determining the best fit 

coefficients, such as Aijk in Eq. (24), can be described as 
follows. First, calculate the SIFs for the problem in Fig. 

2(a), KIc with the conditions listed in Table 2 by the FE 

method. Next, determine the values of Fc for each KIc 

by Eq. (4). After that, calculate parameters  and  from 

E2/E1, 1 and 2 by Eqs. (22) and (23). Finally, import 

Fc, , , and  into the MathCAD Prime 8 software and 
perform the regression analysis. Tables 3 to 7 list the 
best-fit coefficients obtained. The accuracies of Eqs. (24) 
– (28) compare with the FE results are better than 0.9%, 
1.3%, 1.5%, 2.3%, and 4%, respectively. 
 

 

Table 3. Coefficients of the empirical equation for the geometrical factor Fc (Eq. (24)). 
 

  Aijk 
k i j 

0 1 2 3 

0 0 4.8865 -25.4751 48.8633 -33.2935 
1 -15.2483 94.9360 -215.0581 166.8609 
2 16.1409 -100.7910 309.6607 -299.7752 
3 -35.0998 79.6141 -208.8431 244.6504 
4 32.3761 -54.9130 68.8265 -79.4798 

1 0 -36.5509 200.7467 -361.1774 207.2366 
1 79.6998 -628.2291 1458.1433 -987.8293 
2 -28.0480 523.4710 -2001.0707 1718.5527 
3 81.1248 -190.2061 1205.6737 -1348.9960 
4 -110.2435 124.1796 -313.7367 414.9449 

2 0 24.2550 -128.8949 230.8651 -136.0420 
1 -55.6501 405.5752 -932.7804 655.7398 
2 26.8595 -331.0126 1252.7566 -1141.4175 
3 -81.0580 159.6001 -763.1977 906.7430 
4 96.8566 -130.8647 223.7142 -288.7359 

 
Table 4. Coefficients of the empirical equation for the geometrical factor FPc,0 (Eq. (25)). 
 

i Bi    Cijk 
 k i j 
 0 1 2 3 

0 1.0275  0 0 19.0042 -101.7768 183.5547 -111.7888 
1 -0.0273  1 -56.3407 365.5792 -771.0650 530.1137 
   2 64.1121 -478.6774 1200.3620 -949.6167 
   3 -49.5032 294.4525 -831.4210 764.9828 
   4 29.7273 -95.0480 228.6693 -236.6782 
   1 0 -80.5426 453.7541 -811.2871 446.8636 
   1 172.4072 -1414.5759 3224.2902 -2070.4955 
   2 -71.6850 1377.1876 -4624.9992 3596.6285 
   3 35.5982 -447.0268 2854.1250 -2795.7066 
   4 -80.3586 82.9863 -666.3432 830.2146 
   3 0 54.3746 -316.8078 570.0624 -305.1604 
   1 -85.2698 878.2308 -2159.3524 1384.4429 
   2 -34.6238 -601.5770 2860.0163 -2331.5436 
   3 7.2397 6.3162 -1618.7219 1773.2048 
   4 78.2386 -9.8951 368.7876 -527.2779 
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Table 5. Coefficients of the empirical equation for the geometrical factor Fs (Eq. (26)). 
 

i Di    Eijk 
  k i j 
  0 1 2 

0 10.9567  0 0 4.2422 -103.1045 128.1222 
1 -16.0751  1 4.4829 351.9856 -597.2399 
2 9.6613  2 -82.2304 -362.0835 1022.0642 

   3 121.8876 51.0429 -760.6885 
   4 -51.0440 57.7858 208.2549 
   1 0 -51.1111 220.7396 -181.8729 
   1 215.5994 -1038.1141 926.7782 
   2 -276.9919 1753.4198 -1738.2612 
   3 99.3837 -1253.4351 1428.9510 
   4 16.0106 317.7855 -436.0319 

 
Table 6. Coefficients of the empirical equation for the geometrical factor FPs,0 (Eq. (27)). 
 

i Fi    Gijk 
   k i j 
   0 1 2 

0 6.1290  0 0 -31.4746 47.4532 45.0332 
1 39.3730  1 211.9490 -516.7770 -151.7083 
2 -151.5983  2 -441.5656 1430.8199 116.9440 
3 179.3637  3 368.5585 -1558.7133 56.8419 
4 -70.4549  4 -104.1129 593.3145 -67.7559 

   2 0 -13.2217 65.8405 -81.4684 
   1 10.2444 -204.8346 400.6762 
   2 86.6974 99.9885 -689.7583 
   3 -173.5417 200.7294 493.2629 
   4 89.6570 -162.7823 -121.8989 

 
Table 7. Coefficients of the empirical equation for the geometrical factor FPs,t (Eq. (28)).  
 

i Hi    Iijk 
   k i j 
   0 1 2 

0 84.2572  0 0 99.5929 -509.5828 286.5160 
1 -281.7385  1 -402.7792 2235.0275 -1480.3848 
2 320.0753  2 531.5109 -3554.0392 2814.7186 
3 -99.0316  3 -222.5514 2355.8109 -2344.1899 
4 -22.5653  4 -6.4540 -525.7468 723.8191 
   2 0 -354.6015 1145.4594 -606.5143 
   1 1661.1774 -5983.0802 3429.3230 
   2 -2593.2307 11319.8448 -7051.6559 
   3 1471.2994 -9188.1268 6292.5491 
   4 -171.1898 2696.1879 -2065.6293 

 
4.4. Application of the Weight Functions 
 

This section demonstrates the application of the 
derived WF and the empirical equations for the 
geometrical factors of the reference SIFs to the example 
problems, as shown in Fig. 6. Three cases of stress 
profiles acted on the crack face consisting of uniform 

stress (x) = 1 MPa, linear decreasing stress (x) = [1 – 

(x/a)] MPa, and complementary error function (x) = 
erfc(x/t) MPa, where x is the distance along the crack 

plane measured from the crack mouth. The first problem 
(Fig. 6(a)), and the second problem (Fig. 6(b)) included 
the cases of crack tips in coating and substrate. The third 
problem (Fig. 6(c)), which resembles a thermal shock 
condition [5, 17] was concerned only with the case of 
crack tip in coating and with a/t = 0.8. Table 8 lists the 
chosen elastic mismatch parameters for these problems. 
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Table 8. Values of the elastic mismatch parameters for 
the example problems (Fig. 6). 
 

Case Problems 1 and 2  Problem 3 

     
1 -0.97 -0.43  -0.96 -0.27 
2 -0.79 -0.10  -0.82 -0.23 
3 -0.56 -0.31  -0.50 -0.14 
4 0.08 0.16  0.00 0.00 
5 0.56 0.31  0.50 0.14 
6 0.79 0.10  0.82 0.23 
7 0.97 0.43  0.96 0.27 

 
The SIFs for each stress profile were calculated by 

Eq. (1). The WF used depends on the location of the 
crack tip. For the crack tip in the coating, the WF in Eq. 
(2) was used. Otherwise, Eq. (3) was used. The proposed 
empirical equations for the geometrical factors (i.e., Eqs. 
(24) – (28)) were used to calculate the associated WF 
coefficients. 

Figures 7 and 8 show the plot of the SIFs obtained 
by the WF and FE methods at different relative crack 
depths for problems 1 and 2, respectively. These plots 
illustrated the agreement of the SIFs determined by both 
methods. The distribution of the percentage difference 
for the WF results from the FE results is shown in Fig. 

9(a) and 9(b) for problems 1 and 2, respectively. The 
percentage difference for the first problem was mostly 
within ±1%, whereas the difference mostly lied within -
3% to 1% for the second problem. For the third 
problem, the present SIFs by WF and FE results from 
the literature [17] are shown in Table 9. The percentage 
difference in the table indicated the agreement between 
both methods. 
 
Table 9. SIFs for the edge crack in bilayer material 
subjected to complementary error function stress profile 
on the crack face (problem 3) by the WF and FE 
methods. 
 

Case SIF ( MPa mm ) % Difference 

WF FE [17]  
1 1.7876 1.7988 -0.61 
2 1.9268 1.9331 -0.34 
3 2.2670 − − 
4 2.9433 2.9338 0.32 
5 4.0851 − − 
6 5.7827 5.7532 0.51 
7 8.4172 8.4448 -0.33 

  

 

 
 

Fig. 7. SIFs for the edge crack in bilayer material subjected to uniform stress profile on the crack face (problem 1) by 
the WF and FE methods. 
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Fig. 8. SIFs for the edge crack in bilayer material subjected to linear decreasing stress profile on the crack face 
(problem 2) by the WF and FE methods. 
 

 
(a) 

 
(b) 

 
Fig. 9. Histogram of the percentage difference in the 
prediction of SIFs by the WF method from those 
calculated by the FE method. (a) Problem 1, (b) Problem 
2. 

5. Discussion 
 

It has already been shown that the SIFs determined 
by the WF method were reasonably accurate. It is useful 
to suggest a further application of the derived WFs and 
the associated empirical equations for the geometrical 
factors, such as the problem of fatigue crack growth 
(FCG) life prediction in residual stress field. In this 
problem, the WF is used to calculate the SIF due to the 
residual stress and then combined with the SIF due to 
the applied load to determine the effective SIF range, 
which is a governing parameter of the FCG rate. The 
FCG life can be calculated by integrating the inverse of 
the FCG rate equation from an initial crack size to a final 
crack size. The details of employing the WF in FCG life 
prediction in a residual stress field can be found in the 
literature (e.g. [28]). However, the present study did not 
cover the relative crack depth between 0.9 < a/t < 1.1. 
The analysis of the FCG life for a crack that grows from 
a coating surface to some distance in the substrate must 
be separated into 2 intervals: the first interval from an 
initiation depth to a/t = 0.9 and the second interval from 
a/t = 1.1 to a final depth. This approximation yields a 
conservative FCG life since the FCG life from a/t = 0.9 
to 1.1 was omitted. Future works on the development of 
the small-scale-yielding or elastic-plastic crack tip 
parameters might be beneficial. 
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6. Conclusions 
 

The problem of weight functions (WFs) for edge 
cracking in linear elastic isotropic bilayer material was 
revisited. The direct adjustment method was employed in 
the derivation of the WF coefficients as done by Fett et 
al. [17]. The study included the WFs for partially cracked 
coating and partially cracked substrate. One of the WF 
coefficients in the literature was corrected. The reference 
SIFs for calculation of the WF coefficients were 
determined using linear-elastic FE analysis in plane 
strain. The analysis cases systematically varied the relative 
crack depth from 0.1 to 0.9 and 1.1 to 1.5. The elastic 
mismatch parameters were also systematically varied 

from the Dundurs’ parameters from  = −0.97 to 0.97 

and  = −0.43 to 0.43, which almost completed their 

theoretical ranges (i.e.,  = ±1 and  = ±0.5). The 
empirical equations for the geometrical factors for the 
associated reference SIFs were proposed. Accuracies of 
the empirical equations as compared with the FE results 
for the cases of crack tip in coating and substrate were 
better than 1.3% and 4%, respectively. The WFs were 
applied to the bilayer material with edge crack under 
different crack face loadings, i.e., the uniform stress 
profile, linear decreasing stress profile, and 
complementary error function profile. The SIFs 
calculated by the WF method conformed to those 
determined by the FE method or from the literature. 
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