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Abstract. This paper considers the input-output stability of a control system that is composed of
a linear time-invariant multivariable system interconnecting with multiple decoupled time-invariant
memoryless nonlinearities. The objectives of the paper are twofold. First and foremost, we prove
(under certain assumptions) that if the multivariable Popov criterion is satisfied, then the system outputs
and the nonlinearity inputs are bounded for any exogeneous input having bounded magnitude and
bounded slope, and for all the nonlinearities lying in given sector bounds. As a consequence of using the
convolution algebra, the obtained result is valid for rational and nonrational transfer functions. Second,
for the case in which the transfer functions associated with the Popov criterion are rational functions, we
develop a useful inequality for stabilizing the system by numerical methods. This is achieved by means
of the positive real lemma and known results on linear matrix inequalities. To illustrate the usefulness
of the inequality, a numerical example is provided.
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1. Introduction

One of the main objectives in control systems de-
sign is to ensure that the outputs (or responses) always
stay within their prescribed bounds for all inputs that
happen or are likely to happen in practice ([1, 2]). For
the purpose of design, such inputs are often modelled
as time-functions that are restricted in magnitude and
slope. During the design procedure, designers have to
make sure that the outputs must be bounded for all the
inputs, which gives rise to the need for input-output sta-
bility investigation. For detailed discussion, see [3, 1, 2].

In this paper, we investigate the input-output stabil-
ity of a general control system that is an interconnection
of linear time-invariant (LTI) subsystems and multiple
decoupled sector-bounded nonlinearities in connection
with the input set

F∞ ≜ {f : f ∈ L∞ and ḟ ∈ L∞}. (1)

The system is depicted in Fig. 1 where p ∈ RN is
a vector of design parameters, Ψ ≜ [ψ1, ψ2, . . . , ψn]

T

is the vector of sector-bounded nonlinearities, z ≜
[z1, z2, . . . , zm]T is the vector of outputs of interest, v ≜
[v1, v2, . . . , vn]

T is the vector of the nonlinearity out-
puts, u ≜ [u1, u2, . . . , un]

T is the vectors of the nonlin-
earity inputs, f denotes an exogenous input that belongs
to the set F∞. As usual, for a function x : R+ → R,
∥x∥∞ ≜ supt≥0 |x(t)| and L∞ ≜ {x : ∥x∥∞ <∞}.

A noteworthy feature of the set F∞ is that when
positive boundsM and D are specified, the set

F ≜ {f ∈ F∞ : ∥f∥∞ ≤M and ∥ḟ∥∞ ≤ D} (2)

is suitable for characterizing inputs that vary persis-
tently for all time, called persistent inputs. When all in-
puts are persistent and do not have stepwise discontinu-
ities, using F makes the formulation more realistic and
more appropriate than using L∞; see [3, 1, 2] for details.
For different characterizations of the input set and their
implications, readers are referred to, e.g., [3, 1, 2, 4, 5].

Fig. 1. General configuration for nonlinear control
systems considered in the paper.

It may be noted that in connection with the input
set F , many researchers (e.g., [6, 7, 3, 1, 2, 8, 9, 10, 5]
and also the references therein) have been prompted
to develop design methods for linear control systems

so that the outputs of interest stay within the bounds
for all inputs belonging to the set F . The methods
have been applied to solve practical applications (e.g.,
[11, 12, 13, 14, 15]).

As a special case of this work, the input-output sta-
bility property of the unity feedback control system
shown in Fig. 2 where G(s) is a strictly proper stable
transfer function and ψ is a sector-bounded nonlinearity
has been investigated by [16, 17, 18] in connection with
the set F∞. It has been shown ([16, 17]) that the sat-
isfaction of the well-known Popov criterion (e.g., [19])
implies that the outputs v1 and v2 are bounded for all
f ∈ F∞ and for any nonlinearity ψ lying in a sector
bound. It should be noted however that in the origi-
nal work, the Popov criterion has been used for inves-
tigating the asymptotic stability property of nonlinear
systems.

It may be noted further that for another input set

F2 ≜ {f : f ∈ L2 and ḟ ∈ L2} (3)

where L2 ≜ {x :
∫∞
0 |x(t)|2dt < ∞}, Desoer [20]

proves that if the Popov criterion is satisfied, then the
outputs v1 and v2 of the system in Fig. 2 are bounded
for any f ∈ F2 and for any ψ lying in a sector bound.
The extension of this result to the case of multiple non-
linearities is given in [21] and can be obtained by using
the passivity properties.

Fig. 2. Feedback control system with a nonlinearity.
The objectives of this paper are twofold. First and

foremost, we prove that for the control system in Fig. 1,
the satisfaction of the multivariable Popov criterion im-
plies that the output vector z and the nonlinearity input
vector u are bounded for any input f ∈ F∞, which
is a generalization of the stability result presented in
[17]. This result hold for the case in which the LTI
subsystems can be either rational or nonrational trans-
fer functions. Second, for the case in which the LTI
subsystems are rational transfer functions, we develop a
condition for ensuring the input-output stability of the
system in the form of a readily computable inequality;
this is achieved by means of the positive real lemma and
known results on linear matrix inequalities. As a con-
sequence, such a condition provides a practical inequal-
ity for determining a stabilizing controller by numerical
methods.

The organization of the article is as follows. Sec-
tion 2 provides a detailed description of the system in
Fig. 1. Section 3 presents the mathematical results on
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the stability of the system in Fig. 1, which is the main
contribution of this work. Based on the obtained stabil-
ity results, Section 4 develops a practical inequality that
is suitable for numerical stabilization. To illustrate the
usefulness of the obtained inequality, a stabilizing con-
troller for a system with two nonlinearities is designed
in Section 5. Finally, conclusions are given in Section 6.

2. System Description

Suppose that the LTI subsystems are represented by
a transfer matrixG(s,p) described by

G(s,p) =

[
Gzf (s,p) Gzv(s,p)
Guf (s,p) Guv(s,p)

]
,

where Gzf (s,p) ≜ [Gzif (s,p)]m×1, Gzv(s,p) ≜
[Gzivj (s,p)]m×n, Guf (s,p) ≜ [Guif (s,p)]n×1,
Guv(s,p) ≜ [Guivj (s,p)]n×n. Then the mathematical
model of the system in Fig. 1 is described by

zi = gzif ∗ f +

n∑
j=1

(gzivj ∗ vj), i = 1, 2, . . . ,m

ui = guif ∗ f +
n∑

j=1

(guivj ∗ vj)

vi = ψi(ui)

 , i = 1, 2, . . . , n

(4)
where gzif , gzivj , guif and guivj denote the in-
verse Laplace transforms of Gzif (s,p), Gzivj (s,p),
Guif (s,p), and Guivj (s,p), respectively. As usual the
symbol ∗ denotes the convolution; i.e., for x : R+ → R
and y : R+ → R,

(x ∗ y)(t) =
∫ t

0
x(t− τ)y(τ)dτ, t > 0.

The definition of sector condition is introduced as
follows. For i = 1, 2, . . . , n, the nonlinearity ψi ∈
sector[0, ki] if

ψi(0) = 0 and 0 ≤ ψi(σ)

σ
≤ ki ∀σ ̸= 0. (5)

See Fig. 3 for the graphical description.

Fig. 3. Nonlinearity ψi ∈ sector[0, ki].

Assumption 1. The nonlinearities ψi : R → R (i =
1, 2, . . . , n) are functions that are piecewise continuous and
time-invariant and satisfy conditions (5).

Assumption 2. The linear part of the system (4) is a time-
invariant and non-anticipative system with zero initial
conditions.

In order to make this paper’s contribution applica-
ble to the case of rational and non-rational transfer func-
tions, the following notation is useful. LetA denote the
convolution algebra whose elements take the form

g(t) =

 ga(t) +

∞∑
i=0

giδ(t− ti), t ≥ 0

0, t < 0

(6)

where δ(·) is the Dirac delta function, 0 = t0 < t1 <
t2 < · · · are constants,∫ ∞

0
|ga(t)| <∞ and

∞∑
i=0

|gi| <∞.

Note that all elements of A are the impulse responses
of bounded-input bounded-output (BIBO) stable trans-
fer functions. For the details on the algebra A, see, e.g.,
[21].

Assumption 3. For i = 1, 2, . . . ,m, gzif ∈ A. For
i = 1, 2, . . . ,m and j = 1, 2, . . . , n, gzivj ∈ A. For
i = 1, 2, . . . , n, guif ∈ A. For i, j = 1, 2 . . . , n,
guivj ∈ A, ġuivj ∈ A and there exists a sufficiently small
α > 0 such that∫ ∞

0
e2αtg2uivj (t)dt <∞. (7)

3. Stability Conditions

This section derives the main theoretical result of
the article. The result is presented in Theorem 3.5, pro-
viding a stability condition for the system (4) in connec-
tion with the set F∞.

Define the space L∞
n ≜ L∞ × L∞ . . .× L∞︸ ︷︷ ︸

n

. The

definitions of input-output stability used in the paper
are given as follows.

Definition 3.1. The system (4) is said to be input-output
stable if z ∈ L∞

m and u ∈ L∞
n for any f ∈ F∞.

Definition 3.2. The system (4) is said to be absolutely
input-output stable if it is input-output stable for all ψi ∈
sector[0, ki] (i = 1, 2, . . . , n).

The following two lemmas are used to prove Theo-
rem 3.5. Lemma 3.3 is a generalization of a well-known
lemma given in [19] whereas Lemma 3.4 is a generaliza-
tion of the main lemma given in [17].
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Lemma 3.3. Let yi, wi, xi ∈ L2 for i = 1, 2, . . . , n. De-
fine

Y(jω) ≜
[
Y1(jω), Y2(jω), . . . , Yn(jω)

]T
,

W(jω) ≜
[
W1(jω),W2(jω), . . . ,Wn(jω)

]T
,

X(jω) ≜
[
X1(jω), X2(jω), . . . , Xn(jω)

]T
where Yi(jω),Wi(jω) and Xi(jω) denote the Fourier
transforms of yi, wi and xi, respectively. If

Y(jω) = H(jω)X(jω) +W(jω) (8)

where

H(jω) +H∗(jω)

2
≥ δI > 0, ∀ω ≥ 0, (9)

then
n∑

i=1

∫ ∞

0
yi(t)xi(t)dt+

1

4δ

n∑
i=1

∫ ∞

0
w2
i (t)dt ≥ 0.

Proof. See Appendix A.

Define

H(s,p) ≜ −(I + sQ)Guv(s,p) +K (10)

where Q ≜ diag(q1, q2, . . . , qn) with qi ∈ R for all i,
and K ≜ diag (1/k1, 1/k2, . . . , 1/kn) with ki > 0 for
all i. Also, define

ri ≜ guif ∗ f, i = 1, 2, . . . , n. (11)

Lemma 3.4. Consider the system (4) and let Assumptions
1–3 hold. Let f ∈ F∞ and let ψi ∈ sector[ε, ki − ε] for
all i where ε > 0 is arbitrarily small. If there exist β > 0
and qi ∈ R (i = 1, 2, . . . , n) satisfying

H(jω) +H∗(jω)

2
≥ βI, ∀ω ≥ 0, (12)

then the following inequality holds for all t ≥ 0.

n∑
i=1

∫ t

0
e2αtv2i (τ)dτ ≤

n∑
i=1

∫ t

0

e2ατ

β2
[ri(τ) + qiṙi(τ)]

2dτ

+

n∑
i=1

2qi
β

∫ ui(0)

0
ψi(ui)dui.

Proof. See Appendix A.

We are now ready to state the main result of the pa-
per.

Theorem 3.5. Consider the system (4) where ki (i =
1, 2, . . . , n) are given, and let Assumptions 1–3 hold. Then
the system (4) is absolutely input-output stable if there ex-
ist β > 0 and qi ∈ R (i = 1, 2, . . . , n) such that (12) is
satisfied.

Proof. According to [19] and [17], Theorem 3.5 will be
proved for the nonlinearity ψi in the reduced sector
[ε, ki − ε] (i = 1, 2, . . . , n) where ε > 0 is arbitrarily
small.

From (4) and (11), it follows that for each i,

ui(t) = ri(t) +

n∑
j=1

∫ t

0
guivj (t− τ)vj(t)dτ. (13)

After introducing the factors e−α(t−τ) and −e−α(t−τ)

in (13) and applying the triangular and Cauchy-Schwarz
inequalities, we have

|ui(t)| ≤ |ri(t)|+
n∑

j=1

[(∫ t

0
e2αλg2uivj (λ)dλ

)1/2

· e−αt
(∫ t

0 e
2ατv2j (τ)dτ

)1/2
]
.

(14)
By using Lemma 3.4, condition (12) implies that the fol-
lowing inequality holds for a sufficiently small α > 0.

n∑
j=1

∫ ∞

0
e2αtv2j (τ)dτ ≤

n∑
j=1

∫ t

0

e2ατ

β2

(
rj(τ) + qj ṙj(τ)

)2
dτ

+

n∑
j=1

2qj
β

∫ uj(0)

0
ψj(uj)duj , ∀ t ≥ 0.

(15)

Since
∫∞
0 e2αtv2i (τ)dτ ≤

∑n
j=1

∫∞
0 e2αtv2j (τ)dτ for

each i, it follows from (14) and (15) that
|ui(t)| ≤ |ri(t)|

+

n∑
j=1

[(∫ t

0
e2αλg2uivj (λ)dλ

)1/2

·
(

1

β2

n∑
k=1

∫ t

0
e−2α(t−τ)

(
rk(τ) + qṙk(τ)

)2
dτ

+
n∑

k=1

2qk
β
e−2αt

∫ uk(0)

0
ψk(uk)duk

)1/2]
.

(16)
Let f ∈ F∞. Then it follows from (11) that for each i,
the condition guif ∈ A implies that ri ∈ F∞. By using
(7), we see that for each i, the right-hand side of (16) is
finite for all t ≥ 0. Thus, u ∈ L∞

n for any f ∈ F∞.
By the continuity of Ψ, u ∈ L∞

n implies v ∈ L∞
n .

Hence, it follows from (4) that the conditions gzif ∈ A
for all i and gzivj ∈ A for all i, j imply that z ∈ L∞

m

for any f ∈ F∞. Therefore, the proof is complete by
Definition 3.2.
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When the system (4) has only one sector-bounded
nonlinearity (that is, n = 1), condition (12) becomes

−Re(1+jωq)Guv(jω,p)+
1

k
≥ β > 0 ∀ω ≥ 0, (17)

which is the well-known Popov criterion. Evidently,
condition (12) can be seen as a multivariable version of
(17).

The criterion (17) results in a useful graphical test
for the absolute input-output stability of control sys-
tems with one sector-bounded nonlinearity. Further,
based on (17), Mai, Arunsawatwong and Abed [22] de-
velop a procedure for numerical stabilization (that is to
say, determining, by using numerical methods, a vec-
tor p ∈ RN for which the system is absolutely input-
output stable). By contrast, when the system has mul-
tiple sector-bounded nonlinearities, the absolute input-
output stability test for the system (4) with the crite-
rion (12) in general becomes more complicated. Fur-
thermore, we find it difficult to develop a procedure for
numerical stabilization by direct use of (12).

4. Numerical Stabilization

In this section, attention is restricted only to the case
in which all elements of the transfer matrix Guv(s,p)
are rational functions. Then, by using Theorem 3.5, we
develop a useful inequality that can be used to compute
a design parameter vector p ∈ RN for which the sys-
tem (4) is absolutely input-output stable. To this end,
we make the following assumption.

Assumption 4. The transfer functions Guivj (s,p) are
strictly proper rational functions for all i, j = 1, 2, . . . , n.

The key tool to be used here is the positive real
lemma ([23, 24]), which is stated as follows.

Lemma 4.1 ([23, 24]). LetX(s) be an n×n transfer ma-
trix with a state space realization

X(s) ∼
[
AX BX

CX DX

]
.

Then
X(jω) +X∗(jω) > 0, ∀ω ∈ R (18)

if and only if there exists P = P T such that[
AT

XP + PAX PBX − CT
X

BT
XP − CX −DX −DT

X

]
< 0. (19)

In connection with Assumption 4, let a state space
realization ofGuv(s,p) be given by

Guv(s,p) ∼
[
A B

C 0

]
. (20)

Then it follows immediately from (10) that a state space
realization of the transfer matrixH(s,p) is given by

H(s,p) ∼
[

A B

−C −QCA −QCB +K

]
.

By applying Lemma 4.1 to the transfer matrix
H(s,p), it is easy to see that for any qi ∈ R (i =
1, 2, . . . , n), there exists β > 0 such that criterion (12) is
satisfied if and only if there exists P = P T such that

L < 0, (21)

L ≜
[

ATP + PA PB + CT +ATCTQ
BTP + C +QCA QCB +BTCTQ− 2K

]
.

Now consider the following LMI problem:

min λ
subject to L < λI

(22)

where P = P T and Q are the optimization variables.
Let λ∗ denote the minimum value of λ in problem (22).
Thus it readily follows that there exists P = P T and Q
satisfying (21) if and only if

λ∗ < 0. (23)

Hence, the above discussion is formally stated as fol-
lows.

Proposition 4.2. Consider the system (4) where ki (i =
1, 2, . . . , n) are given, and let Assumptions 1–4 hold. Let a
state space realization ofGuv(s,p) be given by (20). Then
the system (4) is absolutely input-output stable if inequality
(23) is satisfied.

Proof. The proof readily follows from Theorem 3.5 and
the above discussion.

Problem (22), which is called the generalized eigen-
value minimization problem, can be solved efficiently
by using convex optimization methods. Consequently,
the number λ∗ is readily obtainable in practice and in-
equality (23) is more computationally tractable than the
multivariable Popov criterion (12). In this work, the
LMI Control Toolbox for MATLAB ([25]) is employed.

In connection with the system (4), it is easy to see
that λ∗ is a function of p. Since λ∗(p) is finite for all
p ∈ RN , it follows that inequality (23) is suitable for
solution by numerical methods ([26]). In order to use
inequality (23) in conjunction with the method of in-
equalities ([27, 2]), we replace (23) with the following
inequality

λ∗(p) ≤ −ε0, 0 < ε0 ≪ 1 (24)

where ε0 is specified by designers. With any vector p
that satisfies inequality (24), the system (4) is guaranteed
to be absolutely input-output stable.
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In practice, a solution p of inequality (24) can be ob-
tained by employing a numerical algorithm to search in
the space RN . In this work, a search algorithm called
the moving-boundaries-process (MBP) is used because it
is simple to implement and still effective. See [2, 27]
for the detail of the MBP algorithm. It may be noted
that other algorithms for solving inequalities may also
be used. For further details, see Chapters 7 and 8 of [2]
and the references therein.

It is worth noting at this point that searching for a
solution of inequality (24) in the space of design param-
eter vector p is in general a non-convex problem. As a
result, the algorithm could sometimes be hindered by a
computational trap. However, as long as a solution ex-
ists, this can be easily overcome in practice, for example,
by changing a new starting point which is sufficiently
far away from the trap or by temporarily relaxing the
bound −ε0 so that the algorithm can escape from the
trap. More detailed discussion on this can be found in
[2].

As will be demonstrated in Section 5, with an appro-
priate controller structure, a solution of (24) is usually
not difficult to obtain although the convergence of nu-
merical search algorithms depends on starting points.

5. Numerical Example

In this section, we consider the control system
shown in Fig. 4 where f ≜ [f1, f2]

T is the input vec-
tor, Gp(s) is the plant transfer matrix, Ψ is a nonlin-
earity vector, and Gc(s,p) is the controller transfer
matrix. Also, e ≜ [e1, e2]

T , ur ≜ [ur1, ur2]
T , and

ur ≜ [us1, us2]
T are the error vector, control vector,

and plant input vector, respectively.
In the following, a plant model taken from [28] will

be used whereGp(s) is

Gp(s) =


s2 − 0.2s− 0.1

s3 + 2s2 + s+ 1

− 0.1s2 − 1.2s+ 0.1

s3 + 2s2 + s+ 1

0.1s2 − 0.3s− 1

s3 + 2s2 + s+ 1

− s2 − 2.1s− 0.7

s3 + 2s2 + s+ 1

 .
For the purpose of illustration, let the nonlinearity Ψ
be described by

Ψ(u) = [ψ1(u1), ψ2(u2)]
T

where ψ1 and ψ2 are dead-zone functions shown in
Fig. 5 with the parameters

m1 = m2 = 1 and a1 = a2 = 0.2.

Obviously, the functions ψ1 and ψ2 satisfy Assump-
tion 1 where ψ1, ψ2 ∈ sector[0, 1]. Further, let f1 be
an input with bounded magnitude and bounded slope
and, for simplicity, let f2 = 0.

Fig. 4. Nonlinear control system.

Fig. 5. Dead-zone characteristic of ψi.

It is easy to see that the system in Fig. 4 can be repre-
sented as the one in Fig. 1 where f = f1, z = e, u = ur,
v = us. The transfer matricesGzf (s),Gzv(s),Guf (s)
andGuv(s) are as follows.

Gzf (s) = [1, 0]T ,

Gzv(s) = −Gp(s),

Guf (s,p) = Gc(s,p),

Guv(s,p) = −Gc(s,p)Gp(s).

For the case ofGc(s,p) = I , it is easy to verify that
Assumption 3 is satisfied so that Proposition 4.2 can be
used. By solving (22), we have λ∗ = 0.286; in this case,
the absolute input-output stability of the system cannot
be guaranteed by Proposition 4.2. To investigate the sys-
tem stability for the dead-zone functions, a numerical
simulation is carried out where the system is subjected
to the test input f∗1 ∈ F∞, shown in Fig. 6. The graphs
of z1, z2, u1, u2 in response to f∗1 are given in Fig. 7.
Clearly, all the responses blow up and hence the system
is not absolutely input-output stable.
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Fig. 6. Waveform of the test input f∗1 where ∥f∗∥∞ = 10 and ∥ḟ∥∞ = 100.

Fig. 7. System responses corresponding to f∗1 for the
case in whichGc(s,p) = I .

Now, we will determine a controller (compensator)
Gc(s,p) so that the system is absolutely input-output
stable. To this end, let the controllerGc(s,p) be of the
form

Gc(s,p) =

p1 0

0
p2(s+ p3)

s+ p4

 (25)

where p ≜ [p1, p2, p3, p4]
T satisfies the constraints

pi > 0, i = 1, 2, 3, 4. (26)

It is easy to verify that for the systemwith the controller
structure described by (25) and (26), Assumptions 2–4
are always satisfied. Therefore, it follows from Proposi-
tion 4.2 that a stabilizing solution p is obtained by solv-
ing the inequality

λ∗(p) ≤ −10−6 (27)

together with inequalities (26).
The numerical results with four different starting

points p0 are given below where the superscripts I–IV
indicate the case numbers; their summary is in Table 1.

Case I. A starting point pI
0 = [1, 1, 0, 0]T is used, re-

sulting in Gc(s,p
I
0) = I . After 200 iterations,

the MBP algorithm yields a point pI where

pI = [0.327, 0.765, 0.0916, 0.0916]T ,

Gc(s,p
I) =

[
0.327 0
0 0.765

]
(28)

and
λ∗(pI) = 0.128. (29)

In this case, the MBP algorithm becomes trapped
and fails to converge to a solution of inequality
(27). Since the vector pI does not satisfy (27), the
absolute input-output stability of the system can-
not be guaranteed by Proposition 4.2.

Case II. A starting point pII
0 is chosen by setting pII

0 =
[pI1, p

I
2, p

I
3, 1]

T where pI1, pI2 and pI3 are the first,
the second, and the third elements of pI. In this
case, the algorithm locates a solution pII of in-
equality (27) in 13 iterations where

pII = [0.164, 0.612, 0.0870, 2.30]T ,

Gc(s,p
II) =

0.164 0

0
0.612(s+ 0.0870)

s+ 2.30


(30)

and
λ∗(pII) = −1.94× 10−2. (31)

Case III. From a starting point pIII
0 = [1, 2, 3, 2]T , the

algorithm locates a solution pIII of inequality (27)
in 25 iterations where

pIII = [0.613, 2.05, 2.51, 74.8]T ,

Gc(s,p
III) =

0.613 0

0
2.05(s+ 2.51)

s+ 74.8

 (32)

and
λ∗(pIII) = −1.73× 10−3. (33)

Case IV. From a starting pointpIV
0 = [0.01, 10, 20, 200]T ,

the algorithm locates a solution pIV of inequality
(27) in 48 iterations where

pIV = [0.0236, 21.3, 1.27, 223]T ,
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case starting point p0 λ∗(p0) stabilizing solution p number of λ∗(p)

iterations
I [1, 1, 0, 0]T 0.286 [0.327, 0.765, 0.0916, 0.0916]T 200 0.128

II [0.327, 0.765, 0.0916, 1]T 0.300 [0.164, 0.612, 0.0870, 2.30]T 13 −0.0194

III [1, 2, 3, 2]T 0.0893 [0.613, 2.05, 2.51, 74.8]T 25 −1.73× 10−3

IV [0.01, 10, 20, 200]T 0.0716 [0.0236, 21.3, 1.27, 223]T 48 −0.0316

Table 1. Stabilizing solutions from different starting points.

Gc(s,p
IV) =

0.613 0

0
2.05(s+ 2.51)

s+ 74.8

 (34)

and

λ∗(pIV) = −3.16× 10−2. (35)

To verify the results for Cases I–IV, simulations are
carried out with the controllers (28), (30), (32) and (34)
for the test input f∗1 as before. The corresponding sys-
tem responses due to f∗1 for Cases I-IV are displayed in
Figs. 8–11, respectively.

From Fig. 8, one can see that with the controller (28)
obtained in Case I, the system responses blow up and
hence the system is not absolutely input-output stable.
In Cases II–IV, the MBP algorithm locates solution of
inequality (27) quickly. From Figs. 9–11, it can be seen
that with the controllers (30), (32) and (34), the system
responses are bounded, which agrees with the stability
result given by Proposition 4.2.

Fig. 8. System responses corresponding to f∗1 with the
controller (28).

Fig. 9. System responses corresponding to f∗1 with the
controller (30).

Fig. 10. System responses corresponding to f∗1 with
the controller (32).
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Fig. 11. System responses corresponding to f∗1 with
the controller (34).

6. Conclusions

In this paper, we consider the nonlinear system (4)
and present the main theoretical result in Theorem 3.5.
The result states that if the transfer matrix Guv(s,p)
is both strictly proper and BIBO stable, then the sat-
isfaction of the multivariable Popov criterion (12) im-
plies that the system (4) is absolutely input-output sta-
ble. This is in fact an extension of the result in [17] to
the case of multiple decoupled nonlinearities. By virtue
of using the convolution algebra, the result in Theo-
rem 3.5 is valid for rational and non-rational transfer
functions as long as Assumption 3 holds. Therefore,
the result is applicable to the system (4) whose LTI sub-
sytems consist of lumped- and/or distributed-parameter
components.

Following the well-known positive real lemma ([23,
24]), the criterion (12) is known to be equivalent to a lin-
ear matrix inequality (LMI) for the case in which all ele-
ments of Guv(s,p) are strictly proper rational transfer
functions. As a consequence, the stability test for this
case can be carried out efficiently in practice by avail-
able computational tools. Further, based on the LMI,
we develop a useful inequality for stabilizing the sys-
tem by numerical methods. In conjunction with the
method of inequalities, such an inequality leads to a nu-
merical procedure for stabilizing the nonlinear system.
In the numerical example, we demonstrate how to uti-
lize the inequality in determining a controller for which
the control system with two nonlinearities is absolutely
input-output stable.

Although the determination of a numerical solution
of inequality (24) in the space of design parameter vec-

tor p is in general a non-convex problem, an advantage
of this approach is that, as long as a solution of the in-
equality exists, designers can specify any suitable (or im-
plementable) controller structure.

One can see from Proposition 4.2 that inequality
(24) is valid only when all elements ofGuv(s,p) are ra-
tional transfer functions. Regarding this limitation, it
is interesting to derive an equivalent condition for the
satisfaction of the criterion (12) that is suitable for nu-
merical stabilization for the case in which the elements
ofGuv(s,p) are non-rational transfer functions such as
transfer functions of delay differential systems.
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Appendix A. Proof of Lemmas 3.3 and 3.4

Proof of Lemma 3.3. Define

I =

n∑
i=1

∫ ∞

0
yi(t)xi(t)dt.

By applying Parseval’s theorem to equation (8), we have

I =
1

2π

∫ ∞

−∞

[
X∗(jω)H∗(jω)X(jω)

+W∗(jω)X(jω)
]
dω.

(36)

Since I ∈ R, it follow from (36) that

I =
1

4π

∫ ∞

−∞

[
X∗(jω)

(
H(jω) +H∗(jω)

)
X(jω)

+W∗(jω)X(jω) +W(jω)X∗(jω)
]
dω.

(37)
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By using condition (9), it follows from (37) that

I ≥ 1

4π

∫ ∞

0

[
2δX∗(jω)X(jω)

+W∗(jω)X(jω) +W(jω)X∗(jω)
]
dω

=
1

4π

n∑
i=1

∫ ∞

−∞

∣∣∣∣√2δXi(jω) +
Wi(jω)√

2δ

∣∣∣∣2 dω
− 1

8πδ

n∑
i=1

∫ ∞

−∞
|Wi(jω)|2dω.

(38)

Since the first integral of (38) is nonegative, we have

I ≥ − 1

8πδ

n∑
i=1

∫ ∞

−∞
|Wi(jω)|2dω

= − 1

4δ

n∑
i=1

∫ ∞

0
|wi(t)|2dt.

Hence, the proof is complete. □
The following notation will be used in the proof of

Lemma 3.4. For a function x : R+ → R and for any
T > 0, define the truncated function xT as follows:

xT (t) ≜
{
x(t), 0 ≤ t ≤ T
0, t > T

Proof of Lemma 3.4. From (4) and (11), it follows that
for each i,

ui(t) = ri(t) +
n∑

j=1

∫ t

0
guivj (t− τ)vj(τ)dτ. (39)

Differentiating both sides of (39) yields

u̇i(t) = ṙi(t)

+
n∑

j=1

[∫ t

0
ġuivj (t− τ)vj(τ)dτ + guivj (0)vj(t)

]
.

(40)
LetT > 0 be fixed and let ri,T , ṙi,T , ui,T , and vi,T denote
the truncated functions of ri, ṙi, ui, and vi, respectively.
Then, for any qi ∈ R (i = 1, 2, . . . , n), it follows from
(39) and (40) that for each i,

ui,T (t) + qiu̇i,T (t) =

ri,T (t) + qiṙi,T (t) + qi

n∑
j=1

guivj (0)vj(t)

+

n∑
j=1

∫ t

0
[guivj (t− τ) + qiġuivj (t− τ)]vj,T (τ)dτ.

(41)
Let σ ∈ (0, β). By subtracting (1/ki−σ)vi,T (t) to both
sides of (41) and then multiplying by −eαt with suffi-

ciently small α > 0, it follows that for each i,

yi(t) = wi(t)−
n∑

j=1

qiguivj (0)e
αtvj,T (t)

−
n∑

j=1

∫ t

0
eα(t−τ)

[
guivj (t− τ)

+qiġuivj (t− τ)
]
eατvj,T (τ)dτ

+

(
1

ki
− σ

)
eαtvi,T (t)

(42)

where wi(t) ≜ − [ri,T (t) + qiṙi,T (t)] e
αt and

yi(t) ≜
[
−ui,T (t)− qiu̇i,T (t) +

(
1

ki
− σ

)
vi,T (t)

]
eαt.

All the terms in (42) belong to L2 due to the truncation
at T . Then the Fourier transform of (42) is given by

Yi(jω) =Wi(jω) +

(
1

ki
− σ

)
Vi,T (jω − α)

−
n∑

j=1

[
1 + qi(jω − α)

]
Guivj (jω − α)Vj,T (jω − α)

(43)
where Yi(jω),Wi(jω) and Vi(jω) are the Fourier trans-
forms of yi, wi and vi, respectively. It can be verified
that condition (12) implies that for each i, equation (43)
satisfies conditions (8) and (9) with δ = β − σ. By ap-
plying Lemma 3.3, we have

−
n∑

i=1

∫ ∞

0
yi(t)vi(t)dt ≤

1

4δ

n∑
i=1

∫ ∞

0
w2
i (t)dt. (44)

Let Ji denote the ith term of the left-hand side of (44).
Then it follows that for each i,

Ji =

∫ T

0

(
ui −

vi
ki

)
vie

2αtdt

+qi

∫ T

0
u̇ivie

2αtdt+ σ

∫ T

0
v2i e

2αtdt

=

∫ T

0

(
ui −

ψi(ui)

ki

)
ψi(ui)e

2αtdt

−2qiα

∫ T

0
e2αt

[∫ ui(t)

0
ψi(ui)dui

]
dt

+qie
2αT

∫ ui(T )

0
ψi(ui)dui − qi

∫ ui(0)

0
ψi(ui)dui

+σ

∫ T

0
v2i e

2αtdt.

(45)
Since ψi(ui) ∈ sector[ε, ki − ε] where ε > 0 is arbitrar-
ily small, we have∫ ui(t)

0
ψi(ui)dui ≤

ki
2
u2i (t)
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and [
ui −

ψi

(
ui(t)

)
ki

]
ψi

(
ui(t)

)
≥ ε2

ki
u2i (t).

Then it follows from (45) that for each i,

Ji
σ

≥ 1

σ

∫ T

0

(
ε2

ki
− kiqiα

)
e2αtu2i (t)dt

+

∫ T

0
e2αtv2i (t)dt−

qi
σ

∫ ui(0)

0
ψi(ui)dui.

(46)
Since ε > 0, since qi < ∞, and since ki < ∞, there al-
ways exists α > 0 such that (ε2/ki−kiqiα) ≥ 0. Hence,
inequalities (46) become

Ji
σ

≥
∫ T

0
e2αtv2i (t)dt−

qi
σ

∫ ui(0)

0
ψi(ui)dui, ∀T > 0.

(47)

From (43), we have
n∑

i=1

Ji
σ
≤ 1

4σ(β − σ)

n∑
i=1

∫ T

0
(ri + qiṙi)

2e2αtdt, ∀T > 0.

(48)
One can verify that σ = β/2 minimizes the right-hand
side of (48). By substituting σ with β/2, it follows from
(47) and (48) that

n∑
j=1

∫ T

0
e2αtv2j (t)dt ≤

1

β2

n∑
j=1

∫ T

0
e2ατ [rj(τ) + qj ṙj(τ)]

2dτ

+
n∑

j=1

2qj
β

∫ uj(0)

0
ψj(uj)duj , ∀T > 0.

Hence, the lemma is proved. □
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