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Abstract. This paper applies the Omega method to creep life prediction for Hastelloy XR 
at temperatures ranging from 850 to 950oC in an air environment. The creep data were 
obtained from literature. Three life prediction scenarios were studied including constant 
stress, constant load, and continuous monitoring where creep data is simulated for 
sequential acquisition. The constant stress creep data at each temperature were used to 
determine the Omega model parameters, and empirical equations for each parameter were 
developed. The predicted creep lives under constant stress were within a factor of 2 in 
almost all cases. For a life prediction under constant load, the actual applied stress was 
estimated and used in the creep constitutive equation as well as for calculating the model 
parameters. The predicted creep lives were also to be within a factor of 2 in almost all cases. 
The Omega model was found to be applicable to a continuous creep data acquisition 
scenario as well. An appropriate scheme for continuous monitoring scenario was suggested, 
and statistical analysis by the Monte Carlo simulation was demonstrated. 
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1. Introduction 
 
Creep failure is one of the life-limiting conditions for 

high-temperature load-bearing structural components. 
Since creep deformation gradually degrades components 
over time, estimating the remaining life of a component is 
required for proper management (e.g., set up inspection 
schedule, spare parts provision, and rerate of operational 
conditions). A creep life assessment of components can 
be divided into two broad categories [1]: 1) history-based 
calculation, and 2) evaluation of components in service. 

In a history-based approach, the geometry and 
operational history of the component, as well as standard 
creep rupture data, are used to calculate creep damage 
using the damage accumulation rule (e.g., time fraction 
rule), and the remaining life is predicted under future 
operational conditions using the damage accumulation 
rule. This procedure tends to be inaccurate because 
operational conditions and material properties may not be 
known with sufficient accuracy. Further, there is a level of 
inaccuracy in the damage accumulation rule itself. 

The second approach to evaluating a component in 
service has the potential to improve remaining life 
prediction because the current state of the component is 
examined or tested without a requirement for the past 
operational conditions and does not rely on standard creep 
properties. The evaluation can be performed using 
destructive or nondestructive techniques. Destructive 
techniques require accelerated creep or creep rupture tests 
of specimens prepared from the actual components. The 
test results are then used in conjunction with extrapolation 
techniques (e.g., time-temperature parameter [2], 
Monkman-Grant [3]) to predict the (remaining) creep life 
under operating conditions. Some of the disadvantages of 
this approach include the fact that there are always a 
limited number of specimens available, and data 
extrapolation from accelerated tests may not accurately 
reproduce the behavior of components [1]. Some of the 
techniques commonly used in practice for a 
nondestructive evaluation include replica metallography, 
hardness measurement, and strain measurement [4]. 
However, one advantage of strain measurement is that it 
can be integrated into a continuous monitoring system in 
situ. Numerous studies have attempted to develop a 
reliable measurement for strain (or deformation) using a 
device such as an extensometer [5], capacitive strain gauge 
[6], optical strain gauge [7], and electrical potential drop 
[8]. 

Since a post-service material always passes the primary 
and secondary creep stages, the model for a remaining 
creep life assessment is typically focused on creep 
behavior in the tertiary stage. The creep constitutive 
equation is used to describe or derive the creep curve, and 
the condition of rupture is assumed to be creep strain 
reaching creep ductility. Several creep constitutive 
equations have been proposed [9]. Kondyr et al. [10] used 
strain as a state variable in a tertiary creep constitutive 
equation. The model accurately predicted the creep life of 
0.5Mo, 1Cr-0.5Mo, and 2.25Cr-1Mo steels in a 

temperature range of 500-600oC. Cane [11] developed a 
tertiary creep constitutive equation by incorporating a 
Kachanov-type damage evolution equation into a 
secondary creep behavior. Based on current strain or 
strain rate measurements, Cane’s model could predict 
creep life consumption. Prager [12] redefined the meaning 
of parameters in the creep constitutive equation proposed 
by Kondyr et al. [10] and designated his approach the 

Omega () method. This method has been adopted in the 

fitness-for-service standard [13]. The  method has been 
applied successfully to a variety of steel grades and classes, 
including carbon steel [14], Cr-Mo steels [15-17], stainless 
steel [18], and superalloy [19]. However, no studies have 
been carried out on the applicability of this method to 
Hastelloy XR steel which is used in high-temperature gas-
cooled reactors (HTGR) for intermediate heat exchanger 
heat transfer tubes and heat exchanger hot headers [20]. 
The service temperature of the material is estimated to be 
around 950oC. so a long-term creep is significant for this 
application. 

Prager [21] reported that the parameters in the  
model which is used for creep life prediction are relatively 
stable throughout life for many materials under various 

conditions. As a result, the  method can be used in a 
continuous remaining life assessment because the life can 
be predicted based on the available creep strain data up to 
the time of assessment. As new measurements (e.g., creep 
strain) are collected, the values of these parameters and 
remaining life are constantly updated.  

This paper applied the  method to predict the 
remaining creep life of Hastelloy XR steel. First, the 
empirical relationships between model parameters and 
stresses and temperatures were established using creep 
data under constant uniaxial stresses at temperatures of 
850, 900, and 950oC in an air environment. The 
relationships were then evaluated by applying them to 
creep data under constant stresses and constant loads. 

Finally, the study investigated the applicability of the  
method in simulating the sequential gathering of creep 
data.  
 

2. Background 
 

Uniaxial creep deformation behavior can be 
represented graphically as a strain versus time plot, as 
shown in Fig. 1. Creep behavior is typically divided into 
three stages including primary, secondary, and tertiary, in 
which the creep rate decreases, remains constant, and 
increases with time. Time and strain at rupture are denoted 

as creep rupture life tr and creep ductility r, respectively. 

The  method postulates that the tertiary stage creep 

rate   is dependent on the true strain  by the following 
constitutive equation. 

 

   = 0e  (1) 
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Fig. 1. Creep deformation behavior. 
 

where  and the initial strain rate  0  are parameters 

determined from a tertiary stage creep data. 

The tertiary stage creep curve from any strain *  (see 
Fig. 1) within the tertiary creep stage can be derived from 
Eq. (1) as 
 

 
* *

0

1
( ) ln ( )t e t t − = − −  −

 
 (2) 

 

where t and *t  are service time and service time at strain 

of * , respectively. At rupture, t = tr and (tr) = r then Eq. 
(2) can be rearranged as 
 

 ( )
**

0

1
r

rt t e e 



−−− = −


, (3) 

 

which is the remaining life at time *t .  

Determination of the values for  and  0  in Eq. (1) 

can be done in various ways, such as regression analysis of 
Eq. (2) to best fit the tertiary stage creep 
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Fig. 2. Schematic of the approach to determine the 

parameters  and  0  in the Omega model. 

 
data, or fit the creep rate and strain in the tertiary stage as 
shown in Fig. (2) with the following equation: 
 

   =  + 0ln ln  (4) 

 
Note that Eq. (4) is a logarithmic form of Eq. (1). 

Parameters  and 0ln  are the slope and intercept of a 

best-fit line, respectively. 
 

3. Determination of Model Parameters  
 
Short-term creep data for Hastelloy XR used in this 

study was obtained from the literature [22-24]. The tests 
were carried out in an air environment under constant 
uniaxial stress and constant temperatures. Table 1 shows 
the test conditions and significant results including rupture 
time, tertiary stage onset time and strain, and creep 
ductility. Figures 3-5 show the creep curves at each 
temperature.

 
Table 1. Constant stress uniaxial creep data in air environment for Hastelloy XR [22-24]. 
 

Code Temperature 
 

T (oC) 

Stress 
 

 (MPa) 

Rupture 
time 
tr (hr) 

Tertiary stage Creep 
ductility 

r 

Onset time 
tter (hr) 

Onset strain 

ter 

CS850A-58 850 57.90 3196.80 1800.00 0.1618 0.3688 
CS850A-90  89.90 199.50 110.00 0.2503 0.5372 
CS850A-120  120.10 45.30 24.00 0.2759 0.6540 
CS850A-170  169.80 7.60 4.67 0.4113 0.7353 
CS850A-200  200.10 2.33 1.47 0.3755 0.6780 
CS850A-250  250.00 0.77 0.50 0.4345 0.9623 

CS900A-45 900 45.00 983.00 483.07 0.1454 0.3380 
CS900A-58  58.00 267.00 143.64 0.2185 0.4090 
CS900A-78  78.00 60.20 34.26 0.2454 0.5300 
CS900A-100  100.00 18.60 9.99 0.3099 0.6590 
CS900A-120  120.00 6.40 2.82 0.2793 0.7030 

CS950A-24 950 24.01 1222.40 455.00 0.1061 0.3739 
CS950A-41  41.01 164.30 94.00 0.2202 0.4166 
CS950A-49  49.01 76.50 47.00 0.2620 0.4482 
CS950A-62  62.02 31.03 20.00 0.3540 0.6646 
CS950A-78  78.01 10.10 6.00 0.3420 0.5973 
CS950A-92  92.00 5.00 2.95 0.3771 0.7147 
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Fig. 3. Creep curves at 850oC [22]. 
 

 
 
Fig. 4. Creep curves at 900oC [24]. 
 

 
 
Fig. 5. Creep curves at 950oC [23]. 
 

The model parameters were determined using the 
method depicted in Fig. 2. Strain rate was determined by 
an incremental polynomial [25] instead of the central 
difference method used in literature to reduce scattering. 
The number of data points for each incremental fit of the 
data by a quadratic equation was set to 5 due to the limited 
amount of tertiary stage creep data in some cases. The 
creep rate for the last two data points was calculated using 

the central difference and backward difference methods. 
The natural logarithm of creep rate and corresponding 
creep strain at temperatures of 850, 900, and 950oC were 
plotted as shown in Figs. 6-8. Note that on the horizonal 
axis, creep strain was used instead of total strain because 
the instantaneous initial strain (i.e., strain at the start of 
loading) was negligible. These plots indicate that Eq. (4) 
cannot accurately fit the entire range of tertiary stage 
results due to the nonlinear trend. Some results, especially 
near the end of a test, must be discarded. 

A least-square fit of a line to a group of data (i.e., 

ln( )  and ) from the onset of tertiary creep was 

performed with varying amounts of data ranging from 

three to all data in the tertiary stage. The parameters  and 

 0  for each data group were calculated from the slope and 

intercept of the best-fit line and substituted into Eq. (2) to 
predict the tertiary stage creep curve. The creep strain 
prediction error was evaluated in terms of the mean 
absolute error (MAE), which was defined as follows: 

 
1

1 terN

pred exp

iter

MAE
N

 
=

= −  (5) 

 

 
 
Fig. 6. Tertiary creep rate versus creep strain at 850oC. 
 

 
 

Fig. 7. Tertiary creep rate versus creep strain at 900oC. 
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Fig. 8. Tertiary creep rate versus creep strain at 950oC. 
 
where Nter is the amount of data in the tertiary stage, and 

pred and exp are the predicted and experimental creep strain, 

respectively. The values of  and  0  from the group with 

the lowest MAE were chosen. Figure 9 depicts examples 

of applying this procedure to determine  and  0 . Figure 

10 shows the prediction of tertiary stage creep strain for 

the cases shown in Fig. 9. The representative  and  0  

values for the test conditions listed in Table 1 are 

summarized in Table 2. The low  values under the 
investigated conditions indicate the presence of ductile 
creep. The tertiary stage then begins with high strain and 
low strain rate acceleration. An Arrhenius equation was 
usually used to express temperature dependence, whereas 
power function [17,18] or hyperbolic sine function [5, 6] 
were used to express stress dependence. After examining 
these empirical forms, the hyperbolic sine function was 
shown to be inaccurate for this alloy. Moreover, slight 
improvement in the correlation was found after 
normalizing the applied stress with the Young’s modulus 
at temperature. As a result, the following empirical 
functions were proposed.  
 

 ( , )
( )

n

Q RTT A e
E T










 
 =   

 
 (6) 

 
0

0

00( , )
( )

n

Q RT
T A e

E T








 

 
=   

 
 (7) 

 

where  is applied stress (MPa), T is temperature (K), E(T) 
is Young’s modulus (MPa) at temperature T, R is gas 

constant (8.314 J/molK); and A , n , Q , 
0

A , 
0

n , 

and 
0

Q  are empirical constants. The Young’s modulus at 

a temperature of 850, 900, and 950 oC are 127,490 MPa 
[22], 94,000 MPa [24], and 72,000 MPa [24], respectively. 
The empirical constants values obtained from nonlinear 
regression analysis are listed in Table 3. Equations (6) and 

(7) can reasonably predict the values of  and  0 , as 

shown in Figs. 11 and 12. 

 
 

Fig. 9. Examples of  and  0  determined by minimizing 

the MAE of creep strain prediction. 
 

 
 

Fig. 10. Prediction of tertiary stage creep strain using  

and  0  in Fig. 9. 

 

Table 2. Representative  and  0  values for Hastelloy XR 

under constant stress uniaxial creep tests in the air 
environment. 

Code  0 (hr-1) 

CS850A-58 6.679 2.46710-5 
CS850A-90 3.855 6.77310-4 
CS850A-120 3.743 3.14710-3 
CS850A-170 2.457 2.56010-2 
CS850A-200 2.890 7.17110-2 
CS850A-250 2.606 2.28310-1 

CS900A-45 6.414 7.37410-5 
CS900A-58 4.356 3.92010-4 
CS900A-78 4.781 1.80910-3 
CS900A-100 2.828 1.03910-2 
CS900A-120 1.627 4.99710-2 

CS950A-24 6.282 8.55210-5 
CS950A-41 4.342 6.91310-4 
CS950A-49 4.282 1.37510-3 
CS950A-62 4.177 3.46710-3 
CS950A-78 2.684 1.79910-2 
CS950A-92 2.793 3.49010-2 
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Table 3. Best-fit coefficients of the empirical equations for 
the model parameters. 
 

Parameter Coefficient Value 

 
(Eq. (6)) 

A  3.590910-3 

n  -0.7237 

Q  1.7809104 

0 (hr-1) 

 (Eq. (7)) 
0

A  7.20141015 

0
n  5.1314 

0
Q  -5.6019104 

 

 
 

Fig. 11. Comparison of  predicted by Eq. (6) with the 
experimental one. 
 

 
 

Fig. 12. Comparison of 0  predicted by Eq. (7) with the 

experimental one. 
 

4. Creep Life Prediction 
 

This section explains the applicability of the  
method to a remaining creep life prediction under three 
scenarios, i.e., constant stress, constant load, and 
simulated continuous monitoring.  

4.1. Constant Stress Cases 
 

The creep data set used in the investigation was the 
same data set used to develop the empirical equations for 

the model parameters. The  and  0  values were 

calculated by Eqs. (6) and (7) under the applied stresses 
and temperatures listed in Table 1. The remaining life in 
consideration was defined as a time interval between the 
onset of the tertiary creep stage to the rupture time, i.e., tr 
- tter. The remaining life was predicted by using Eq. (3) and 

*  was substituted with ter. The prediction results are 
listed in Table 4 and graphically compared with the 
experiments as shown in Fig. 13. Most of the predictions 
were on the conservative side and within a factor of 2 
range. 
 
Table 4. Comparison of predicted remaining life with 
experimental results under constant stress creep tests.  

 

Code Remaining life tr – tter (hr) 

experiment Prediction 

CS850A-58 1396.80 328.41 
CS850A-90 89.40 41.69 
CS850A-120 21.30 13.56 
CS850A-170 2.93 2.02 
CS850A-200 0.83 1.09 
CS850A-250 0.30 0.52 

CS900A-45 499.90 243.79 
CS900A-58 123.40 57.88 
CS900A-78 25.90 19.29 
CS900A-100 8.60 6.21 
CS900A-120 3.60 3.53 

CS950A-24 765.00 1427.44 
CS950A-41 70.00 10.76 
CS950A-49 29.00 27.64 
CS950A-62 11.00 10.42 
CS950A-78 4.00 3.77 
CS950A-92 2.05 2.07 

 

 
 
Fig. 13. Comparison of predicted remaining life in 
experiments under constant stress creep tests. 
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There are two reasons for using Eq. (3) in a remaining 

life prediction rather than a usual expression 01   . First, 

the tertiary creep stage begins around 50% of the rupture 
life. It is erroneous to assume that the strain at the onset 
of the tertiary creep stage is close to zero, which causes the 
first term in the denominator to be close to 1. Second, the 

 values for Hastelloy XR are quite low when compared 
to other kinds of steel [15-19], which have values in the 
tens. As a result, it is inappropriate to ignore the second 
term in the denominator. 
 
4.2. Constant Load Cases 

 
Because components may operate under load-

controlled conditions, it is necessary to study a 
modification of the model developed based on constant 
stress creep data when applying to a constant load 
condition. This section proposed a simple modification 
and verified it with data from the literature [23, 26].  

Under constant loading, stress increases as the 
specimen elongates. The relationship between the actual 
stress and axial strain can be derived as follows if the 
extension is uniform (i.e., no necking), and the constant 
volume assumption is used.   

 

 
( )( ) t

initt e =   (8) 

 

where (t) and (t) is stress and strain at elapsed time t, 

and init is initial stress (i.e., stress at t = 0). The remaining 
life can be calculated by numerically integrating Eq. (1). If 

the Euler’s method is used, a new creep strain i+1 is 

predicted using the current creep rate i  to extrapolate 

linearly over a time step t from a current creep strain i. 
by the following equation. 

 1i i i t  + = +    (9) 

 
where i = 0, 1, 2, …. The current creep rate can be 
calculated from Eq. (1) using the actual applied stress at 

the current step i. Finally, Eq. (9) can be written as: 
 

 
( , )

1 0( , ) i iT

i i i T e t      

+ = +     (10) 

 

Note that the parameters  and  0  now depend on the 

actual applied stress, which is calculated by Eq. (8) with 
the current creep strain. The initial conditions, i.e., i = 0 
were set by 
 

 0 ter =  (11) 

 0
ter

init e
 =  (12) 

 
The calculation using Eq. (10) was repeated until the new 
creep strain was higher than or equal to the creep ductility, 

i.e., i+1  r. The rupture time was predicted to be it. 

The time step t was set to 0.04% of the rupture time, 
which is sufficiently small to satisfy a convergence 
criterion of 0.1% or better. The predicted remaining life 
and experimental results are listed in table 6 and 
graphically compared in Fig. 14. Most of the predictions 
lie on the non-conservative side but within a factor of two 
ranges, which is practically acceptable. One reason might 
come from the assumption of a uniform deformation 
which underestimates the applied stress and then the creep 
rate as a consequence when necking occurs. However, the 

extension of the empirical equations of  model 
parameters derived from a constant stress creep data to 
predict a creep life under constant load by the present 
approach was practically acceptable. 

 

Table 6. Constant load uniaxial creep data in air environment for Hastelloy XR.  
 

Code Temperature 
 

T (oC) 

Initial 
stress 

0 (MPa) 

Rupture 
time 
tr (hr) 

Tertiary stage Creep 
ductility 

r 

Ref. 

Onset time 
tter (hr) 

Onset strain 

ter 

 

CL900A-38a 900 38.00 2567.4 299.6 0.0055 0.4093 26 
CL900A-38b  38.00 2112.3 74.0 0.0022 0.3477 26 
CL900A-47a  47.00 657.8 23.9 0.0011 0.3849 26 
CL900A-47b  47.00 325.4 23.7 0.0073 0.5231 26 
CL900A-58a  58.00 172.5 24.0 0.0092 0.6444 26 
CL900A-58b  58.00 80.3 23.7 0.0652 0.6868 26 

CL950A-20 950 19.99 1443.9 612.0 0.0945 0.3310 23 
CL950A-22a  22.00 2566.4 142.0 0.0030 0.3263 26 
CL950A-22b  22.00 2830.3 141.8 0.0030 0.3219 26 
CL950A-24  23.99 833.4 360.0 0.0937 0.3201 23 
CL950A-29  29.03 437.8 123.0 0.0581 0.3454 23 
CL950A-30a  30.00 431.5 19.9 0.0300 0.4606 26 
CL950A-30b  30.00 387.6 24.0 0.1310 0.5805 26 
CL950A-34  34.02 161.0 69.0 0.1046 0.3746 23 
CL950A-40a  40.02 82.7 27.0 0.0797 0.3975 23 
CL950A-40b  40.00 110.4 19.9 0.0024 0.5644 26 
CL950A-40c  40.00 116.3 24.0 0.0298 0.6217 26 
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Table 7. Comparison of predicted remaining life with 
experimental results under constant load creep tests.  

 

Code Remaining life tr – tter (hr) 

Experiment Prediction 

CL900A-38a 2267.8 966.4 
CL900A-38b 2038.3 985.2 
CL900A-47a 633.9 365.0 
CL900A-47b 301.7 351.4 
CL900A-58a 148.5 128.0 
CL900A-58b 56.6 77.6 

CL950A-20 831.9 1555.2 
CL950A-22a 2424.4 3008.9 
CL950A-22b 2688.5 3003.5 
CL950A-24 473.4 700.2 
CL950A-29 314.8 450.1 
CL950A-30a 411.6 732.2 
CL950A-30b 363.6 650.2 
CL950A-34 92.0 138.7 
CL950A-40a 55.7 85.6 
CL950A-40b 90.5 183.3 
CL950A-40c 92.3 143.4 

 

 
 
Fig. 14. Comparison of predicted remaining life with 
experiments under constant load creep tests. 
 
4.3. Simulated Continuous Monitoring of the 
Remaining Life  
 

This section investigated the applicability of the  
method in predicting the remaining life when the creep 
data is collected sequentially. For demonstration, two 
creep tests, CS850A-58 and CL950A-20 were chosen. It 

should be noted the values for , and  0  in this scenario 

can be calculated directly from the collected data up to the 
assessment time without using Eqs. (6) and (7). 

There were two simulation schemes considered as 
shown in Fig. 15. Both schemes start with the data point 
located at the onset of the tertiary creep stage. As data 
collection progresses, the most recent collected data will 
be denoted as a current point. Once the strain at the 

current point has increased sufficiently from the starting 
point as shown in Fig. 15(a), the model parameters can be 
determined, and the remaining life is predicted. When a 
new set of data points becomes available, the procedures 
are repeated. For the first scheme, the current set of data 
is analyzed in a combination with the previous sets of data, 
as shown in Fig. (15b). In the second scheme, however, 
only the current set of data is analyzed. For both schemes, 
the remaining life is defined as the time interval between 
the current point and the rupture time. The remaining life 

was predicted by Eq. (3) with *  equal to strain at the 
current point. The confidence interval for the remaining 
life was estimated from a standard error of each parameter 
by a Monte Carlo simulation.  
 
4.3.1. Case 1: CS850A-58 
 

The tertiary creep data was divided into 5 sets for the 
first simulation scheme, as shown in Table 8. Columns 2 
and 3 of the table list the creep strains at the first and 
current points of each data set. The strain at the current 
point of each data set is chosen to increase by 
approximately 10% from the previous one, in which the 
authors considered sufficient to cover the strain 

measurement uncertainty. The  model parameters for 
each data set were determined by fitting Eq. (4) to the data 
using a least-square regression. The values for parameters 

 and 0ln , as well as their standard errors (SE), are listed 

in columns 4-7. Equation (3) was used to calculate the 
remaining life from the last point of each data set using 
the corresponding values of model parameters and strain 
at the last point, and the results are listed in column 8. The 
next step was a determination of the uncertainty of the 
remaining life due to data scatter  
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Fig. 15. Schemes for repeated analysis of  model 
parameters.  
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Table 8. Continuous prediction of remaining life using the first scheme for the CS850A-58 test. 
 

Set Creep strain Model 
parameters 

Standard 
error 

Remaining life (hr.) 

Eq. (3) Monte Carlo Exp. 

1st 
point 

Current 
point 

 0ln  SE 
0lnSE   Mean SD 95% CI 

1 0.1618 0.1781 2.558 -9.843 0.568 0.097 1801.8 1827 330 (1265, 2554) 1196.8 
2 0.1618 0.1994 2.296 -9.799 0.225 0.041 1600.3 1605 120 (1382, 1852) 946.8 
3 0.1618 0.2242 4.652 -10.217 0.439 0.084 1015.0 1026 155 (755, 1361) 696.8 
4 0.1618 0.2526 5.151 -10.309 0.244 0.050 714.3 718 64 (600, 851) 446.8 
5 0.1618 0.2898 6.244 -10.523 0.265 0.059 379.2 381 40 (308, 465) 196.8 

 
Using the Monte Carlo simulation. The simulation 

assumed  and 0ln  had normal distributions, with 

means and standard deviations equal to the least-square fit 
results and standard errors. The remaining life was 
calculated using Eq. (3) after generating random values for 

 and 0ln . The calculation was repeated 5104 times, 

and the distribution of remaining life was found to be 
lognormal, as shown by the histogram in Fig. 16 for data 
set no. 1. Columns 9-11 show the mean, standard 
deviation (SD), and (two-tails) 95% confidence interval of 
the remaining life derived from the distribution.  

The remaining life calculated using Eq. (3) was found 
to be close to the mean of the Monte Carlo simulation. 
Thus, Eq. (3) can be used to calculate the mean of 
remaining life in a quick but accurate manner. However, 
the experimental results deviated significantly from the 
predicted remaining life (by a factor of 1.5 to 2) and fell 
outside the 95% confidence interval. This finding 
suggested that the deviation was caused not only by data 

scatter but also by the limitation of the  model. As 

shown in Fig. 17, the  model based on data sets 1 - 5 
could not adequately follow the trend of the experimental 
results and underestimated the creep rate, causing the 
predicted life to be longer than the experimental life. 
 

CS850A-58

Scheme 1, Data set no. 1

frequency

remaining life (hr.)
 

 
Fig. 16. Lognormal distribution of remaining life from 
data set no. 1 of CS850A-58. 

 
 

Fig. 17.  model parameters for CS850A-58 test 
determined by the first scheme. 
 

Next, consider applying the second simulation 
scheme to the same creep data (CS850A-58). Table 9 
summarizes the data sets and analysis results. Each set 
covers an approximate 10% increase in strain. The effect 
of the data set used on the creep rate prediction model 
parameters is shown in Fig. 18. 

 
 

Fig. 18.  model parameters for CS850A-58 test 
determined by the second scheme. 
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Table 9. Continuous prediction of remaining life using the second scheme for CS850A-58 test. 
 

Set Creep strain Model 
parameters 

Standard 
error 

Remaining life (hr.) 

Eq. (3) Monte Carlo Exp. 

1st 
point 

Last 
point 

 0ln  SE 
0lnSE   Mean SD 95% CI 

1 0.1618 0.1781 2.558 -9.843 0.568 0.097 1801.8 1827 330 (1265, 2554) 1196.8 
2 0.1824 0.1994 2.493 -9.838 0.855 0.163 1574.2 1640 480 (897, 2760) 946.8 
3 0.2040 0.2242 7.883 -10.893 0.787 0.168 792.4 820 230 (460, 1354) 696.8 
4 0.2296 0.2526 5.996 -10.503 0.447 0.108 670.3 679 116 (479, 933) 446.8 
5 0.2593 0.2898 10.983 -11.782 0.303 0.083 286.6 289 37 (223, 368) 196.8 

 
According to Table 9, the predicted remaining life 

using Eq. (3) is also close to the mean of the Monte Carlo 
simulation. Moreover, this scheme improved the 
prediction of the remaining life. The reason for this could 
be that the best-fit line can adjust to the current 
deformation state better than the first scheme, as shown 
in Fig. 18. The standard errors of this scheme were higher 
than the first since the amount of data in each set was 
smaller, resulting in a wider confidence interval than the 
first scheme. Because of better predictions and wider 
confidence interval, the experimental results tended to fall 
within or close to the confidence interval. 

To summarize, it is preferable to determine the model 
parameters for this case study using a set of data that 
represents the current deformation state. Moreover, the 
data set should contain an adequate amount of data and 
cover a sufficient range of strain. 

  
4.3.2. Case 2: CL950A-20 
 

For a CL950A-20 test, only the second scheme was 
considered because it performed better than the first. 
Table 10 summarizes the findings. Similar conclusions can 
be drawn. First, the life predicted by Eq. (3) agreed with 
the mean of the Monte Carlo simulation. Next, the scheme 
accurately predicted the remaining life when compared to 
the experimental results. Finally, several experimental 

results fell within the 95% confidence interval. Figure 19 

shows the benefit of the second scheme in adapting the  
model as a new data set is collected. 

 

 
 

Fig. 19.  model parameters for CL950A-20 test 
determined by the second scheme. 
 

 
Table 10. Continuous prediction of remaining life using the second scheme for CL950A-20 test. 
 

Set Creep strain Model 
parameters 

Standard 
error 

Remaining life (hr.) 

Eq. (3) Monte Carlo Exp. 

1st 
point 

Current 
point 

 0ln  SE 
0lnSE   Mean SD 95% CI 

1 0.0945 0.1058 7.261 -9.488 0.321 0.032 678.7 680 47 (592, 776) 756 
2 0.1078 0.1197 2.918 -9.041 0.750 0.085 938.6 950 170 (660, 1324) 672 
3 0.1216 0.1341 6.445 -9.486 0.987 0.126 619.4 635 155 (384, 988) 588 
4 0.1363 0.1494 4.358 -9.235 0.497 0.071 670.5 675 91 (514, 870) 504 
5 0.1515 0.1655 5.906 -9.482 0.499 0.079 521.6 527 75 (395, 688) 420 
6 0.1680 0.1832 6.777 -9.660 1.219 0.214 422.7 450 172 (203, 866) 336 
7 0.1856 0.2025 11.783 -10.640 0.360 0.070 254.4 256 29 (203, 317) 252 
8 0.2057 0.2265 5.533 -9.348 0.367 0.079 260.1 262 34 (201, 334) 168 
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5. Conclusions 
 
The remaining creep life prediction for the Hastelloy 

XR at temperatures of 850, 900, and 950oC in an air 

environment by the  model was studied using a short-
term creep data from the literature. The main conclusions 
obtained from this study are as follows: 
 

1. The values of parameter  for the alloy were quite 
low (in comparison to other kinds of steel). Therefore, 
predicting remaining life using the simplified 

expression, i.e., 01   , is not recommended. 

2. Based on the constant stress creep data, the 
dependence of stress and temperature of the model 
parameters, were found to be expressed appropriately 
by a power law and Arrhenius equation, respectively. 
The validity range of the proposed empirical 
equations for the model parameter should be 
restricted to the conditions studied. Additional 
experiments should be carried out to evaluate the 
applicability of the equations or to introduce 
modifications when applying beyond the scope of the 
present study, such as long-term creep behavior (e.g., 
creep under lower applied stress or temperature), 
multiaxial creep behavior, and creep under variable 
stress or temperature. 

3. Remaining creep life prediction under constant load 
could be done by incorporating the effect of 
increasing stress as the specimen elongated into the 
creep constitutive equation and calculating the model 
parameters based on the actual applied stress. 

4. In most cases, the  model could predict the 
remaining life under constant stress and constant load 
within a factor of 2. 

5. The  model could be employed for continuous 
monitoring of the remaining life without prior 
knowledge of the model parameters. The model 
parameters could be calculated based on the acquired 
data, but it was recommended to use a current set of 
data. The remaining life predicted by this scheme was 
within a factor of 2. Probabilistic analysis using a 
Monte Carlo simulation provided a confidence 
interval for the remaining life, which may enhance 
decision making. 
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