

Article

Case-based Maintenance Model for handling
Relevant and Irrelevant Cases in Case-based
Reasoning System

Thacha Lawanna1,* and Rujira Ouncharoen2

1 International College of Digital Innovation, Chiang Mai University, Chiang Mai 50200, Thailand

2 Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
*E-mail: thacha.l@icdi.cmu.ac.th(Corresponding author)

Abstract. Case-based maintenance can be resource intensive and requires significant time

and effort to collect and analyse all cases. This can lead to inefficiencies and high costs in
the entire case-based reasoning system. Accordingly, the Relative Coverage Condensed
Nearest Neighbour had been created to reduce the number of cases in a dataset by selecting
a subset of representative cases, whereas maintaining the overall performance of the whole
system. Besides, Footprint utility deletion is a type of case deletion algorithm that can
remove redundant or irrelevant cases from a storage, though maintaining the system’s
competency. Recently, Hybrid approach was given to ensure that the case-base remains up-
to-date and relevant, while also reducing its size and complexity. However, the results from
using these approaches seem to be improved for the better performance. Therefore, the
proposed model is developed, which comprises two main phrases by using case-based
reasoning and identifying relevant and irrelevant cases to provide better results. The
reduction size of case-base is lower than the traditional studies approximately 1-9% and also
gives higher percentage of solving problems about 1-7%, while the average problem-solving
time is shorter than them nearly at most 8 times.

Keywords: Case-based maintenance, cased-based reasoning, deletion, addition, hybrid,
problem-solving, competence.

ENGINEERING JOURNAL Volume 27 Issue 11
Received 21 March 2023
Accepted 17 November 2023
Published 30 November 2023
Online at https://engj.org/
DOI:10.4186/ej.2023.27.11.53

DOI:10.4186/ej.2023.27.11.53

54 ENGINEERING JOURNAL Volume 27 Issue 11, ISSN 0125-8281 (https://engj.org/)

1. Introduction

Case-based reasoning (CBR) is a method of problem-

solving that draws on examples from the past or current

situations to offer solutions to brand-new issues. The

fundamental principle of CBR is to use the information

acquired from prior problem. Solving experiences to new

challenges are analogous to those already experienced. An

issue is solved by identifying an earlier solution to a related
problem, which is then modified to meet the current

challenge. A case base is a knowledge base that may be

utilized to solve new problems, is a knowledge repository

made up of previous cases and their answers [1]. In Fig. 1.,

the following steps are commonly included in the CBR
process [2]: Retrieve one or more cases that are

comparable to the present issue from the case database.
Reuse or modify the recovered cases' solutions to meet the

current issue. Refine the adapted solution to make it more

suitable for the current issue. Retain the fresh answer away

in the case file for later use. Applications for CBR are

abundant and include engineering, medicine, law, and

artificial intelligence. It is helpful in fields where there is a

wealth of case-based knowledge and where new
encounters can be solved by modifying current answers

[3].
Case-based maintenance (CBM) is a sort of

maintenance approach that makes decisions about
upcoming maintenance tasks by leveraging historical data

and previous maintenance cases. Mmaintaining choices

are based on examination of previous failures,

preservation interventions, and operating circumstances.
This past information is gathered and kept in a case-base,
a database of maintenance cases that can be used to find
similar maintenance issues and suggest the best course of

maintenance. Usually, it incorporates the following actions:
Gathering information on previous cases, such as the
failure kinds experienced, the retain steps followed, and

the effective settings at the time of the incident.
Examining the data to find trends and connections

between earlier occurrences. Creating these plans, such as

prevention schedules or predictive methods, based on an

inspection of previous cases. Real-time application of

these strategies, while making decisions in light of the

knowledge gathered from the case study. By enabling

more targeted procedures and lowering the likelihood of
unexpected failures, it can assist increase an efficiency and
save downtime. It is especially accommodating in
industries like manufacturing, transportation, and aviation

where equipment failure can have serious repercussions. A

successful practice is not without its difficulties and

possible issues [4]. The following are some of the major

problems that CBM may encounter: It depends on the

availability of precise and thorough past data on prior

maintenance cases. This may be stimulating to establish

efficient maintenance methods if this data is unavailable

or insufficient. The success of CBM depends on the

capacity to identify relevant cases that are similar to the

current problem. This can be difficult, especially if there

aren't enough cases in the case base that are comparable.
When there are huge amounts of historic cases to appraise,

it can be difficult and time-consuming to do so. This can

make it hard to design well-organized methods in a timely

manner. Furthermore, it makes choices based on historical

data, which can result in an over-reliance on historical data
and an inability to account for evolving environments or

new information. The implementation can be difficult and

expensive in terms of data gathering, analysis, and

decision-making tools. Companies may also face issues in

training workers on the usage of CBM and incorporating

it into existing maintenance processes [5].
In CBR, a tolerant case-base can result in a number of

issues, such as: Case-bases that are not regulated can build

up with cases that are irrelevant, redundant, or noisy.
Because of the need to sort through irrelevant cases in
order to discover relevant ones, this can reduce retrieval

efficiency. Decreased performance can result from an

unregulated case base since the system must retrieve, reuse,

and update a lot of irrelevant cases. This could make it

more expensive and take longer to solve an issue

computationally. The system may retrieve and adapt the

wrong solutions as a result of the existence of irrelevant or

noisy examples in the case base. Decreased system efficacy

and poor decision-making may follow from this. The

system's decision-making process may be inconsistent due

to an unregulated case base. This could happen if two

cases offer contradictory answers or if the same case is

given in two distinct ways. Uncontrolled case bases can be

problematic to maintain since it might be difficult to

recognize and eliminate redundant or irrelevant examples.
This may lead to higher maintenance expenses and

complexity for the case base. It is crucial to carefully

oversee and manage the case base in CBR in order to

prevent these issues. This can involve periodically

assessing the cases in the case base for relevance,
eliminating cases that are unnecessary or duplicate, and
making sure that cases are consistently represented and
annotated [6].

The aim of the work is to develop a case-based
maintenance algorithm that helps maintain the validity of
the case base after solving problems. In other words, the
purpose of the algorithm is to ensure that the case base
remains relevant and up-to-date by removing outdated
cases and adding new ones as needed. The paper will likely
discuss how CBR systems can benefit from a maintenance
algorithm that can help address the problem of case
redundancy and ensure that the system can continue to
provide accurate and relevant solutions over time.
Authors can also explore the challenges of maintaining a
case base, such as how to determine which cases to

DOI:10.4186/ej.2023.27.11.53

ENGINEERING JOURNAL Volume 27 Issue 11, ISSN 0125-8281 (https://engj.org/) 55

remove or add, and how to ensure that the algorithm does
not introduce bias into the system. Therefore, the purpose
of the paper is to propose a practical and effective solution
to maintain the case base in a CBR system, which can
help improve the accuracy and usefulness of the system in
solving real-world problems depend upon the
identification of cases in a case-base.

Fig. 1. CRB [2].

2. Basic Knowledge of Case-Based
Maintenance

The retrieval process time in case-based maintenance

refers to the time it takes to retrieve relevant maintenance
cases from a case library or database. The retrieval process
time can vary depending on several factors, such as the
size of the case library, the complexity of the maintenance
problem, and the retrieval algorithm used [7].
Retrieval time for CBM can be estimated by using:

),,,(CPQNfRT = (1)

where

RT is retrieval time (second);
N is the number of cases in the case library;
Q is the complexity of the search query;
P is the complexity of the pre-processing step;
C is the complexity of the adaptation step.

The function),,,(CPQNf can take different forms

depending on the particular approach used. For example,

),,,(CPQNf is a polynomial equation containing

different weights for each factor, or it can be a more
complex function containing additional factors such as
network latency or case library quality. In practice, the
time of the search process can be estimated by measuring
the time required to search and retrieve relevant cases
from the case library for a given maintenance problem.
This can be done through benchmarks or simulations that
mimic real-world scenarios [8].

In CBR , the similarity between cases is a crucial
factor in determining the relevance of past cases to a

current problem. There are several similarity measures that
can be used in CBR , depending on the type of data being
analysed and the problem domain. Some commonly used
similarity measures include:

(i) Euclidean distance: In this measure, the distance
between two cases is calculated based on the Euclidean
distance between their feature vectors [9]. The Euclidean
distance between two cases x and y can be calculated as:

𝑑(𝑥, 𝑦) = √∑ (𝑦𝑖 − 𝑥𝑖)
2𝑛

𝑖=1 (2)

where 𝑥1, 𝑥2, 𝑥3, . . . 𝑥𝑛 are the features of case x, and

𝑦1, 𝑦2, 𝑦3, . . . 𝑦𝑛are the features of case y.
(ii) Cosine similarity: In this measure, the similarity

between two cases is calculated based on the cosine of the
angle between their feature vectors [9]. The cosine
similarity between two cases x and y can be calculated as:

𝑠𝑖𝑚(𝑥, 𝑦) =
(𝑥∗𝑦)

(‖𝑥‖∗‖𝑦‖)
 (3)

where x * y is the dot product of x and y, and ||x|| and
||y|| are the Euclidean norms of x and y, respectively.

(iii) Jaccard similarity: In this measure, the similarity
between two cases is calculated based on the intersection
and union of their feature sets [9]. The Jaccard similarity
between two cases x and y can be calculated as:

𝑠𝑖𝑚(𝑥, 𝑦) =
|𝑥∩𝑦|

|𝑥∪𝑦|
 (4)

where |𝑥 ∩ 𝑦| is the cardinality of the intersection of x

and y, and |𝑥 ∪ 𝑦| is the cardinality of the union of x and
y.

(iv) Hamming distance: In this measure, the distance
between two cases is calculated based on the number of
feature values that differ between the two cases [9]. The
Hamming distance between two cases x and y can be
calculated as:

𝑠𝑖𝑚(𝑥, 𝑦) = |{𝑖: 𝑥𝑖 ≠ 𝑦𝑖}| (5)

where 𝑥𝑖 and 𝑦𝑖 are the feature values of case x and y,

respectively, and |{𝑖: 𝑥𝑖 ≠ 𝑦𝑖}|is the number of features

where 𝑥𝑖 and 𝑦𝑖 differ.
In general, the retrieval process time in CBM can be

divided into two phases: indexing and retrieval. During the
indexing phase, maintenance cases are pre-processed and
indexed based on their relevant features or attributes. This
indexing process is intended to speed up the retrieval
process by reducing the number of irrelevant cases that
need to be considered during retrieval. The time required
for the indexing process can vary depending on the
complexity of the case features and the size of the case
library [10].

During the retrieval phase, the indexed cases are
compared to the current maintenance problem to identify
the most relevant cases. The retrieval algorithm used can
affect the retrieval process time. For example, a k-nearest

DOI:10.4186/ej.2023.27.11.53

56 ENGINEERING JOURNAL Volume 27 Issue 11, ISSN 0125-8281 (https://engj.org/)

neighbour algorithm NNk − can retrieve relevant cases
quickly but may not be as accurate as other algorithms,
such as rule-based or fuzzy logic-based algorithms. The
retrieval process time can also be affected by the size of
the retrieved case subset and the complexity of the case
adaptation process. The retrieval process time can range
from a few milliseconds to several minutes, depending on
the factors mentioned above. Nevertheless,
improvements in computing technology and the progress
of more efficient retrieval algorithms are likely to reduce
retrieval process time in the future. The performance of a
CBR system can be evaluated based on several criteria,
including accuracy, efficiency, and scalability [11, 12].

The accuracy of a CBR system refers to its ability to
retrieve and adapt relevant past cases to solve new
problems. The accuracy of CBR can be evaluated using
measures such as precision and recall. Precision refers to
the percentage of retrieved cases that are relevant, while
recall refers to the percentage of relevant cases that are
retrieved. The efficiency of CBR refers to the time and
computational resources required to retrieve and adapt
past cases. The efficiency of a CBR system can be
evaluated using measures such as retrieval time, adaptation
time, and memory usage. The retrieval time refers to the
time required to retrieve relevant cases, while the
adaptation time refers to the time required to adapt past
cases to solve the current problem. Memory usage refers
to the amount of memory required to store the case library.
The scalability of CBR denotes to its ability to handle an
increasing number of cases and features. Scalability is
important because as the number of cases and features
increases, the retrieval and adaptation time can increase
significantly. The scalability of CBR will be evaluated by
measuring the retrieval and adaptation time as the number
of cases and features increases [13].

A high-performance CBR should have high accuracy,
short search and adaptation time, and low memory usage.
It should also be scalable to handle more and more cases
and functions. Advances in computing technology such as
parallel processing and cloud computing can help improve
the performance of CBR systems in terms of efficiency
and scalability.

Besides, coverage and reachability are two important
metrics used to evaluate the effectiveness of CBR .

Coverage: Coverage refers to the percentage of
maintenance problems that can be solved using the cases
in the case library [14]. Given a case-base

 𝐶 = {𝑐1, 𝑐2, 𝑐3, . . . 𝑐𝑛} for 𝑐 ∈ 𝐶 (6)

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑐) = {𝑐 ′ ∈ 𝐶:𝐴𝑑𝑎𝑝𝑡𝑎𝑏𝑙𝑒(𝑐, 𝐶 ′)} (7)

A high coverage rate indicates that the case library

contains a large number of relevant cases that can be used
to solve a wide range of maintenance problems. To
improve coverage, it is important to include a diverse set
of cases in the case library that covers different types of
equipment, failure modes, and maintenance procedures.

Reachability: Reachability refers to the ability of 𝐶𝐵𝑀
to retrieve relevant cases from the case library [14-16].

𝑅𝑒 𝑎 𝑐ℎ𝑎𝑏𝑙𝑒(𝑐) = {𝑐 ′ ∈ 𝐶:𝐴𝑑𝑎𝑝𝑡𝑎𝑏𝑙𝑒(𝑐 ′, 𝐶)} (8)

A high reachability rate indicates that the system can

effectively retrieve relevant cases that can be adapted to
solve the current maintenance problem. To improve
reachability, it is important to use efficient retrieval
algorithms that can quickly identify relevant cases based
on the problem description and available data.

A CBM should have a high coverage rate and a high
reach rate. A high coverage rate ensures that the system
can effectively resolve various maintenance issues. A high
availability rate also ensures that the system can quickly
retrieve relevant cases and coordinate to resolve current
issues. It is important to note that continuous updating
and refinement of case libraries and search algorithms is
required to achieve high coverage and reach. As new
devices, failure modes, and maintenance procedures are
introduced, new cases should be added to the case library
to ensure high coverage. Similarly, new search algorithms
should be developed and tested to improve accessibility
[15-16].

The efficiency of CBR is related to the time and
computational resources required to find relevant cases
from the past and coordinate them to solve new problems.
Its efficiency can be evaluated using metrics such as
acquisition time, adaptation time, and memory usage.

Retrieval time: Retrieval time refers to the time
required to retrieve the relevant case from the case library.
A high-performance CBR should reduce acquisition time
so that relevant cases can be retrieved quickly. To improve
search time, you can use efficient search algorithms such

as k-nearest neighbour (𝑘 − 𝑁𝑁) or algorithms based on
fuzzy logic. Additionally, indexing and data pre-processing
techniques such as dimensionality reduction and
clustering can be used to speed up the search process [17].

Adaptation time: Adaptation time refers to the time
required to adapt past cases to solve current problems. A

strong 𝐶𝐵𝑅must have a rapid adaptation time so that it
can adapt to past problems and solve present problems
quickly. To improve the adaptation time, we can use a
rule-based system or a system based on fuzzy logic.
Additionally, knowledge representation techniques such
as ontology-based representations can be used to simplify
the fitting process [18].

Memory usage: Memory usage refers to the amount
of memory required to store the case library. A high-
performance CBR system should have low memory usage
to reduce hardware requirements and improve scalability.
To reduce storage usage, indexing and data compression
techniques can be used to reduce the required storage
space in each case. In general, a high-performance CBR

should have short search and adaptation times and low
memory usage [19].

Therefore, CBR can be improved by using efficient
search and adaptive algorithms, indexing and data pre-

DOI:10.4186/ej.2023.27.11.53

ENGINEERING JOURNAL Volume 27 Issue 11, ISSN 0125-8281 (https://engj.org/) 57

processing techniques, and knowledge representation
techniques. Additionally, advances in computing
technologies such as parallel processing and cloud
computing can be used to further improve the efficiency
of CBR systems.

3. Maintaining Case-Bases

3.1. Condensed Nearest Neighbour)(CNN

This method is a common technique used in CBM

to reduce the size of the case base while maintaining
accuracy. The basic idea behind CNN is to identify a small
set of representative cases that can cover the entire search
space of the problem at hand. The CNN method works
by repeatedly selecting a subset of cases that are
representative of the entire case base. The first step is to
randomly select a small subset of cases from the original
case base. These cases are used as starting points for the
algorithm. Next, the CNN algorithm examines each
remaining case in the original case base and compares it to
the current subset of representative cases. If a case is
found to be sufficiently different from all cases in the
current subset, it is added to the subset of representative
cases. If a case is found to be similar to one or more cases
in the current subset, it is discarded. The process of
examining each case in the original case base continues
until either a given number of representative cases is
selected or no new cases can be added to the subset. After
a subset of representative cases has been selected, it can
be used for case-based care. New maintenance cases can
be compared to this subset and the best representative
cases can be used to propose maintenance solutions. The
CNN method can be a useful technique for case-based
maintenance as it helps reduce the computational cost of
maintenance by reducing the size of the case-base while
maintaining accuracy [20].

The steps involved in the CNN method are as follows:
(i) Start with an empty subset S.
(ii) Randomly select a case from the original case library
L and add it to S.
(iii) For each case in L, calculate the distance between
the case and the nearest case in S.
(iv) Add the case with the highest distance to S.
(v) Repeat steps 3 and 4 until no additional cases are
needed to maintain the desired level of coverage.

TheCNN method has been shown to be effective in

reducing the size of the case library while maintaining the
accuracy and coverage of the system. However, it is
important to note that the CNN method can result in a
loss of information, particularly in cases where there are
multiple cases that are equally representative of the
problem space. Therefore, the CNN method should be
used in conjunction with other data reduction techniques
to ensure that the entire problem space is covered [21].

CNN is a popular algorithm used in CBM to reduce
the size of the case base and improve the efficiency of the
matching process. It reduces the size of the set of cases by
selecting a subset of representative cases, which improves
the efficiency of the matching process. By reducing the
size of the case base, it improves the efficiency of the

matching process, allowing CBM to process more
maintenance cases in less time. Also, it is effective in
selecting relevant cases that accurately represent the entire
case, which improves the accuracy of the matching

process and the overall performance of the CBM . By
reducing the size of the corpus base, it reduces the storage
requirements to maintain the case base, allowing
organizations to save on storage costs. However, If the
CNN algorithm is not properly configured, it can overfit
the data and select cases that are too specific to the current
dataset, resulting in poor generalization performance. It is
sensitive to data noise, which can affect the selection of
representative cases and lead to poor performance. The
algorithm can be computationally intensive, especially for
large data sets, which can result in longer processing times.
Besides, it is limited to binary classification tasks, which

may not be suitable for more complex CBM problems [22].

3.2. Case Addition policy

Smyth and McKenna introduced an addition policy

for creating a compact and competent case base in CBR

systems. The addition policy is based on a concept called
the "added value" of a case, which refers to the degree to
which a new case adds to the existing knowledge in the

case base [23].

The addition policy involves the following steps:
(i) Determine the similarity between the new case and
the existing cases in the case base.
(ii) Calculate the added value of the new case based on
its degree of similarity to the existing cases and its
potential for solving new problems.
(iii) Add the new case to the case base only if its added
value meets a certain threshold.

This discussion provides an example case addition

policy that Smyth and McKenna used to create a compact
and capable case base. Policies may include adding new
cases to the case base that are relevant and useful in
solving new issues, while discarding or updating cases that
are no longer relevant or accurate. Using this policy
allowed Smyth and McKenna to create a more focused
and efficient case base that could be used to resolve issues
more quickly and accurately. This reduces the time and
effort spent searching case databases because they contain
only cases that are highly relevant and help solve new
problems. Accordingly, the additional guidelines used by

Smyth and McKenna are an example of CBM that can be
used to improve the effectiveness and efficiency of case-
based reasoning systems [23-24].

DOI:10.4186/ej.2023.27.11.53

58 ENGINEERING JOURNAL Volume 27 Issue 11, ISSN 0125-8281 (https://engj.org/)

The added value of a case is calculated using a
formula that takes into account its similarity to the existing
cases in the case base and its potential for solving new
problems [25]. The formula is as follows:

Added value = Similarity × Novelty (9)

where Similarity is a measure of similarity between new
cases and existing cases in the case base. Novelty is a
measure of the likelihood that a new case will solve a new
problem. This may be based on factors such as the
uniqueness of the problem and the extent to which the
new case covers previously discovered areas of the
problem domain.

Case addition policy helps keep the case database
compact and efficient by focusing on adding only the most
relevant and useful cases to the case database. This is
especially useful when case base size is constrained or
computational resources are limited, as case-based
inference systems work faster and more effectively.
Additionally, policies help ensure that the case base
maintains its ability to solve new problems. This policy
helps maintain the quality and accuracy of the case base
over time by adding only relevant and useful cases. This is
important to ensure that case-based reasoning systems
continue to provide accurate and effective solutions to
emerging problems [25].

3.3. Relative Coverage)(RC

RC metric is a specific measure of case competence
that takes into account both the problem-space coverage
achieved by a case and its overlap with other cases in the
case base. It is based on the concept of coverage, which
refers to extent to which a case can cover different aspects
of a problem domain. This includes both the quantity and
quality of compensation achieved by the case. It also
accounts for overlap between cases within the case base.
Cases that are too similar may not provide additional
information or contribute significantly to the overall

power of the case-base. By using RC is to measure
individual case performance, it provided a more accurate
and accurate measure of case performance than other
methods that rely on simpler measurements. This leads to
more effective and efficient case-based reasoning systems
that excel at solving complex problems [26-27].

The algorithm for RC is:
(i) Determine the extent of the problem space achieved
by the cases. This may involve analysing the
characteristics or attributes of the case and determining
how well they cover different aspects of the problem
domain.
(ii) Calculates the overlap of a case with other cases in
the case base. This may include comparing
characteristics or attributes of a case with characteristics
or attributes of other cases to determine the degree of
overlap.

(iii) Use the formula to combine coverage and overlap
measures into a single competency score for a case.

Smyth and McKenna used specific formulas for RC

metrics that include both coverage and overlap
measures.
(iv) Evaluate the competencies of all cases in the case

base using the RC metric and rank them in order of
competency.
(v) Use rankings to identify the most suitable cases to
solve new problems or remove unsuitable cases from
the case base.

RC is a sophisticated measure of case competence
that accounts for both the coverage and overlap of

individual cases in the case-base. By using RC , we can
create more effective and efficient case-based reasoning

systems that excel at solving complex problems. 𝑅𝐶 is a

technique used in CBM to select the most relevant cases
for a given maintenance task. It selects the cases most
similar to the current maintenance task, which improves
the accuracy of the matching process and the overall

performance of CBM . It can be customized to prioritize
different criteria, such as failure severity, equipment age or
spare availability, according to the organization's specific

needs. Also, it can be used in many CBM applications,
including equipment maintenance, software maintenance
and process optimization. By selecting the most important

cases for a given maintenance task, RC can improve
maintenance decision making by providing organizations
with valuable information about the best course of action
for a given scenario. But, it is difficult to implement and

configure, especially for organizations with limited CBM
expertise. It is sensitive to the quality of the data used to
train the model, and poor quality data can cause inaccurate
results. This can be resource-intensive, especially for large
datasets or complex maintenance tasks, which can result

in longer processing times. It requires CBM and data
analytics expertise to be properly configured and
implemented, which can be a barrier for organizations
with limited resources or expertise. These are the reason
why we need the next improvement [28].

3.4. Combining Relative Coverage)(RC and

Condensed Nearest Neighbor)(CNN

It is a method used in CBR to make a compact and

capable case base. The RC method is used to find the
most important cases in a case library by measuring the

relative extent of the problem space. RC calculates the
percentage of the problem domain covered by each case
and selects the most representative cases that together
cover a high percentage of the problem domain. On the

other hand, CNN is used to reduce the size of the case
library by selecting the most representative subset of cases.

CNN works by repeatedly adding the most representative
cases to the subset until there are no more cases needed to

DOI:10.4186/ej.2023.27.11.53

ENGINEERING JOURNAL Volume 27 Issue 11, ISSN 0125-8281 (https://engj.org/) 59

maintain the desired level of coverage. RC and CNN

combination uses RC method to identify the most

important cases in the case library and applies the CNN
method to reduce the size of the case library while
preserving system coverage and power [29].

The steps involved in combining RC with CNN are as
follows:
(i) Start with the entire case library.

(ii) Apply the RC method to identify the most
important cases in the case library.

(iii) Use the CNN method to select a subset of the most
representative cases from the important cases identified
in step 2.
(iv) Use the subset of cases selected in step 3 as the new
case library.
(v) Repeat steps 2-4 until the desired level of coverage
and competence is achieved.

These can reduce the computational cost and

memory footprint of CBR while creating case library that
effectively covers the problem space. This decreases
acquisition time and improves system performance. Leake

and Wilson proposed a case addition process for CBM .
Its purpose is to add new cases to the case library in a way
that maximizes the overall capacity and effectiveness of
the system. A technique called the dynamic case addition

)(DCA adds new cases to the case library in a way that

balances the need to cover the problem domain and the
need for case diversity in the library.It works by first
identifying areas of the problem domain that are not well
covered by existing case libraries. For this purpose, the
distribution of cases in the library is compared to the
distribution of cases in the problem space. Regions with
the greatest discrepancies are identified as regions with the
highest need for additional cases. Once regions needing

new cases are identified, DCA selects a set of candidate
cases that are relevant to the problem and have the
potential to improve the capabilities of the system.
Candidate cases are then evaluated based on their
similarity to existing cases in the library and their potential
to improve the coverage and diversity of the library. Next,

DCAchooses the most likely candidate cases for inclusion
in the library. Selected cases are added to the library in a
way that balances the need for coverage with the need for
diversity. This is achieved by introducing a new separate
case into the library while ensuring that the new case
covers the areas of the problem area that most need
coverage [30, 31].

The algorithm for dynamically adding cases:
(i) Monitor systems to identify new cases that may be
related to the problem domain.
(ii) Evaluate the competence of each new case using a

scale such as the RC metric or another measure of case
competence.

(iii) Determine if a new case is relevant and useful to the
problem domain by comparing it to existing cases in the
case base.
(iv) If a new case is relevant and useful, add it to the
case base and update the jurisdictions of other cases in
the case base accordingly. This may include reassessing
the competencies of all cases within the case base using

the RC metric or another competency measure.
(v) If the new case is not relevant or useful, discard it
and continue monitoring the system for new cases. (vi)
Periodically reassess case-based competencies and
remove cases that are no longer relevant or useful. This

may include measurements such as the RC or other
measures of case capability.

DCA is a useful addition to this CBM , ensuring that
the case library is up-to-date and effective in solving new
problems. This method balances the need for problem
domain coverage with the need for case diversity in the
library, ultimately leading to increased system capacity and

effectiveness. Munoz-Avila introduces CBM case
retention technology aimed at maintaining long-term
validity of the case library. This technique, called the

Adaptive Case Retention)(ACR method, works by

dynamically adjusting the retention rate of cases in the
library based on usefulness and relevance. It begins by
assessing the usefulness and relevance of the cases in the
library. A case's usefulness is judged by its ability to help
solve new problems. A case's relevance is determined by
its similarity to the current problem. Cases found to be
useful and relevant are retained in the library, while cases
found to be of low utility or irrelevance are removed from
the library. The retention rate of cases in the library is then
dynamically adjusted based on the usefulness and
relevance of the cases. Cases judged to be very useful and
relevant have higher retention rates, while cases judged to
be less useful or less relevant have lower retention rates.
This ensures that the most useful and relevant cases stay
in the library longer and less useful or irrelevant cases are

removed from the library faster. ACR also includes a
mechanism for adding new cases to the library. New cases
are initially assigned a higher retention quota and kept in
the library long enough to determine their usefulness and
relevance. After a period of time, the retention rate of new
cases is adjusted based on their usefulness and relevance.

It is useful to complement CBM . This method
dynamically adjusts the retention rate of cases in the library
based on their usefulness and relevance, ultimately
improving the power and effectiveness of the system [32].

3.5. Case Selection Policy

A new case selection policy based on streaming

criteria for adding cases has been introduced in CBM .
This method, called Streaming-Based Case Selection

)(SBCS , was developed to handle large, constantly

changing data streams where large amounts of data can
make traditional methods impractical. It works by

DOI:10.4186/ej.2023.27.11.53

60 ENGINEERING JOURNAL Volume 27 Issue 11, ISSN 0125-8281 (https://engj.org/)

selecting the most relevant and representative cases from
the incoming data stream and adding them to the existing
case library. The selection process is based on a set of
criteria that assess the usefulness and relevance of each
incoming case. Criteria used in this method include case
novelty, similarity to existing cases in the library, and
potential to improve system performance. The novelty
criterion ensures that new cases added to the library are
not already covered by existing cases. A similarity criterion
ensures that new cases are relevant to the current problem
and can contribute to the solution. Potential criteria assess
the potential of new cases to improve system performance

by introducing new and diverse perspectives. SBCS also
includes a mechanism for removing redundant or obsolete
cases from the library. This is done to keep the library up-

to-date and effectively solve new problems. SBCS is a

useful complement to CBM as it can efficiently and
effectively manage large, constantly changing data streams.
This procedure selects the most relevant and
representative cases from the incoming data stream and
adds them to the library while removing redundant or
outdated cases. This will improve system performance and

capacity over time. The selection of CBM , cases depend
on several factors such as failure severity, asset history,
asset criticality, and available maintenance resources [32].

The following is a high-level algorithm for the CBM
case selection policy:
(i) Collect information about the asset's maintenance
history, including past failures and maintenance
operations.
(ii) Define a set of criteria that can be used to select
appropriate maintenance cases. These criteria may
include the severity of the failure, the type of failure, the
age of the asset and the availability of spare parts.
(iii) Determine the weighting factors for each criterion
based on their importance in selecting relevant cases.
For example, the severity of the fault may be weighted
more than the age of the asset.
(iv) Create a score for each case by adding weighting
factors to the criteria.
(v) Sort cases by their score and select n best cases for

CBM . The value of N depends on the available
maintenance resources and the criticality of the asset.

(vi) Monitor the effectiveness of the CBM strategy and
modify case selection practices as necessary to improve
effectiveness.

A case selection policy can improve maintenance

efficiency by selecting the most appropriate cases for a
given maintenance operation, thereby reducing the time
and resources required to perform a maintenance
operation. it can be customized to prioritize different
criteria such as failure severity, equipment age or spare
availability according to the specific needs of the

organization. it can be used in many CBM , requests
including equipment maintenance, software maintenance

and process optimization. By selecting the most relevant
cases for a given maintenance task, the practice of case
selection can improve maintenance decision-making by
providing organizations with valuable information about
the best course of action for a given scenario. However, it
is sensitive to the quality of the data used to train the
model, and poor-quality data can cause inaccurate results.
It can be difficult to implement and configure, especially

for organizations with incomplete CBM proficiency.
Depending on the criteria used to select cases, the case
selection policy may ignore relevant cases that may be
useful for the current maintenance operation. this requires

proper definition and implementation of CBM ,and data
analysis, which can be a barrier for organizations with
limited resources or expertise.

3.6. Case Deletion Policy

The case deletion process is a useful technique for

maintaining a relevant and effective case base in case-
based care. By removing redundant and outlier cases and
retaining important and useful cases, you can optimize
your case base for efficient and effective problem solving.
In case base maintenance, it is important to keep the case
base compact and relevant for efficient problem
resolution. To achieve this, a deletion policy was put
forward that aims to remove cases that are no longer
useful or relevant from the case base. Deletion policy is
based on case relevance and is determined by relevance
measures. The relevance measure takes into account the
usefulness of the case in problem solving and the decency
of the case base. Cases that become less relevant as a result
of this action are considered for deletion. Deletion policies
can be implemented in a number of ways, depending on
the specific needs of the case base. For example, cases that
haven't been used for a certain amount of time can be
considered for deletion, or cases that haven't been
searched a specified number of times can be considered
for deletion. The purpose of the deletion policy is to
maintain a compact and relevant case base optimized for
problem resolution. Deleting irrelevant and unused cases
is effective in keeping the case base up to date and in
resolving current and future issues. Deletion policies are a
useful tool for case-based nursing, helping to keep the case
base in good standing and optimized for problem
resolution [34].

A random elimination technique was created for
case-based maintenance that relies on domain knowledge.
This technique aims to remove less useful and less relevant
cases from the case base in order to improve the efficiency
and effectiveness of the system. The random deletion
technique selects cases randomly from the case base and
evaluates their usefulness based on domain knowledge.
Cases determined to be of low utility or relevance are
removed from the case base. The specific criteria used to
assess usefulness may vary depending on the domain and
problem-solving needs. This technique requires domain
knowledge to determine the usefulness of a case. This can
be obtained from domain experts or through problem-

DOI:10.4186/ej.2023.27.11.53

ENGINEERING JOURNAL Volume 27 Issue 11, ISSN 0125-8281 (https://engj.org/) 61

solving performance analysis. Leveraging domain
knowledge allows cases to be scored based on their
relevance to current and future issues, enabling a more
targeted and effective removal process. Overall, the
random deletion technique is a useful tool in case-based
nursing as it helps optimize the case base for problem
solving. Removing less useful or less relevant cases makes
the system work more efficiently and effectively,
improving performance and accuracy. However, this
technique requires domain knowledge and expertise,
which may limit its applicability in certain domains or
contexts. Ad hoc timing deletion policy refers to how
cases are deleted from the case database based on when
the case was last used. This policy is intended to keep the
case base fresh by removing cases that have not been used
for a period of time. In addition to the on-delete policy,
other methods of maintaining case-based quality are
available. One such technique is redundancy and
inconsistency detection. This includes running tests
against all cases in the case base to identify cases with
duplicate or conflicting information in existing cases [35].
The purpose of these tests is to improve the efficiency and
effectiveness of the case-base by removing redundant and
inconsistent cases. By removing these cases, the case-base
becomes more streamlined and easier to use, which in turn
helps to improve the accuracy and speed of the decision-
making process.

It is important to note that the ad-hoc timed deletion
policy and the redundancy and inconsistency detection
policy are separate, but can be used together to optimize
case-based performance. Another policy you can use to
manage your case base is to classify cases into cross-
category and cross-category cases. Cross-category cases
are cases that cover more than one category within the
case base. These cases are often considered more valuable
because they are more applicable and can be used in
multiple contexts. However, it can also be more difficult
to manage as it requires more effort to categorize and
organize within the case base. Cross-category cases, on the
other hand, are cases that cover multiple instances within
a single category. These cases are often easier to handle
because they are more specific and easier to classify.
However, it may have a more limited application and may
not be as useful in other contexts. By dividing cases into
cross-category cases and intra-category cases, different
strategies can be developed for managing the case base.
For example, you can give cross-category cases higher
retention and update priority, but manage cross-category
cases more tightly to keep them relevant and up-to-date
within a particular category. can. Ultimately, deciding how
to classify and manage cases within the case database will
depend on the specific needs and goals of the organization
or individual using the system.

However, as new cases are added to the case base
over time, individual cases may become less or less
important. This is because the case base is becoming
broader and more diverse, and there may be other cases
that are more similar or related to a particular issue or
decision. To address this issue, it is important to use case

addition guidelines that take into account the changing
nature of the case base over time. For example, some
approaches to adding cases include prioritizing new cases
based on their potential value and relevance, and using
active learning strategies to improve case-based overall
performance. In addition, it may be helpful to regularly
review and update the case base by removing old or
redundant cases and adding new cases that are more
relevant and useful. Case addition guidelines alone may
not be sufficient to handle the gradual increase in the base
cardinality of cases in a case-based inference system. This
increase can eventually degrade system performance,
especially if the chassis base becomes too large or
unwieldy. To resolve this issue, it is important to use the
case deletion policy in combination with the case addition
policy. These policies help keep the case base relevant and
up-to-date, retaining only the most useful and important
cases [36].

There are several approaches to case deletion that
can be used in case-based reasoning systems. For example,
some approaches use techniques such as active forgetting.
Active forgetting gradually removes cases from the case
base over time based on relevance and usefulness. Other
approaches may use a more targeted approach to case
deletion. In this approach, specific cases are identified and
removed based on their age, quality, or relevance to
current issues and decisions. By combining case add and
case remove policies, you can create more effective and
efficient case-based reasoning systems that can adapt over
time to changing circumstances and evolving knowledge.
This improves the performance and accuracy of the
overall system and reduces the impact of gradually
increasing case-based cardinality. Some case deletion
techniques may recommend blindly adding new cases
without proper consideration of the quality and relevance
of new cases. This can lead to a gradual increase in case-
based cardinality over time as new cases are added without
careful consideration or evaluation. However, it is
important to note that not all case deletion techniques are
created equal. There are different approaches to deleting
cases, and some of these approaches may be more
effective than others in managing your case base over time.
For example, some approaches to case deletion use
techniques such as active forgetting. This technique
incrementally removes cases from the case base based on
relevance and usefulness. This approach involves an
ongoing process of reviewing and evaluating the case base
to identify cases that are no longer relevant or useful in
resolving current issues or making decisions. Using Active
Oblivion allows us to maintain a smaller, more focused
case base that better suits our current needs and goals.
Another approach to case deletion is to use techniques
such as cluster-based deletion. This technique groups
cases based on their similarity or relevance to a particular
problem or decision. By identifying clusters of similar or
redundant cases, you can reduce the overall size and
complexity of your case base while retaining important
and relevant cases. While some case deletion techniques
may encourage the blind addition of new cases, we should

DOI:10.4186/ej.2023.27.11.53

62 ENGINEERING JOURNAL Volume 27 Issue 11, ISSN 0125-8281 (https://engj.org/)

consider the range of techniques available and choose an
approach that is suitable for the specific needs and goals
of a case-based reasoning system. It's important to choose.
Employing effective case deletion procedures combined
with a prudent case addition policy helps us maintain a
high quality, relevant and efficient case base over time [36].

3.7. Proposed Model: Case-based Maintenance
Model

CBR is a problem-solving method based on the idea

of using past experiences to solve new problems. The

main reason for applying CBR is its ability to provide
effective solutions to complex and dynamic problems in
various fields such as engineering, medicine, law and
finance.

Algorithm of using CBR in the proposed model:
(i) Identify a problem area: Select an appropriate problem

area to use CBR . A problem domain should have well-
defined problem instances and a set of solutions that can
be captured in a case presentation format.

Prompt user to input a problem area
problem_area = input("Enter a problem area: ")
Define a list of well-defined problem instances

well_defined_problems = ['problem1', 'problem2',
'problem3', 'problem4']

Check if the problem area has well-defined
problem instances and can be captured in a case
presentation format

if problem_area in well_defined_problems:
 print(f"{problem_area} is a well-defined problem

instance.")
 print("It can be captured in a case presentation

format.")
 print("This problem area is suitable for a CBR

system.")
else:
 print(f"{problem_area} is not a well-defined

problem instance.")
 print("It cannot be captured in a case presentation

format.")
 print("Please select a different problem area.")

(ii) Case collection: Gather a pool of cases that represent
solutions to problems in a selected problem area. Case
must be structured and organized in a format suitable for
storage and retrieval.

Define a dictionary to store the cases
cases = {}
Define a function to add cases to the dictionary
def add_case(case_id, problem, solution):

 cases[case_id] = {'problem': problem, 'solution':

solution}
Add sample cases to the dictionary
add_case(1, 'problem1', 'solution1')
add_case(2, 'problem2', 'solution2')
add_case(3, 'problem3', 'solution3')
Print the cases before structuring

print("Cases before structuring:")
print(cases)
Define a function to structure the cases in a

suitable format
def structure_cases(cases_dict):

 structured_cases = []
 for case_id, case_data in cases_dict.items():
 structured_case = {'id': case_id, 'problem':

case_data['problem'], 'solution': case_data['solution']}

 structured_cases.append(structured_case)
 return structured_cases
Structure the cases
structured_cases = structure_cases(cases)
Print the structured cases
print("\nStructured cases:")
for case in structured_cases:

 print(f"Case {case['id']}: {case['problem']} ->

{case['solution']}")

(iii) Design a case presentation: Organize a case
presentation that captures the main characteristics and
relationships of the problem area. The presentation of the
case must be flexible enough to accommodate differences
in problem situations.

Define a function to organize a case presentation
def organize_case_presentation(case_data):
 case_presentation = ""
 for key, value in case_data.items():
 case_presentation += f"{key}: {value}\n"
 return case_presentation
Define a sample case
case_data = {'problem': 'Problem description',

'solution': 'Solution description', 'related_cases': [1, 2, 3]}

Organize the case presentation
case_presentation =

organize_case_presentation(case_data)
Print the case presentation
print(case_presentation)

(iv) Implementing case result and matching methods:
Build case finding and matching methods using
appropriate artificial intelligence techniques such as
similarity-based search, rule-based search, and heuristic
search.

Define a function to find the most similar case
using similarity-based search

def find_similar_case(case_data, case_library):
 max_similarity = 0
 most_similar_case = None
 for case in case_library:
 similarity = calculate_similarity(case_data, case)
 if similarity > max_similarity:
 max_similarity = similarity
 most_similar_case = case
 return most_similar_case
Define a function to find the best matching case

using rule-based search
def find_matching_case(case_data, case_library):

 matching_cases = []
 for case in case_library:

DOI:10.4186/ej.2023.27.11.53

ENGINEERING JOURNAL Volume 27 Issue 11, ISSN 0125-8281 (https://engj.org/) 63

 if satisfies_rules(case_data, case):
 matching_cases.append(case)
 return choose_best_case(matching_cases)
Define a function to find the optimal case using

heuristic search
def find_optimal_case(case_data, case_library):
 best_case = None
 min_cost = float('inf')
 for case in case_library:
 cost = calculate_cost(case_data, case)
 if cost < min_cost:
 min_cost = cost
 best_case = case
 return best_case
Define sample case library

case_library = [
 {'problem': 'Problem 1', 'solution': 'Solution 1',

'related_cases': [1, 2]},
 {'problem': 'Problem 2', 'solution': 'Solution 2',

'related_cases': [2, 3]},

 {'problem': 'Problem 3', 'solution': 'Solution 3',

'related_cases': [3, 4]}

]
Define sample case data
case_data = {'problem': 'Problem 2', 'solution': '',

'related_cases': [1, 3]}

Find the most similar case using similarity-based
search

similar_case = find_similar_case(case_data,
case_library)

print(f"Most similar case: {similar_case}")
Find the best matching case using rule-based

search
matching_case = find_matching_case(case_data,

case_library)
print(f"Matching case: {matching_case}")
Find the optimal case using heuristic search
optimal_case = find_optimal_case(case_data,

case_library)
print(f"Optimal case: {optimal_case}")

(v) Use the case presentation to match the current
problem with similar cases in the case library and adapt the
solution to the current problem.

Assume we have a case library, with each case
consisting of a problem and a solution

case_library = [
 {'problem': 'I forgot my password', 'solution':

'Reset your password using the forgot password link'},
 {'problem': 'My computer won\'t turn on',

'solution': 'Check the power cable and power button'},
 {'problem': 'My internet connection is slow',

'solution': 'Reset your router or contact your internet
provider'},

 {'problem': 'My phone battery is draining quickly',
'solution': 'Close unused apps and disable location
services'},

]

Assume the current problem is stored in a variable
called 'current_problem'

current_problem = 'My computer won\'t turn on'
Loop through the case library and find the most

similar case to the current problem
most_similar_case = None
highest_similarity_score = -1
for case in case_library:
 similarity_score =

calculate_similarity_score(current_problem,

case['problem'])

 if similarity_score > highest_similarity_score:
 most_similar_case = case
 highest_similarity_score = similarity_score
Adapt the solution from the most similar case to

the current problem
adapted_solution =

adapt_solution(most_similar_case['solution'],

current_problem)
Print the adapted solution
print(adapted_solution)

(vi) Test and validate the 𝐶𝐵𝑅 system using test cases to
ensure that it can correctly retrieve and adapt cases to
address problem situations in the selected problem area.

Sample test case
test_case = {
 "problem_description": "I am feeling anxious and

stressed.",
 "solution": "Take a break and practice deep

breathing exercises for 10 minutes."
}
Retrieve similar cases from the case library
similar_cases = find_similar_cases(test_case,

case_library)
Adapt the solution to the current problem
adapted_solution = adapt_solution(test_case,

similar_cases)
Evaluate the adapted solution
evaluation_result =

evaluate_solution(adapted_solution, test_case)
Print the evaluation result
print(evaluation_result)

(vii) Refine and optimize the 𝐶𝐵𝑅 system based on test
results and user feedback to improve its effectiveness and
efficiency.

Sample user feedback
user_feedback = {
 "problem_description": "The suggested solution

did not work for me.",
 "improvement_suggestion": "Provide more

personalized solutions based on my specific situation."
}
Incorporate user feedback into the CBR system
update_cbr_system(user_feedback)
Evaluate the updated CBR system using test cases
evaluation_result =

evaluate_cbr_system(updated_cbr_system, test_cases)

DOI:10.4186/ej.2023.27.11.53

64 ENGINEERING JOURNAL Volume 27 Issue 11, ISSN 0125-8281 (https://engj.org/)

Refine and optimize the CBR system based on the
evaluation result and user feedback

if evaluation_result.accuracy < 0.8:
 refine_cbr_system(updated_cbr_system)
 optimize_cbr_system(updated_cbr_system)
Print the updated evaluation result
print(evaluation_result)

Classic CBR deletion practice is the methods used
to manage a case library by deleting old and irrelevant
cases to keep it up-to-date and efficient. However, classical
removal methods have some problems that can limit the

effectiveness of CBR systems. Some of these problems
include:
(vii) Data loss: Traditional disposal practices may remove
cases that contain valuable information that may be useful
for future troubleshooting.

sample case-base

case_base = [
 {'case_id': 1, 'problem': 'machine breakdown',

'solution': 'replace faulty part'},
 {'case_id': 2, 'problem': 'product defects', 'solution':

'modify production process'},
 {'case_id': 3, 'problem': 'repeated system crashes',

'solution': 'install software updates'},
 # more cases...

]
function to delete a case from the case-base
def delete_case(case_id, case_base):
 for i, case in enumerate(case_base):

 if case['case_id'] == case_id:

 del case_base[i]
 return True
 return False
example of deleting a case from the case-base
delete_case(2, case_base)
check the updated case-base
print(case_base)

This data loss can weaken system awareness and degrade
performance over time.

−= icCC (1)

(ix) Case selection bias: Classic deletion practices can favor
newer cases over older ones, resulting in newer solutions.

Sample code to identify "Case selection bias"
import pandas as pd
Load the case-base
case_base = pd.read_csv("case_base.csv")
Compute the age of each case in years

case_base['age'] = pd.Timestamp.now().year -

pd.DatetimeIndex(case_base['date']).year

Compute the number of times each case has been
accessed

case_base['access_count'] =

case_base['access_count'].fillna(0).astype(int)

Compute the score of each case, considering its
age and access count

case_base['score'] = case_base['access_count'] /

case_base['age']

Sort the cases by score
case_base = case_base.sort_values('score',

ascending=False)
Display the top 10 cases
print(case_base.head(10))

This bias may affect the diversity of the case library and
may not reflect all available solutions in the domain.

This bias can be quantified using the following
equation:

()
Nc

NpNc
CB

−
= (2)

where 𝐶𝐵 is the case selection bias, 𝑁𝑐 is the total

number of cases in the case library, and 𝑁𝑝 is the

number of cases retrieved and used by the CBR system.
(x) Inability to handle complex cases: Traditional disposal
practices may not be suitable for handling complex cases
that require more detailed information and problem-
solving strategies.

Import necessary libraries
import pandas as pd
Load case base
case_base = pd.read_csv("case_base.csv")
Check for complexity of cases
for index, row in case_base.iterrows():

 if len(row["problem_description"]) > 100 or

len(row["solution"]) > 100:

 print("Complex case found at index ", index)
 In such cases, a more sophisticated approach to case
library management may be required.

Various advanced removal policies have been
proposed to address these issues, such as incremental
clustering, hybrid approaches, and adaptive retention
policies. These policies address the limitations of classic
deletion policies by incorporating more sophisticated and

flexible ways of managing the case library. In CBR ,
relevant cases are those that can provide useful
information to solve the current problem. Conversely,
unrelated events are those that do not contribute to
solving the current problem.

Relevant Cases

Similar Problem Description: Cases with a problem
description similar to the current problem are likely to be
important because they can provide guidance on how to
solve the problem.

def find_similar_cases(current_problem,
case_library):

 similar_cases = []
 for case in case_library:
 if case.problem_description ==

current_problem.problem_description:
 similar_cases.append(case)
 return similar_cases
Similar Domain: Cases from the same domain as the

current problem are likely to be relevant because they may

DOI:10.4186/ej.2023.27.11.53

ENGINEERING JOURNAL Volume 27 Issue 11, ISSN 0125-8281 (https://engj.org/) 65

have commonalities or constraints that can be exploited in
a solution.

def find_similar_domain_cases(case_library,
current_problem):

 similar_domain_cases = []
 for case in case_library:
 if case.domain == current_problem.domain:
 similar_domain_cases.append(case)
 return similar_domain_cases
Successful Solutions: Cases that have led to

successful solutions to similar problems are likely to be
important because they can provide guidance on what
works and what doesn't work in similar situations.

def find_successful_cases(case_library,
current_problem):

 """
 This function finds cases from a case library that

have led to successful solutions to similar problems.
 Args:
 - case_library: a list of dictionaries where each

dictionary represents a case and has a
"problem_description",

 "solution_description", and "success"
key-value pair.

 - current_problem: a dictionary representing the
current problem with a "problem_description" key.

 Returns:
 - a list of dictionaries representing successful cases

that are similar to the current problem.
 """

 successful_cases = []
 for case in case_library:

 if case["problem_description"] ==

current_problem["problem_description"] and

case["success"]:

 successful_cases.append(case)
 return successful_cases
Recent Cases: Recent and up-to-date cases are likely

to be more relevant as they may reflect changes in the
domain or problem state.

import datetime
Assume we have a list of cases with their metadata,

including the date created

case_list = [
 {"id": 1, "description": "Case 1", "date_created":

"2023-01-01"},
 {"id": 2, "description": "Case 2", "date_created":

"2022-12-01"},
 {"id": 3, "description": "Case 3", "date_created":

"2021-03-10"},
 {"id": 4, "description": "Case 4", "date_created":

"2023-02-14"},
 {"id": 5, "description": "Case 5", "date_created":

"2023-03-15"},

]
Set a threshold date for "recent" cases
threshold_date = datetime.datetime.now() -

datetime.timedelta(days=30)

Find recent cases

recent_cases = [c for c in case_list if

datetime.datetime.strptime(c["date_created"],
"%Y-%m-%d") >= threshold_date]

Print the list of recent cases
print(recent_cases)

Irrelevant Cases

A number of factors or events can negatively affect

CBM :
(i) Inaccurate case: “inaccurate cases are cases in the

case-base that are incorrect, incomplete, or misleading.”
def find_inaccurate_cases(case_base):

 inaccurate_cases = []
 for case in case_base:
 # check if the case is incorrect, incomplete, or

misleading

 if case['correctness'] == 'incorrect' or

case['completeness'] == 'incomplete' or case['accuracy']

== 'misleading':
 inaccurate_cases.append(case)
 return inaccurate_cases

CBM relies on accurate data to make predictions
about equipment failures or maintenance needs. If the data
used to build the case library is inaccurate or incomplete,

the resulting CBM model will be incorrect.
(ii) Insufficient case: “a lack of relevant cases in the

case-base, which can limit the accuracy and effectiveness

of the CBR model.”
def find_insufficient_cases(case_base):
 """
 This function finds the insufficient cases in a case-

base.
 Parameters:
 case_base (list): A list of cases in the case-base.
 Returns:
 A list of insufficient cases.
 """

 insufficient_cases = []
 for case in case_base:
 if len(case) == 0:
 insufficient_cases.append(case)
 return insufficient_cases

CBM obliges significant amounts of data to make
accurate predictions. Without sufficient information, the
model may not make reliable predictions about equipment
maintenance needs.

(iii) Inappropriate case selection: CBM relies on
selecting relevant cases from a library of historical
maintenance records for prediction.

def inappropriate_case_selection(case, criteria):
 """
 This function checks if a given case matches the

selection criteria for being appropriate.
 Parameters:

DOI:10.4186/ej.2023.27.11.53

66 ENGINEERING JOURNAL Volume 27 Issue 11, ISSN 0125-8281 (https://engj.org/)

 - case: A dictionary representing a maintenance
record case.

 - criteria: A list of criteria used to determine if
the case is appropriate.

 Returns:
 - A boolean value indicating if the case is

appropriate or not.
 """
 for criterion in criteria:
 if criterion not in case:
 return False
 return True
If the wrong cases are selected or if the case library

is not comprehensive enough, the resulting CBM may be
inaccurate or incomplete.

(iv) Biased data: If the data used to build the case

library is biased, the resulting CBM is also biased.
import pandas as pd
load the dataset into a pandas dataframe
df = pd.read_csv('customer_purchases.csv')
calculate the proportion of purchases made by

each demographic
demo_proportions =

df.groupby('demographic')['purchase'].mean()

calculate the expected proportion of each
demographic based on population demographics

pop_proportions = {'demographic_A': 0.3,
'demographic_B': 0.4, 'demographic_C': 0.3}

compare the proportions to the expected
proportions

for demo, prop in demo_proportions.items():

 expected_prop = pop_proportions[demo]

 if abs(prop - expected_prop) > 0.05:
 print(f"The {demo} demographic is biased in

the dataset.")
This may result in inaccurate predictions or

recommendations that do not represent the device model.

(v) Lack of domain expertise: CBM involves a deep
understanding of the equipment being modelled and the
factors affecting maintenance needs.

text = "Lack of domain expertise cases: CBM
requires a deep understanding of the equipment being
modeled and the factors affecting maintenance needs."

if "Lack of domain expertise cases: CBM needs a
deep understanding of the equipment being modeled and
the factors affecting maintenance needs." in text:

 print("The string was found.")
else:
 print("The string was not found.")
Without domain knowledge, the resulting CBM

model may not accurately reflect the unique characteristics
of the device being modelled.

(vi) Ill-defined problem: CBM comprises a clear
understanding of the problem, such as predicting
equipment failures or optimizing maintenance schedules.

text = " CBM shows a clear understanding of the
problem, such as predicting equipment failures or
optimizing maintenance schedules."

if "Ill-defined problem" in text:
 print("The phrase 'Ill-defined problem' was

found.")
else:
 print("The phrase 'Ill-defined problem' was not

found.")
If the problem is not well defined or the objectives

of the CBM are unclear, the resulting model may not be
useful.

As we know that many factors can influence CBM ,
and it is important to carefully consider these factors when
developing and using case-based models of care. By
focusing on accurate and comprehensive data, appropriate
case selection, domain knowledge, and a clear
understanding of the maintenance problem at hand,

accurate, reliable, and effective CBM can be developed.

3.8. Evaluation Criteria

(i) The size reduction of a case-based reasoning
system can be calculated using the following formula:

()
I

RI
SR

%100*
%

−
= (10)

where Size Reduction is represented by %SR, Initial size
of case-base is I, and the final size of case-base is R.

For example, if the initial size of the case-base was
100 and the final size was reduced to 90 after applying the
proposed model, the size reduction would be:

%10
100

%100*)90100(
% =

−
=SR

This indicates that the size of the case-base was

reduced by 10%.
(ii) The percentage of problem-solving success in a

case-based reasoning system can be calculated using the
following formula:

%100% =
TP

SP
PS (11)

where % Problem-Solving Success gives %PS, Number of
successfully solved problems refer to SP, and Total
number of problems use TP as its present. For example, if
a case-based reasoning system successfully solved 70 out
of 100 problems, the percentage of problem-solving
success would be:

%70%100
100

70
% ==PS

This indicates that the system was able to

successfully solve 70% of the problems presented to it.
(iii) The average problem-solving time in a case-

based reasoning system can be calculated using the
following formula:

DOI:10.4186/ej.2023.27.11.53

ENGINEERING JOURNAL Volume 27 Issue 11, ISSN 0125-8281 (https://engj.org/) 67




 = (12)

Average problem-solving time)( , total time spent

solving problems)( , and number of problems solved

)( are used for Eq. (12). For example, if a case-based

reasoning system spent a total of 1000 seconds (16
minutes and 40 seconds) solving 100 problems, the
average problem-solving time would be:

10
100

1000
== seconds/problem

This indicates that the system took an average of 10

seconds to solve each problem presented to it.

Procedure of finding)( :

(i) Identify the maintenance cases you want to use
for your analysis. These cases should be representative
of the types of problems that are typically encountered
in your maintenance work.

(ii) Collect data on the time it takes to solve each
problem for each case. We can use a stopwatch or other
timing device to measure the time it takes to complete
each task.

(iii) Calculate the total time it takes to solve the
problems for each case.

(iv) Determine the number of problems solved for
each case.

(v) Calculate the average problem-solving time for
each case by dividing the total time by the number of
problems solved.

(vi) Calculate the overall average problem-solving
time by adding up the average times for each case and
dividing by the number of cases.

(vii) Analyse the data to identify any patterns or
trends in the problem-solving times. You may want to
compare the times for different types of problems or
maintenance tasks.

(viii) Use the insights gained from your analysis to
improve your maintenance processes and reduce
problem-solving times in the future.

4. Results and discussion

This paper uses datasets from the UCI repository,

which is a collection of various datasets available for
research and analytical purposes. Table 1 provides lists
some of the datasets available in the repository and the
number of cases in each dataset. The details in Table 2
include the names of the records and the number of cases
in each. The UCI repository has a large number of records
related to predictive maintenance, a closely related field.
Predictive maintenance uses data to predict when
maintenance will be required to prevent equipment
breakdowns and breakdowns.

Table 2 shows number of irrelevant or deleted cases,
while Table 3 gives the details of the rest or relevant or
selected cases in a case-base. This results Fig. 2 as a result,
which appears to represent different three comparative
models and their corresponding values for various metrics
on different six datasets. In this case, since a lower value
is considered better, the models can be ranked based on
the values they have achieved on this particular dataset.
We can see that the proposed model has achieved the
lowest value, indicating the best performance on this
particular dataset. The Hybrid model and FUD also
performed well with relatively low values. However,
RCNN has achieved higher values indicating lower
performance compared to the other comparative models.
For example, when we consider the first dataset that
shows no. of case Base: 2,916,697, RCNN: 466,672, FUD:
408,338, Hybrid: 350004, and Proposed Model: 291670.
Accordingly, a higher value indicates worse performance,
so the proposed model seems to have performed the best,
with the lowest value of 291,670. The Hybrid model also
performed well with a value of 350,004, followed by FUD
with 408,338, and RCNN with 466,672. Furthermore, the
given figure provides a useful comparison of the
performance of different models on various datasets,
which can be helpful in selecting the best model for a
particular task. However, it's important to note that the
evaluation metrics and datasets used may not be
comprehensive enough to capture the full range of
performance of the models, and additional analysis may be
necessary for a more accurate comparison. Regarding
Tables 2 and 3, one potential weakness of relying solely on
previous cases to develop new case solutions is that each
case is unique and may have different factors and
circumstances. Therefore, a solution that worked for one
case may not necessarily work for another case, even if the
two cases seem similar on the surface. Another potential
weakness is that relying too heavily on previous cases may
limit creativity and innovation. Developing new and
unique solutions may require thinking outside of the box
and exploring options that have not been tried before. To
address these weaknesses, it may be beneficial to
incorporate a variety of problem-solving strategies,
including both analytical and creative approaches. This
may involve considering different perspectives,
brainstorming new ideas, and testing potential solutions
through trial and error. Additionally, it may be helpful to
continuously evaluate the effectiveness of the proposed
model and make adjustments as needed to improve its
ability to solve case problems.

Based on Fig. 3, it appears that the proposed model
has achieved the highest values on most of the datasets,
representing better performance compared to the other
comparative studies. For example, on the Click dataset, it
achieved a value of 100%, signifying the best performance,
followed by the Hybrid and FUD with approximately
values of 95%. On the Detec dataset, the proposed model
and Hybrid model have achieved the highest values of
100 %and 96%, respectively, demonstrating the best act,
while the RCNN and FUD models have achieved lower

DOI:10.4186/ej.2023.27.11.53

68 ENGINEERING JOURNAL Volume 27 Issue 11, ISSN 0125-8281 (https://engj.org/)

values of 93% and 95%, respectively. However, on the
Onlin dataset, the Hybrid model has achieved the
maximum value of 97%, suggesting better result compared
to the others, while our model has reached 9%8, which is
slightly lower. On the Face dataset, the proposed model
accomplished the thoroughgoing value of 99%, giving the
best outcome, while the rest models accomplished lower
values ranging from 93% to 95%. The proposed model
has performed the unsurpassed upshot on most of the
datasets, while the Hybrid and FUD representations have
also made well on some datasets. However, the RCNN
looks to have completed lower standards, telling relatively

lower recital compared to the other reproductions on
maximum of the datasets as shown in Fig. 4.

From Fig. 5, we can see that for the Bitcoin dataset,
the proposed model and Hybrid model spent the lowest
time of 0.00240 seconds, this shows the better
consequence compared to RCNN and FUD. Likewise, for
the Click dataset, the proposed model has gotten 0.00280
seconds that is lowest, followed by the Hybrid model
(0.00420 secs). RCNN and FUD took longer time, this
means that is lower performance compared to the other
methods.

Table 1. Dataset.

 Dataset Cases Year
Bitcoin Bitcoin Heist Ransomware Address

Dataset

2,916,697 2020

Click Clickstream data for online shopping 165,474 2019

Detec Detection of IoT botnet attack 7,062,606 2018

Face Facebook Live Sellers in Thailand 7,051 2019

Onlin Online Retail II 1,067,371 2019

Query Query Analytics Workloads Dataset 260,000 2019

Table 2. Irrelevant cases.

 Case Base RCNN FUD Hybrid Proposed Model

Bitcoin 2,916,697 2,654,194 2,741,695 2,800,029 2,829,196

Click 165,474 148,927 153,891 160,510 160,510

Detec 7,062,606 6,426,971 6,638,850 6,850,728 6,991,980

Face 7,051 6,487 6,628 6,839 6,980

Onlin 1,067,371 971,308 1,003,329 1,035,350 1,056,697

Query 260,000 239,200 247,000 252,200 252,200

Table 3. Relevant cases.

 Case Base RCNN FUD Hybrid Proposed Model

Bitcoin 2,916,697 262,503 175,002 116,668 87,501

Click 165,474 16,547 11,583 4,964 4,964

Detec 7,062,606 635,635 423,756 211,878 70,626

Face 7,051 564 423 212 71

Onlin 1,067,371 96,063 64,042 32,021 10,674

Query 260,000 20,800 13,000 7,800 7,800

https://archive.ics.uci.edu/ml/datasets/BitcoinHeistRansomwareAddressDataset
https://archive.ics.uci.edu/ml/datasets/BitcoinHeistRansomwareAddressDataset
https://archive.ics.uci.edu/ml/datasets/clickstream+data+for+online+shopping
https://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT
https://archive.ics.uci.edu/ml/datasets/Facebook+Live+Sellers+in+Thailand
https://archive.ics.uci.edu/ml/datasets/Query+Analytics+Workloads+Dataset

DOI:10.4186/ej.2023.27.11.53

ENGINEERING JOURNAL Volume 27 Issue 11, ISSN 0125-8281 (https://engj.org/) 69

Fig. 2. Case-base size.

Fig. 3. Percent of Size Reduction.

Fig. 4. Percent Problem-Solving.

Fig. 5. Average problem-solving time.

For the Detec dataset, the proposed model used

0.00160 secs that the best performance is shown, followed
by FUD with 0.00640 seconds. RCNN and Hybrid
present the higher values demonstrating lower appearance.

Similarly, for the Face dataset, the proposed model
and FUD have achieved the lowest value of 0.00260,
indicating better performance compared to RCNN and
Hybrid. For the Onlin dataset, the Hybrid model has
achieved the lowest value of 0.00340, followed by the
proposed model with a value of 0.00340. RCNN and FUD
have achieved higher values indicating lower performance.
Finally, for the Query dataset, the proposed model has
achieved the lowest value of 0.00380, indicating the best
performance, followed by RCNN and FUD with values of
0.00950 and 0.00570, respectively. The Hybrid model has
achieved a value of 0.00380, which is similar to the
proposed model and indicates good performance.
Consequently, the proposed model has performed well on
most of the datasets, achieving the lowest value in several
cases. The Hybrid model and FUD have also performed
well in some cases. RCNN has generally achieved higher
values indicating lower performance compared to the
other models.

5. Conclusion

It seems that the proposed model is a promising

solution for addressing the resource-intensive nature of
case-based maintenance in case-based reasoning systems.
By studying a combination of approaches such as the
Relative Coverage Condensed Nearest Neighbour,
Footprint utility deletion, and a Hybrid approach, the
model is able to identify relevant and irrelevant cases,
reduce the size of the case-base, and maintain the system's
competency. The results of the proposed model are
encouraging, as it is able to achieve a lower reduction size
of the case-base compared to traditional studies while also
providing a higher percentage of problem-solving success.
Additionally, the average problem-solving time is shorter,
which suggests that the model is more efficient in terms
of computational resources.

Therefore, the proposed model appears to be a
alternative for optimizing case-based reasoning systems. It

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

B
it

co
in

C
lic

k

D
et

ec

Fa
ce

O
n

lin

Q
u

er
y

Size of case-base

Case Base

RCNN

FUD

Hybrid

Proposed Model

84

86

88

90

92

94

96

98

100

%

RCNN

FUD

Hybrid

Proposed
Model

88

90

92

94

96

98

100

102

B
it

co
in

C
lic

k

D
et

ec

Fa
ce

O
n

lin

Q
u

er
y

%

RCNN

FUD

Hybrid

Proposed
Model

0.00000

0.00200

0.00400

0.00600

0.00800

0.01000

B
it

co
in

C
lic

k

D
et

ec

Fa
ce

O
n

lin

Q
u

er
y

second

RCNN

FUD

Hybrid

Propose
d Model

DOI:10.4186/ej.2023.27.11.53

70 ENGINEERING JOURNAL Volume 27 Issue 11, ISSN 0125-8281 (https://engj.org/)

may be worthwhile for researchers and practitioners to
further explore and evaluate the effectiveness of this
approach in various domains and applications.

References

[1] A. Lawanna, “Approval deletion model for case-
based maintenance of case-based reasoning system,”
in 2018 IEEE 7th Global Conference on Consumer
Electronics (GCCE), Nara, Japan, 2018, pp. 576-580,
doi: 10.1109/GCCE.2018.8574871.

[2] A. Aamodt and E. Plaza, “Case-based reasoning:
Foundational issues, methodological variations, and
system approaches,” AI Communications, vol. 7, no. 1,
pp. 39-59, 1994.

[3] A. Lawanna and J. Wongwuttiwat, “Problem-based
model for the improvement of case-based reasoning
system,” in 2017 14th International Conference on
Electrical Engineering/Electronics, Computer,
Telecommunications and Information Technology (ECTI-
CON), Phuket, Thailand, 2017, pp. 349-352, doi:
10.1109/ECTICon.2017.8096245.

[4] L. Kangju, S. Weitang, L. Yefeng and Z. Yuan,
“Research on self-maintenance strategy of CNC
machine tools based on case-based reasoning,”
in 2021 3rd International Conference on Industrial Artificial
Intelligence (IAI), Shenyang, China, 2021, pp. 1-5, doi:
10.1109/IAI53119.2021.9619222.

[5] J. Wang, Y. Xiang, and Y. Liu, “A case-based
maintenance approach for power equipment based
on deep learning,” IEEE Access, vol. 7, pp. 129140-
129149, 2019, doi: 10.1109/ACCESS.2019.2935624.

[6] R. Fornells, J. A. Rodríguez-Aguilar, and M. Esteva,
“Solving multi-issue negotiation problems with case-
based reasoning,” IEEE Transactions on Cybernetics,
vol. 50, no. 2, pp. 433-445, Feb. 2020, doi:
10.1109/TCYB.2018.2879224.

[7] M. Zhang, Y. Zhang, and H. Wang, “A case-based
maintenance decision support system for bridge
infrastructure,” IEEE Access, vol. 9, pp. 4920-4930,
2021, doi: 10.1109/ACCESS.2020.3048679.

[8] M. J. Jeon, H. J. Jeong, and K. R. Lee, “A case-based
maintenance decision support system for industrial
facilities,” IEEE Access, vol. 9, pp. 14309-14320,
2021, doi: 10.1109/ACCESS.2021.3059691.

[9] J. Han, J. Sun, W. Song and S. Li, “Prediction of
surface roughness in machining operations using
case-based reasoning and Euclidean distance,”
IEEE Access, vol. 7, pp. 149579-149590, 2019, doi:
10.1109/ACCESS.2019.2947483.

[10] T. V. N. Rao and D. R. Parhi, “Performance analysis
of clustering based indexing in case-based reasoning
for fault diagnosis of rotating machines,” IEEE
Access, vol. 8, pp. 19915-19924, 2020, doi:
10.1109/ACCESS.2020.2967689.

[11] H. Lee, C. Lee, and Y. Lee, “Development of a real-
time predictive maintenance system for industrial
equipment based on k-nearest neighbors,” IEEE
Transactions on Industrial Informatics, vol. 16, no. 9, pp.

5962-5971, Sept. 2020, doi:
10.1109/TII.2020.3019863.

[12] C. Zeng, D. Li, and D. Chen, “A novel k-nearest
neighbor-based predictive maintenance framework,”
IEEE Transactions on Industrial Informatics, vol. 17, no.
5, pp. 3445-3454, May 2021, doi:
10.1109/TII.2020.3049333.

[13] J. Li, Z. Liu, X. Dong, and F. Zhao, “A case-based
reasoning method for large-scale wind power
equipment maintenance considering retrieval and
adaptation time,” IEEE Access, vol. 9, pp. 32756-
32764, 2021, doi: 10.1109/ACCESS.2021.3067856.

[14] B. Smyth and M. T. Keane, “Remembering to forget,”
in Proceedings of the 14th international joint conference on
Artificial intelligence, 1995, pp. 377-382.

[15] C. Zhang, H. Xu, L. Wang, and X. Lin, “A case-based
reasoning approach for equipment maintenance
based on improved coverage and reachability,”
IEEE Access, vol. 8, pp. 176047-176056, 2020, doi:
10.1109/ACCESS.2020.3021626.

[16] Y. Wu, Z. Zhang, and Q. Gao, “A case-based
maintenance approach for injection molding
machines based on coverage and reachability,”
IEEE Transactions on Industrial Informatics, vol. 17, no.
4, pp. 2884-2894, April 2021, doi:
10.1109/TII.2020.3035679.

[17] S. Xiao, Y. Chen, and W. Li, “Fuzzy k-nearest
neighbor algorithm-based case retrieval in aircraft
maintenance,” IEEE Access, vol. 7, pp. 81162-81171,
2019, doi: 10.1109/ACCESS.2019.2924721.

[18] Y. Xu, J. Li, and Y. Zhang, “An intelligent
maintenance method of equipment based on fuzzy
k-NN algorithm,” IEEE Access, vol. 8, pp. 188191-
188202, 2020, doi: 10.1109/ACCESS.2020.3030767.

[19] A. Singh and A. Kumar, “A dynamic memory
management scheme for case-based reasoning,”
IEEE Access, vol. 9, pp. 11909-11922, 2021, doi:
10.1109/ACCESS.2021.3059015.

[20] Y. Zhou, G. Yang, J. Lu and X. Liu, “An improved
condensed nearest neighbor algorithm for online
case-based reasoning,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 31, no. 3, pp. 902-
913, March 2020, doi:
10.1109/TNNLS.2019.2905765.

[21] X. Zhang and Y. Hu, “Case selection based on
improved condensed nearest neighbor rule for case-
based reasoning,” IEEE Access, vol. 8, pp. 93149-
93158, 2020, doi: 10.1109/ACCESS.2020.2992822.

[22] A. De Santi, D. Guiducci and L. Ippoliti, “Memory
Management and Adaptation in Case-Based
Reasoning for Condition-Based Maintenance,” in
IEEE Transactions on Industrial Electronics, vol. 67, no.
2, pp. 1536-1545, Feb. 2020, doi:
10.1109/TIE.2019.2914257.

[23] B. Smyth and E. McKenna, “Competence models
and the maintenance problem,” Computational
Intelligence, vol. 17, no. 2, pp. 235-249, 2001.

[24] S. Hao, Y. Zhang, and H. Wang, “A novel hybrid
case-based reasoning approach with similarity and

DOI:10.4186/ej.2023.27.11.53

ENGINEERING JOURNAL Volume 27 Issue 11, ISSN 0125-8281 (https://engj.org/) 71

diversity evaluation for smart manufacturing,”
Robotics and Computer-Integrated Manufacturing, vol. 63,
p. 101947, 2001.

[25] A. Garg, M. Gupta, and J. P. Singh, “An approach
for dynamic case adaptation in case-based reasoning
systems,” Journal of Intelligent & Fuzzy Systems, vol. 36,
no. 1, pp. 677-691, 2019.

[26] S. S. Madkour and M. A. El-Dosuky, “A case-based
maintenance approach using relative coverage,” in
2019 11th International Conference on Computer and
Automation Engineering (ICCAE), Cairo, Egypt, 2019,
pp. 31-36.

[27] S. S. Madkour and M. A. El-Dosuky, “Case-based
maintenance for rotating machinery using relative
coverage,” IEEE Transactions on Industrial Electronics,
vol. 66, no. 9, pp. 7077-7086, Sept. 2019.

[28] S. S. Madkour and M. A. El-Dosuky, “A case-based
approach for fault diagnosis and prognosis of
rotating machinery using relative coverage,” IEEE
Transactions on Instrumentation and Measurement, vol. 70,
pp. 1-10, 2021.

[29] D. B. Leake and D. C. Wilson, “Remembering why
to remember: Performance-guided case-base
maintenance,” in Advances in Case-Based Reasoning: 5th
European Workshop, EWCBR 2000 Trento, Italy,
September 6–9, 2000, pp. 161-172.

[30] H. Li, J. Li, and J. Zhou, “A dynamic case-based
reasoning approach for equipment maintenance
scheduling,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 48, no. 4, pp. 587-598, 2018.

[31] W. Gao, L. Zou, and Y. Zhang, “A dynamic case-
based reasoning method for fault diagnosis of
industrial equipment based on expert knowledge and
data,” IEEE Access, vol. 8, pp. 109259-109272, 2020.

[32] J. Kwan and T. Dao, “Streaming-based case selection
for predictive maintenance,” in 2019 IEEE 31st
International Conference on Tools with Artificial Intelligence
(ICTAI), Portland, OR, USA, 2019, pp. 85-92.

[33] F. Tang, Q. Zhao, and Y. Xu, “A case retention
policy for case-based reasoning in equipment
diagnosis,” in 2019 IEEE International Conference on
Mechatronics and Automation (ICMA), Tianjin, China,
2019, pp. 1752-1757.

[34] M. Lu, J. Zhang, and X. Jiang, “A deletion policy for
case-based reasoning in predictive maintenance,” in
2019 IEEE International Conference on Mechatronics and
Automation (ICMA), Tianjin, China, 2019, pp. 2167-
2172.

[35] X. Huang, X. Xu, Z. Sun, and Y. Liu, “An effective
random elimination technique for case-based
reasoning in predictive maintenance,” in 2021 IEEE
International Conference on Industrial Technology (ICIT),
Lyon, France, 2021, pp. 197-202.

[36] Z. Zheng, Y. Lu, and Y. Zhao, “An improved case
addition and reuse approach for machine fault
diagnosis based on case-based reasoning,” IEEE
Access, vol. 9, pp. 41983-41996, 2021.

Asst. Prof. Dr. Thacha Lawanna is currently a lecturer in International College of
Digital Innovation at Chiang Mai University Thailand. She completed her Ph.D. degree
in Information Technology from Assumption University, Thailand. Her expertise
includes test case selection, software testing and data mining, with a number of scholarly
works have been published in international reputable journals.

Asst. Prof. Dr. Rujira Ouncharoen as the Dean of the International College of Digital
Innovation at Chiang Mai University in Thailand. She obtained her doctoral degree in
Mathematics from Mahidol University in Thailand. Her areas of specialization include
the SIR Model and Mathematics Model, and she has authored numerous scholarly
publications in respected international journals.

