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Abstract. This article introduces an extension of the improved minima-controlled recursive averaging noise
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the single-channel counterpart. Computer simulation demonstrates superior performance of the proposed
noise estimator in terms of noise tracking performance and noise estimation error. Furthermore, the use of
the proposed technique with the multi-channel Wiener filter yields improved signal-to-noise ratio and speech
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1. Introduction

Modern voice communication devices such as smart-
phones, hands-free car kits, tablets, or desktop computers,
are usually well-equipped with microphones and loudspeak-
ers. Furthermore, electrical appliances in smart homes and
smart factories nowadays have been arranged to accommo-
date voice-controlled applications, such as virtual meeting,
etc. In addition, assistive listening devices, such as hear-
ing aids for hearing-impaired people, usually require multi-
channel processing. However, the problem of ambient
noise is typically unavoidable and is always included in the
microphone signals of these assistive devices. Speech en-
hancement techniques are therefore necessary to improve
the quality of speech signals by removing the effect of the
additive noise.

Various speech enhancement techniques based on the
frequency-domain processing have been employed to elim-
inate the additive noise. The spectral subtraction (SS)
method, which can be realized as spectral suppression, is
one of the well-known speech enhancement approaches.
Basically, the SS method and its modified versions ob-
tain the enhanced speech spectrum by subtracting the es-
timated noise spectrum from the noisy speech spectrum
[1]−[3]. Depending on the efficiency of voice activity de-
tectors (VAD), the noise spectrum is usually estimated dur-
ing speech-absence frames. It is obvious that the noise esti-
mator plays an important role for frequency-domain speech
enhancement algorithms. A number of noise estimation
techniques have been proposed for single-microphone or
single-channel speech enhancement [4]−[9]. Some of these
noise estimation techniques update the noise spectrum dur-
ing speech-absence frames, while several of them continu-
ously update the noise spectrum for both speech-absence
and speech-presence frames. The accuracy of the noise
spectral estimate affects completely the overall performance
of the speech enhancement algorithms; i.e., noise overesti-
mation results in suppression of the speech spectral com-
ponents and introduces noticeable speech distortion. On
the other hand, noise underestimation results in the resid-
ual noise in the enhanced speech signal, which causes poor
speech quality.

Conversely to the single-channel speech enhancement
techniques, multi-channel approaches tend to be more ef-
fective with the use of spatial-temporal information. In
fact, microphone arrays have been exploited extensively for
speech enhancement in most modern voice communica-
tion systems in order to deal with the problem of room
reverberation and ambient noise [10]−[16]. Basically, a
beamformer adjusts the values of gain and phase differ-
ently for different microphones within the system, depend-
ing on the a priori knowledge about the location of the
target source, so that the desired speech signal is empha-
sized, whereas the ambient noise and interference sources

are diminished. Various types of beamforming techniques
can be chosen based on the constraints that best fit spe-
cific applications. The delay-and-sum (DAS) beamformer
is one of the most common types where the signals arriv-
ing at each microphone have different delays. The sum of
these microphone signals, which are scaled differently, is
maximum when the steering direction is according to the
desired source direction. Linearly constrained minimum
variance (LCMV) beamformer is chosen to reduce the ef-
fect of reverberant and ambient noise provided that gen-
eral acoustic transfer functions (ATFs) between the source
and the microphones are known [13], [14]. Minimum vari-
ance distortionless response (MVDR), on the other hand,
becomes more popular than the normal LCMV beam-
former because of its special constraint [15]. Then, the
generalized sidelobe canceler (GSC), which is an uncon-
strained form of the LCMV beamformer, was introduced
as an alternative to extract the desired speech signal from
its noisy microphone signals [16]. Another type of multi-
channel speech enhancement algorithms based on the op-
timal multi-dimensional filter is known as multi-channel
Wiener filtering (MWF) [17]−[21]. A general parameter-
ized expression for MWF is derived in [17]. A multi-
microphone optimal filter is designed based on a single-
microphone subspace-based for white and colored additive
noise [18]. In [19], a multi-microphone speech enhance-
ment algorithm was introduced based on generalized singu-
lar value decomposition (GSVD) of speech and noise data
matrices. A frequency-domain criteria for speech distor-
tion weighted multi-channel Wiener filter (SDW-MWF) was
introduced in [20]. Then, the frequency-domain spatial-
predictionmethod was developed and yielded better perfor-
mance for the estimation of the specech covariance matrix,
as compared to the conventional MWF [21].

The multi-channel noise estimation techniques are
therefore essential for these multi-channel speech enhance-
ment algorithms so that all spatial-temporal information
from the microphone array is utilized to give a better noise
estimate. Most of the existing noise estimation techniques
are, however, formulated for single-channel communica-
tion systems [4]−[9]. The noise power spectrum can be
estimated based on minimum statistics (MS) without any
use of VAD; i.e., it is assumed that the noisy speech power
spectrum usually decays to the noise power level, hence the
noise spectral estimate in each frequency band can be ob-
tained by tracking the spectral minimum values in that par-
ticular frequency-band [4]. Subsequently, this noise track-
ing technique was further employed in the minima con-
trolled and recursive averaging (MCRA) approach and its
improved version (IMCRA), especially in adverse environ-
ments such as low input signal-to-noise ratio (SNR) and
non-stationary noises [5], [6]. Specifically, the MCRA and
IMCRA approaches introduce speech absence probability
(SAP) and speech presence probability (SPP) for continu-
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ous noise estimation, even during frames with weak speech
activity [6]. In addition, the IMCRA approach employs a
smoothing parameter and bias compensation factor, both
in time- and frequency-domain to improve the accuracy of
the noise spectrum estimation. Alternatively, noise estima-
tion techniques based on quantile-based have been intro-
duced without prior knowledge of speech and noise dis-
tributions [7]−[9]. These quantile-based noise estimation
techniques, however, encounter the problem of high com-
putational complexity for calculating and storing the quan-
tile information.

So far, only a few multi-channel noise estimation tech-
niques have been introduced for multi-channel speech en-
hancement [22]−[24]. In [22], a multi-channel noise esti-
mation technique was introduced based on theMCRA tech-
nique in [5] in order to obtain an optimal a priori SAP esti-
mation. However, one of the major limitations of this tech-
nique in [22] is the requirement of initial noise-only frames
in order to initialise the noise covariance matrix for sub-
sequent noise power spectrum estimation, which may not
be readily available or accurately determined in practice. In
fact, a sample average of a fixed duration of periodograms
is subsequently used to approximate the noise covariance
matrix. As a result, this kind of estimation of the noise co-
variance matrix is subject to inaccuracy, particularly during
the occurrence of any abrupt SNR changes. In [23], speech
and noise covariance matrices are estimated based on eigen-
value decomposition. Therefore, this technique entails high
computational complexity, especially during the eigenvalue
decomposition process. In [24], the multi-channel SPP is
employed for estimating speech statistics. Nonetheless, the
SAP employed in this algorithm is chosen as a constant and
kept fixed for all frames and frequencies. The use of a fixed
SAP does not allow the algorithm to track efficiently the
non-stationary characteristics of the ambient noise signals.
Thus, accurate noise spectrum estimate cannot be obtained.

Therefore, it is proposed in this article to formu-
late the multi-channel noise estimator, based on the well-
established single-channel IMCRA noise estimation tech-
nique [6]. The proposed multi-channel noise estimator em-
ploys the minimum tracking performance of the IMCRA
technique and fully exploit the spatial information of multi-
channel system so as to compute more accurate SAP and
SPP estimates. Hence, the proposed noise estimation tech-
nique is supposed to estimate the noise covariance matrix
more accurately, particularly for multi-channel speech en-
hancement applications, makes it suitable for highly non-
stationary noise typically encountered in modern devices.

This article is organized as follows. The signal model is
presented in Section 2, followed by fundamental principles
and the detailed formulation of the proposed multi-channel
noise spectral estimator, based on the IMCRA algorithm
in Section 3. Then, simulation results are presented to il-
lustrate the advantages of the proposed noise estimator, as

compared to the investigated single-channel noise estima-
tion technique in Section 4. Finally, conclusions are given
in Section 5.

2. Signal Model

AnM -element microphone array is considered in noisy
and reverberant environment. It is assumed that there is
a single target speech source, s(n), which is assumed to
be uncorrelated to the ambient noise in each microphone,
vm(n), for m = 1, 2, . . . ,M . The reverberant speech
signal for the m-th microphone, xm(n), is obtained by
convolving room impulse response (RIR), dm(n), with the
clean speech signal, s(n); xm(n) = s(n) ∗ dm(n), where
< ∗ > denotes the convolution operator. Each micro-
phone signal is then analyzed via the short-time Fourier
transform (STFT), and the relationship in the frequency-
domain becomes

y(k, l) = x(k, l) + v(k, l) (1)

where y(k, l) = [Y1(k, l), Y2(k, l), . . . , YM (k, l)]T is
the vector containing M microphone spectra, the param-
eter k = 0, 1, . . . ,K − 1 denotes the frequency-bin in-
dex for K-point STFT, and l = 0, 1, . . . , L − 1 is the
frame index when L is the total number of frames. Sim-
ilarly, x(k, l) = [X1(k, l), X2(k, l), . . . , XM (k, l)]T is
the vector containing M reverberant speech spectra, and
v(k, l) = [V1(k, l), V2(k, l), . . . , VM (k, l)]T is the vec-
tor containing M noise spectra. The reverberant speech
spectral vector is given by x(k, l) = d(k)S(k, l), where
d(k) = [D1(k), D2(k), . . . , DM (k)]T is the so-called
acoustic transfer function (ATF) vector between the speech
source to all M microphones, and S(k, l) is the STFT of
the speech signal, s(n).

For speech enhancement, it is desirable to obtain the es-
timated clean speech spectrum Ŝ(k, l). To achieve this pur-
pose, the noise spectrum has to be estimated first. Based
on the hypothesis testing whereH0(k, l) denote the speech
absence andH1(k, l) denote the speech presence, the con-
ditional probability density function (PDF) of the micro-
phone spectra are given by

f(y(k, l)|H0(k, l))

=
1

πMdet
(
Rvv(k, l)

)exp{−yH(k, l)R−1
vv(k, l)y(k, l)}

(2)

and

f(y(k, l)|H1(k, l)) =
1

πMdet
(
Rxx(k, l) +Rvv(k, l)

)
· exp{−yH(k, l)

(
Rxx(k, l) +Rvv(k, l)

)−1
y(k, l)}

(3)

where the clean speech spectrum, x(k, l), and noise
spectrum, v(k, l), in eq.(1) are both assumed to
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be complex Gaussian distribution with zero mean.
Rxx(k, l) = E{x(k, l)xH(k, l)} and Rvv(k, l) =
E{v(k, l)vH(k, l)} are the speech and noise covariance
matrices, respectively, and E{·} denotes the expectation
operator. By assuming that the clean speech and noise
signals are uncorrelated to each other, we obtain that the
multi-channel covariance matrix of the noisy speech spec-
trum,Ryy(k, l) = E{y(k, l)yH(k, l)}, is given by

Ryy(k, l) = Rxx(k, l) +Rvv(k, l). (4)

3. The Proposed Multi-channel Noise Estima-
tion Approach

In this section, the proposed multi-channel noise esti-
mation approach is formulated based on the single-channel
IMCRAnoise estimation technique [6], andwill be hereafter
referred to as the MC-IMCRA technique. The proposed
technique makes use of the minimum tracking operation
of the IMCRA technique while fully exploiting the spatial
information of multi-channel systems in order to compute
more accurate SAP and SPP estimates. Hence, the pro-
posed multi-channel noise estimator is able to estimate the
noise covariance matrix more accurately.

Let the multi-channel a priori signal-to-noise ratio
(SNR) and the multi-channel instantaneous a posteriori SNR
be defined as follows:

ξ(k, l) = tr
[
R−1

vv(k, l)Rxx(k, l)
]

(5)

γ(k, l) = yH(k, l)R−1
vv(k, l)y(k, l) (6)

where tr[·] denote the trace of a matrix. Given the a priori
speech absence probability (SAP) as

q(k, l) = P (H0(k, l)), (7)

the conditional speech presence probability (SPP) is ob-
tained, based on the Bayes’ theorem, as

p(k, l) = P (H1(k, l)|γ(k, l)), (8)

which becomes [6]

p(k, l) = 1 +
q(k, l)

1− q(k, l)

[
1 + ξ(k, l)e−

γ(k,l)ξ(k,l)
1+ξ(k,l)

]−1

.

(9)
Based on the hypotheses of speech absence, H0(k, l), and
speech presence, H1(k, l), the estimated noise covariance
matrix, R̂vv(k, l), can be obtained by recursive update, par-
ticularly during speech absence frames, as follows:

R̂vv(k, l + 1) =αv(k, l)R̂vv(k, l)

+ β1

(
1− αv(k, l)

)
y(k, l)yH(k, l).

(10)

The forgetting factorαv(k, l) is employed to track the noise
spectrum for all frequency bins and all frames, based upon
the SPP,

αv(k, l) = α̃v + (1− α̃v) p(k, l) (11)

and 0 ≤ α̃v < 1 is normally chosen. The function of the
SPP is to bias the update of the forgetting factorαv(k, l) to-
wards high values in order to avoid speech distortion when
p(k, l) is close to unity. On the other hand, the SPP is
to bias the update of αv(k, l) towards lower values for
noise spectral estimate when p(k, l) approaches zero. Sim-
ilar to the single-channel case, the bias compensation factor
β1 = tr(Rvv(k, l))/E{R̂vv(k, l)} is also introduced for
updates during speech absent frames.

Since the a priori SAP, q(k, l), is unknown, an estimator
based on the tracking of minima values of smoothed multi-
channel noisy power spectrum is computed. The multi-
channel extension of the IMCRA noise estimation tech-
nique comprises two iterations, j = 1, 2. The compu-
tation required for both iterations are summarised as fol-
lows. First, the smoothing operation is carried out both in
the frequency-domain and the time-domain. The frequency
smoothing of the noisy power spectrum is taken for each
frame as

S
(j)
y,f (k, l) =
∑Nb

i=−Nb
b(i)I(j)(k−i,l)y(k−i,l)yH(k−i,l)∑Nb

i=−Nb
b(i)I(j)(k−i,l)

,

if
∑Nb

i=−Nb
I(j)(k − i, l) ̸= 0

S
(j)
y (k, l − 1) , otherwise

(12)

where b(i) is a window function of length 2Nb + 1. Next,
the time smoothing is performed on the speech spectral
components obtained from the frequency smoothing, by
using a first-order recursive averaging,

S
(j)
y (k, l) = αsS

(j)
y (k, l− 1)+ (1− αs)S

(j)
y,f (k, l) (13)

where 0 ≤ α̃s < 1 is another forgetting factor. After-
wards, the minimum tracking operation is performed. The
minima value of S(j)

y (k, l) is found for each frequency bin
over windowed frames of length Nw .

S
(j)
y,min(k, l) = min

{
S
(j)
y (k, l̃)

∣∣ l −Nw + 1 < l̃ < l
}
.

(14)
Note that, the window of Nw samples is divided into U
sub-windows of V samples, where U × V = Nw , as im-
plemented in [6].
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Table 1. The proposed multi-channel noise estimation al-
gorithm (MC-IMCRA) for speech enhancement.

1. Initialization of all relevant parameters
• R̂vv(k, 0) = y(k, 0)yH(k, 0)
• γ(k, 0) = 1

• S(1)
y (k, 0) =

∑Nb
i=−Nb

b(i)y(k − i, 0)yH(k − i, 0)

• S(2)
y (k, 0) = S

(1)
y (k, 0)

• S(1)
y,min(k, 0) = S

(2)
y,min(k, 0) = S

(1)
y (k, 0)

2. The MC-IMCRA algorithm
2.1. Run for all frames l and for all frequency
bins k, and compute the following parameters.
• ξ̂(k, l) by using eq.(26)
• γ̂(k, l) by using eq.(6) with R̂vv(k, l)

2.2. Repeat the following computations for
j = 1 and j = 2.
• S(j)

y (k, l) by using eq.(13)
• S(j)

y,min(k, l) by using eq.(14)
• γ(j)min(k, l) by using eq.(15)
• ζ(j)(k, l) by using eq.(16)
• I(j)(k, l) by using eq.(19)

3. Compute the estimated a priori SAP, SPP
and the estimated noise covariance matrix.
• q̂(k, l) by using eq.(21)
• p̂(k, l) by using eq.(9) with ξ̂(k, l), q̂(k, l)
• R̂vv(k, l + 1) by using eq.(10), eq.(11)

Subsequently, the following two parameters are com-
puted, as given by

γ
(j)
min(k, l) =

1

β2

(
yH(k, l)

(
S
(j)
y,min(k, l)

)−1
y(k, l)

)
(15)

ζ(j)(k, l) =
1

β2

((
S
(j)
y,min(k, l)

)−1
S
(j)
y (k, l)

)
(16)

where β2 is a bias factor. In the speech absence case, the
PDF of both γ

(j)
min(k, l) and ζ

(j)(k, l) can be modelled as
the exponential and chi-square distributions, respectively.
The thresholds γ0 and ζ0 are chosen so that the following
conditions are satisfied for a small constant ϵ.

P
(
γmin(k, l) ≥ γ0

∣∣∣H0(k, l)
)
< ϵ (17)

P
(
ζ(k, l) ≥ ζ0

∣∣∣H0(k, l)
)
< ϵ. (18)

In the first iteration, j = 1, the frequency-smoothing op-
eration in eq.(12) is determined with the decision func-
tion is set to be one at all frames and all frequency bins,
i.e., I(1)(k, l) = 1 . Then, the time-smoothing opera-
tion in eq.(13) and eq.(14) are computed for S(1)

y (k, l) and
S
(1)
y,min(k, l). These values are therefore used for the cal-
culation of γ(1)min(k, l) and ζ

(1)(k, l) in eq.(15), and eq.(16),

and will be used for determining the decision function in
the second iteration.

In the second iteration, j = 2, the frequency-
smoothing operation in eq.(12) is computed using the fol-
lowing decision function:

I(2)(k, l) =

{
1, ifγ

(1)
min(k, l) < γ0 and ζ

(1)(k, l) < ζ0

0, otherwise.
(19)

Note that, the decision function is defined to be one,
I(2)(k, l) = 1, when it is speech-absence frame, or zero,
I(2)(k, l) = 0, when it is speech-presence frame. With
the above equation, the frequency smoothing operation in
eq.(12) using I(2)(k, l) can remove most of the speech
spectral components so that the noise spectrum can be es-
timated more accurately. Then, the time-smoothing oper-
ation is computed for S(2)

y (k, l) and S
(2)
y,min(k, l) by em-

ploying eq.(13) and eq.(14). These values are then used for
the calculation of γ(2)min(k, l) and ζ(2)(k, l) in eq.(15), and
eq.(16), respectively.

Finally, the a priori SAP can be estimated in two steps
as follows. The local a priori SAP is firstly obtained, based
on [25]:

q̂local(k, l) =
1, ifγ

(2)
min(k, l) ≤ M and ζ(2)(k, l) < ζ0

γ1−γ
(2)
min(k,l)

γ1−M , ifM < γ
(2)
min(k, l) < γ1

and ζ(2)(k, l) < ζ0

0, otherwise.

(20)

From eq.(20), it can be seen that when γ
(2)
min(k, l) and

ζ(2)(k, l) are both less than the given thresholds, q̂(k, l) =
1; i.e., the a priori SAP estimator decides that it is speech
absence for the l-th frame and for the k–th frequency bin.
On the other hand, when γ(2)min(k, l) and ζ

(2)(k, l) are both
larger than the thresholds, q̂(k, l) = 0; i.e., the a priori SAP
estimator decides that it is speech presence case. Unlike the
usual hard decision in conventional VAD, it can be seen that
eq.(20) provides a soft decision between speech absence
and speech presence conditions. Then, for the second step,
the speech absence probability is finally computed, based
on the local and frame-wise a priori SAP estimators.

q̂(k, l) = q̂local(k, l) · q̂frame(k, l) (21)

The frame-wise a priori SAP estimator is defined as follows:

q̂frame(l) =
1

K

K−1∑
k=0

ζ(k, l) (22)

The proposedmulti-channel noise estimation algorithm can
therefore be summarized in Table1.
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4. Multi-channel Speech Enhancement Algo-
rithm

The multi-channel speech enhancement algorithm em-
ployed to verify the proposed MC-IMCRA technique is the
SDW-MWF algorithm [20], and will be referred in short
as MWF. The MWF algorithm is designed to suppress the
spectral components of noisy speech spectrum when the
SNR is low. On the other hand, when the SNR is high, the
MWF will preserve the noisy speech spectral components.
The spectral gain function gW (k, l) of the MWF is given
by

gW (k, l) =
1
M tr[Rxx(k, l)]R

−1
vv (k, l)d(k)

µ+
(

1
M tr[Rxx(k, l)]dH(k)R−1

vv (k, l)d(k)
)

(23)
where 0 < µ < ∞ is a tradeoff parameter controlling
the noise reduction performance and the speech distortion
level, and d(k) is ATF vector between the speech source to
allM microphones [20]. The estimated covariance matrix
of the noisy speech spectrum is obtained as

R̂yy(k, l) = αR̂yy(k, l − 1) + (1− α)y(k, l)yH(k, l)
(24)

and 0 < α < 1 is another forgetting factor. The estimated
speech covariance matrix is obtained as

R̂xx(k, l) = R̂yy(k, l)− R̂vv(k, l). (25)

The estimated a priori SNR for multi-channel systems is ob-
tained by using the estimated speech and noise covariance
matrices, as follows:

ξ̂(k, l) = tr
[
R̂−1

vv(k, l)R̂xx(k, l)
]

(26)

Subsequently, the estimated noise covariance matrix is up-
dated for the next frame l + 1 by using eq.(9) – eq.(11).
Therefore, the enhanced speech signal in the time-domain
ŝ(n) is obtained by taking the inverse STFT of Ŝ(k, l),
where

Ŝ(k, l) = gH
W (k, l)y(k, l) (27)

5. Simulation Sesults

In this section, computer simulations were carried out
to observe the performance of the proposed MC-IMCRA
noise estimation technique, as compared to the conven-
tional IMCRA one. Then, the MWF algorithm [20] utilis-
ing the proposed MC-IMCRA technique for multi-channel
speech enhancement (MWF+MC-IMCRA) was compared
with the WF algorithm [28], which employed the IM-
CRA technique [6], for single-channel speech enhancement
(WF+IMCRA).

5.1. Simulation Setup

A multi-channel speech enhancement system
(MWF+MC-IMCRA) for an 8-channel microphone array
was investigated. A 15-second clean speech signal, selected
from various speech sentences in the IEEE database [29]
at the sampling frequency of 8 kHz, was convolved with
8-channel RIRs from the hearing-aid head-related room
impulse response (HRIR) database [30]. A zoom-in plot of
one of the RIRs is given in Fig. 1. These multi-channel
reverberant speech signals were then corrupted by the
recorded 8-channel babble noises in a cafeteria environ-
ment [30] to represent the observed highly non-stationary
noisy and reverberant speech signals from the microphone
array. A sketch of the cafeteria environment is given in
Fig. 2. The speaker was positioned in front of the dummy
head wearing hear-aid devices on both side of its ears. Each
side contains two types of the hearing devices. The one in-
side the ear canal has one microphone and the other one
behind the ear has three microphones, thereby forming an
eight-channel microphone array.

Fig. 1. A zoom-in plot of one of the RIRs from [30].
Similarly, for the single-channel speech enhancement

system (WF+IMCRA), the same 15-second speech signal,
as previously prepared for the multi-channel case at the
same sampling frequency of 8 kHz, was convolved with
an RIR obtained from one channel of the HRIR database
[30]. Only one-channel of the recorded babble noise in the
cafeteria environment was added to generate the corrupted
microphone signal in the observed single-channel system.

For both single-channel and multi-channel systems, the
noisy speech signal(s) was then analyzed using STFT with
frame length of 16 ms (128 samples) and 50 % overlap,
using a Hamming window. The bias compensation factor
of β1 = 1.66 and β2 = 1.0 were selected. The length
of the window function in eq.(12) was chosen as Nb = 1,
whereas the length of another window function in eq.(14)
was Nw = 120, with the choice of U = 8 and V = 15.
The thresholds of γ0 = 4.6 and ζ0 = 1.67, were chosen
as suggested in [6]. The forgetting factors were αv = 0.9,
αs = 0.92, and α = 0.9 for tradeoff between noise reduc-
tion and speech distortion of the enhanced speech signal.
The tradeoff parameter in eq.(23) was chosen as µ = 25 .
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Fig. 2. A sketch of the cafeteria environment in [30]. HATS denotes the head-and-torso simulator.
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For both cases, the babble noise at each microphone signal
was scaled for −5, 0, and 5 dB input SNR levels.

5.2. Performance Evaluation

In order to evaluate the noise estimation performance
of the investigated algorithms, the segmental noise estima-
tion error, SegErr, defined as the squared difference be-
tween true and estimated noise covariance matrices, is em-
ployed, i.e.,

SegErr =
1

L

L−1∑
l=0

(∑
k

(
tr[R̂vv(k, l)−Rvv(k, l)]

)2∑
k

(
tr[Rvv(k, l)]

)2
)
.

(28)
Furthermore, plots of the true and estimated noise power
spectra are also shown to evaluate the noise tracking per-
formance.

Waveform and spectrogram plots are also included to
demonstrate the overall performance of speech enhance-
ment algorithm employing the investigated noise estimation
algorithms, i.e., noise reduction performance and preserva-
tion of speech spectral components.

In addition, the SNR improvement of the enhanced
speech signal was used to indicate the noise reduction per-
formance of the speech enhancement algorithm. For a
given input SNR level, the output SNR was defined by

SNRo/p = 10× log10

( ∑N−1
n=0 ŝ2(n)∑N−1

n=0 (s(n)− ŝ(n))2

)
(29)

where ŝ(n) was the enhanced speech signal and N was
the total number of speech samples. The SNR improve-
ment, ∆SNR, was the difference between the output and
input SNRs of the enhanced speech signal. The higher the
value of ∆SNR becomes, the better noise reduction per-
formance it achieves. For both single-channel and multi-
channel cases, the values of∆SNR were calculated by using
the information from channel 1.

Furthermore, an aspect of speech intelligibility of the
enhanced signals from those investigated algorithms is ob-
served. A short-time objective intelligibility (STOI) is a
correlation-based measure between the clean and the en-
hanced speech signals. A higher STOI score indicates better
preservation of the original speech frequency components,
which means that a slighter amount of speech distortion is
presented [31].

5.3. Noise Estimation Performance via SegErr

From Table 2, it is shown that SegErr of the MC-
IMCRA algorithm is significantly smaller than those ob-
tained by employing the IMCRA method; i.e., the true and
estimated noises obtained by theMC-IMCRA algorithm are
similar to each other. This illustrates superior noise esti-
mation performance of the proposed multi-channel noise
estimation algorithm to the single-channel one.

Table 2. Noise estimation performance of the IMCRA
and MC-IMCRA techniques, via the SegErr. (babble
noise)

Input SNR (dB) SegErr (dB)
IMCRA MC-IMCRA

-5 0.53 0.33
0 0.54 0.36
5 0.53 0.39

5.4. Noise Tracking Performance

To demonstrate the noise tracking performance of
the proposed MC-IMCRA noise estimation algorithm, as
compared to the single-channel IMCRA one, the esti-
mated noise power spectrum was compared with its true
noise spectrum. The smoothed noisy speech spectrum
(red lines) was also included to identify the dominance of
speech and noise. By considering at different frequency
bins (k = 40, 80, 120 which corresponded to frequencies
0.625, 1.25, and 1.875 kHz, respectively), when the addi-
tive noise was the babble noise at 5-dB input SNR, it was
demonstrated in Fig. 3 on the left-hand-side that the MC-
IMCRA algorithm was able to track the true noise power
spectrum more accurately than the single-channel IMCRA
one. During the speech presence (when the red lines
showed high peaks), it is obvious that the noise tracking
of both noise estimation algorithms was disabled; i.e., the
noise estimators did not update. On the other hand, both
algorithms showed rapid tracking performance of the noise
spectrum when the speech was absent. However, there
were some intervals that the single-channel IMCRAmethod
cannot track the true noise spectrum. At some frames, the
estimated noise power spectrum using the single-channel
IMCRA algorithm was much lower than that employing
the proposed MC-IMCRA one, such as during the frame
indices from 280 to 440 and frome 750 to 950 for the
case of k = 40, etc. This guarantees that the estimated
noise spectrum obtained by the proposed MC-IMCRA al-
gorithm yields better noise tracking and more accuracy than
the single-channel IMCRA technique. As for the cross-noise
power spectra between channel 1 and channel 2, its estimate
by the MC-IMCRA was also illustrated in Fig. 3(a), (b), (c),
on the right-hand-side. Note that, there is no cross-noise
power spectrum for the IMCRA method.

5.5. Waveform and Spectrogram Plots

In order to investigate the effectiveness of the
MWF+MC-IMCRA for speech enhancement over the
WF+IMCRA, waveform and spectrogram plots of the en-
hanced speech signals are given in this subsection. The
spectrogram plots demonstrate both the noise reduction
performance and the ability to maintain the speech spec-
tral components of the investigated speech enhancement
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Fig. 3. Plots of smoothed noisy speech spectrum (red), true/smoothed (dotted/solid blue - left) co-noise spectrum in
channel 1, true/smoothed (dotted/solid blue - right) cross-noise spectrum between channel 1 and 2, the estimated noise
spectrum by the single-channel IMCRA method (margenta), and the estimated co/cross-noise spectrum by the MC-
IMCRA method (black) for different frequency bins; (a) k = 40 (0.625 kHz), (b) k = 80 (1.25 kHz), and (c) k = 120
(1.875 kHz). (babble noise, input SNR= 5 dB) Note that, there is no cross-noise spectrum for the IMCRA method.
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algorithm. By observing at the spectrogram plot of the en-
hanced speech signal using the WF+IMCRA algotithm, as
illustrated in Fig. 4(c), it is evident that the ambient noise
is diminished significantly. However, the low-frequency
speech spectral components are practically removed. More-
over, residual noises are clearly seen particularly in the high-
frequency region. Hence, this identifies that the IMCRA
method overestimates the noise spectrum so that it does not
only remove the noise spectral components but also some
speech spectral components. On the other hand, it is clearly
seen from the spectrogram plot of the enhanced speech sig-
nal using theMWF+MC-IMCRA algotithm in Fig. 4(d) that
the speech spectral components are better preserved at low-
frequencies. This guarantess that the noise estimate of the
proposed MC-IMCRA algorithm is more accurate than its
single version. Note that, it is rather difficult to remove
the babble noise completely due to its speech-like and non-
stationary characteristics.

5.6. Noise Reduction Performance via ∆SNR

It is shown in Table 3 that ∆SNR of the MWF+MC-
IMCRA algorithm is higher than those obtained by the
WF+IMCRA method for all three cases of input SNR lev-
els. This demonstrates that the noise reduction perfor-
mance of the MWF+MC-IMCRA algorithm is much bet-
ter than the WF+IMCRA one. As the input SNR level is
decreased, higher levels of SNR improvement is obtained.
This is because the amount of additive noise is more signif-
icant, especially at low input SNR levels.

Table 3. Noise reduction performance of the IMCRA and
MC-IMCRA techniques, via the SNR improvement. (bab-
ble noise)

Input SNR (dB) ∆SNR (dB)
IMCRA MC-IMCRA

-5 6.79 6.94
0 3.61 4.55
5 0.08 1.50

5.7. Speech Preservation Ability via STOI Measure

From Table 4, it is clearly shown that the STOI mea-
sures between the clean and the enhanced speech signals
using the MWF+MC-IMCRA algorithm were higher than
those obtained by using the WF+IMCRAmethod. This in-
dicates the ability to preserve speech frequency components
in the enhanced speech signals of the multi-channel speech
enhancement using the proposed MC-IMCRA technique.

Table 4. Speech preservation ability of the IMCRA and
MC-IMCRA techniques, via STOI measure. (babble
noise)

Input SNR (dB) STOI
IMCRA MC-IMCRA

-5 0.3577 0.4151
0 0.4896 0.5467
5 0.6117 0.6645

6. Conclusions

The multi-channel extension of the IMCRA noise esti-
mation technique has been formulated in this article. With
the spatial information of microphone array signals, the
proposed noise estimator is guaranteed to achieve a better
noise spectral estimate, as compared to its single-channel
version. Simulation results with room reverberation under
a cafeteria environment and highly non-stationary babble
noise have indicated that themulti-channel speech enhance-
ment algorithm utilising the proposed multi-channel noise
estimation technique outperforms that using the single-
channel counterpart in terms of the noise tracking per-
formance, noise estimation error, noise reduction perfor-
mance, and the short-time objective intelligibility of the en-
hanced speech signal.
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