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Abstract. The mechanical behavior was investigated of 3 different particle shapes under different stress paths 
by setting various intermediate stress ratios. The method of 3D discrete element was applied to research the 
effect of particle shapes with aspect ratios of ellipsoids and spheres, with both specified by height/width 
values of 0.4, 0.6, and 1 under different intermediate stress ratios or b values. Each one was used with a single 
particle shape based on 16 different sizes and random rotation angles. All 3 samples were subjected to a 
limited isotropic pressure of 100 kPa prior to shearing and constant mean stress using a stress controller. 
Macro behavior was evaluated based on the stress and strain responses. Micro mechanisms were reported 
based on the coordination number together with the sliding contract fraction. The fabric tensor of the contact 
normal, normal contact, and tangential contact forces were examined for the various sample shapes during 
intermediate loadings of different stress ratios. It was found that anisotropic fabrics and the b values relative 
to the normal contact force were higher than for the contact normal for all shapes. Furthermore, at the peak 
stress of each stress path, the specific behavior of normal contact forces varied with the particle shape. 
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1. Introduction 
 
The mechanical behavior of cohesionless soils is 

influenced by particle shape, confined pressure, density, 
and stress paths among other aspects [1-3]. It has been 
generally accepted that variation in strength and 
deformation of granular soil depends on its particle shape, 
which can be examined using laboratory experiments. For 
example, Cho et al. [4] used sand to study the effects of 
particle shape about the density and mechanical properties 
in various stresses and reported that increased particle 
deformity increased the critical state angle of the shear 
strength. In addition, Carvaretta et al. [2] used a mixture 
of spherical and angular glass beads with sand. They found 
various types of particle shape behavior at the critical state 
and that liquefaction ability was highly affected by the 
shape of the particles at the critical state. Even though the 
experiment’s objective was to investigate the influence of 
particle shape, the particle shape mechanism was 
examined from other perspectives and using other 
methods. The behavior of granular soil was different, 
depending on the formation under different stress paths, 
where the major σ1, the intermediate σ2, and the minor σ3 
stresses were varied. Other experiments and simulation 
studies using DEMs reported that the intermediate stress 
ratio or the b values (where b = (σ2-σ3)/(σ1-σ3) influenced 
the behavior of granular soil [8–10]. Lade [5] found that 

the shearing resistance ϕ angle increased from b = 0 and 
displayed various trends, depending on the sand’s type. 
Xiao et al. [6] conducted triaxial tests using coarse sand 
and reported that b played a significant role in the critical 
state line. However, the experiments presented limited 
information of the macro strength and deformation 
behaviors of granular materials. Micro data of the 
assemblies requires highly technological methods, such as 
CT scanning, photoelasticity, and X-rays, among others. 
In addition, it is not possible to prepare similar assemblies 
in laboratory tests. Computer simulations have been used 
to avoid the confounding effects from using different 
samples and testing conditions in individual experiments 
as well as being less highly technological. A DEM [7] was 
the main tool used to discover the effect of b to both the 
macro and micro mechanical responses of granular soils 
[8, 10-16]. Oda [8] conducted a drained triaxial 
compression test on a sample of sand and showed that the 
distribution of contact orientation was equal in an equal 
area stereo net, for the isotropic compression state. 
However, it had to be reoriented under deviatoric loading 
to maximize the contact density in directions close to that 
of maximum principal stress. Bathurst [9] used the data of 
Oda [8] to determine some contacts under similar 
orientations using the statistical average technique and 
replotting the contact density in every orientation interval. 
This result showed that the magnitude of contact 
anisotropy increased in the direction of major principal 
stress. Zhou et al. [15] reported the evolution of micro 
responses spherical particles for b = 0, 0.25, 0.5, 0.7, and 
1. Their results showed that the anisotropic mechanics had 
the same trends as deviatoric stress and fabric tensors. 

Nouguier et al. [17] used biaxial simulation with different 
(isotropic polygonal, elongate polygonal and circular) 
shapes and showed that the unrelation of behaviors of 
isotropic particles samples and those of the anisotropic 
particle samples. Additionally, Xie et al. [18] used DEMs 
to simulate 3 particle shapes with different aspect ratios, 
including spheres, and reported those different aspect 
ratios and the intermediated stress ratio, b, influenced the 
stress-strain curve, the shearing resistance angle, and the 
fabric structure at the critical state. In addition, Liu et al. 
[16] used DEMs to create isotropic assemblies with 
different densities and found that the deviatoric fabric was 
dependent on the shear mode. These various research 
studies used spherical particles and other shapes to report 
the effect of mainly macro behavior. However, the data 
regarding the microscopic (such as contact forces chain 
and anisotropic coefficient) behavior of the contact of 
different particle shapes has been only analyzed within a 
narrow scope. Most studies have used a simple stress path, 
in contrast to the real-world case. The real stress path has 
true triaxial loading, in which different intermediated 
stress ratios of b are categorized. Therefore, the current 
study aimed to review the macro behavior of 3 samples 
using different particle shapes under different 
intermediated stress ratios (b = 0, 0.3, 0.5, 0.7, and 1). At 
the same time, the micro mechanisms were investigated of 
normal and tangential contact force chains, the anisotropic 
coefficient of the contact normal forces, contact tangential 
forces, and the contact orientation of each particle shape 
and b stress path. 
 

2. Simulation Details 
 
2.1. Particle Characteristics and Sample Preparation 

 
To review the particle shape’s effect, the researcher 

created 3 particle shapes with height-width aspect ratios of 
0.4, 0.6, and 1 mm, where the aspect ratios of 0.4 and 0.6 
were ellipsoidal particles and the ratio of 1 was a sphere. 
Figure 1(a) shows the geometrical sizes, where vector a is 
the central axis. Figure 1(b) shows the orientation angles 
of γ1 and γ2 randomly set from 0 to 90 degrees and from 
0 to 360 degrees, respectively. Samples were created by 
using 8,000 particles of a single particle shape with 16 
different widths in space. The widths of the particles 
varied from 3 to 4.5 mm: 3 mm (557), 3.1 mm (486), 3.2 
mm (489), 3.3 mm (506), 3.4 mm (527), 3.5 mm (486), 3.6 
mm (482), 3.7 mm (481), 3.8 mm (507), 3.9 mm (491), 4.0 
mm (502), 4.1 mm (502), 4.2 mm (503), 4.3 mm (496), 4.4 
mm (515), and 4.5 mm (470), where the numbers in the 
parentheses refer to the number of particles in each width. 
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(a)                         (b) 

 
Fig. 1. (a) particle shape; (b) orientation angle where vector 
a is the central axis of revolution of the oval (after Kuhn 
[19]). 
 

Table 1 shows the aspect ratios, sizes, and void ratios 
of the samples before shearing. Figures 2(a)–(c) show the 
spherical particles, where the aspect ratio is h/w = 1 and 
the ellipsoidal particles, where the aspect ratios are h/w = 

0.6 and h/w = 0.4, respectively, after isotropic 
compression force was applied until 100 kPa using a 
periodic boundary. 

 
Table 1. Particle shapes and sample data. 

Shape Aspect 
Ratio 

Sample size (cm)  Void 
ratio 

 
h/w = 1 7.1 × 7.1 × 7.1 0.57 

 
h/w = 0.6 6.07 × 5.76 × 5.76 0.424 

 
h/w = 0.4 5.0 × 5.05 × 4.95 0.44 

   

 
 

 

  

(a)  h/w = 1 (b) h/w = 0.6 (c)  h/w = 0.4 
 

  

 
Fig. 2. Samples after isotropic compression (a) spherical particle sample (h/w = 1); (b) ellipsoidal particle sample (h/w 
= 0.6); (c) (h/w = 0.4). 

 
2.2. Simulation Data 
 

Figure 3 shows an image of the stress paths projected 
onto a normalized π-plane, where b = 0, 0.3, 0.5, 0.7, and 
1. This study used a DEM code called Oval created by 
Kuhn [19]. The parameters run in Oval were mass density 
(2,650 kg⁄(m3)), normal and tangential stiffness (1×106 
N⁄m), friction coefficient (0.5), and damping (0.05). The 
small stress rate was used to obtain the small strain rate 
under stress control and constant mean stress in all stress 
paths. The unbalanced force index (0.1%) was limited and 
the simulation was completed close to a quasi-static state 
[19]. 

 

 
Fig. 3. Simulation stress paths b = 0, 0.3, 0.5, 0.7 and 1 on 
the normalized π-plane. 
 

 
 
 
 

Width 3 - 4.5 mm 

Height a 
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3. Results 
 

3.1. Stress-Strain Relationship 
 
Figures 4(a)–(c) show the relationship of the stress 

ratio ( 𝑞/𝑝 ), equivalent deviatoric strain 𝜀𝑑  (%), and 

volumetric strain 𝜀𝑣 (%) in all shapes and tests, where the 
deviatoric stress can be expressed as: 

 
 

𝑞 = √
1

2
{(𝜎𝑥 − 𝜎𝑦)

2
+ (𝜎𝑦 − 𝜎𝑧)

2
+ (𝜎𝑥 − 𝜎𝑧)2}   (1) 

 
 and the mean stress as:  

𝑝 = 
1

3
 (𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧)      (2) 

 

where 𝜎𝑧, 𝜎𝑥, and 𝜎𝑦 are the vertical stress (stress in the Z 

direction) and the horizontal stresses (stress in directions 
of the X and Y axes, respectively), as shown in Fig. 3. The 
volumetric strain can be expressed as: 

 

𝜀𝑣 =
𝑑𝑣

𝑣
           (3) 

 

where 𝑑𝑣 is the volume change of the sample and 𝑣 is the 
volume before shearing. The equivalent deviatoric strain 
can be expressed as: 

 

𝜀𝑑 = √
2

3
{(𝜀𝑥 − 𝜀𝑦)

2
+ (𝜀𝑦 − 𝜀𝑧)

2
+ (𝜀𝑥 − 𝜀𝑧)2}     (4) 

  

where 𝜀𝑧 , 𝜀𝑥 , and 𝜀𝑦  are the vertical strain (in the Z 

direction) and the two horizontal strains (in directions of 
the X and Y axes, respectively). Figures 4(a)–(c) show that 

the stress ratio (𝑞/𝑝) and the equivalent deviatoric strain 

(𝜀𝑑 as a %) of the ellipsoid h/w = 0.4 had the highest shear 
stress, followed by h/w = 0.6, with the sphere h/w = 1 
having the smallest. These results were the same as those 
presented by Xie et al. [18]. The sphere h/w = 1 and the 
ellipsoidal particle samples h/w = 0.6 and 0.4 all showed 
the nonlinear development of volumetric strain εv (%), 
depending on the b values in Figs. 4(a)–(c). For the 
spherical particle sample in Fig. 4(a), the volumetric strain 
εv became dilated when the stress ratio increased. Similar 
results were reported from using the DEM with one 
constant b value by Thornton [20], Kuhn [21], and Wang 
et al. [23], among others, which was different from the 
spherical particle sample. The ellipsoidal particles in both 
samples show compression and dilation as in Figs. 4(b) 
and (c), respectively. These results implied that the 
spherical particle sample was dense in all directions (Z, X, 
and Y) after isotropic compression. In Figs. 4(b) and (c) 

where the 𝜀𝑣 of stress path b = 0 of the ellipsoidal particle 

samples and h/w = 0.6 and 0.4 where 𝜎𝑧>𝜎𝑥=𝜎𝑦, the 𝜀𝑣 

(=𝜀𝑥  + 𝜀𝑦  + 𝜀𝑧 ) shows (positive) compression because 

the summary of dilation 𝜀𝑥  + 𝜀𝑦  was less than the 

compression 𝜀𝑧 . Therefore, 𝜀𝑣  shows compression, 

indicating ellipsoidal particle samples with inherent 
anisotropy. This inherent anisotropy was caused by the 
loading in the vertical direction (direction Z) being higher 
than in the other 2 horizontal ones (directions X and Y). 
The inherent anisotropy in the micro data is explained in 
the Microscopic Results section below. 
 
3.2. Microscopic Behavior 

 
Figures 5(a)–(c) show the graphs of the coordination 

number and 𝜀𝑑 (%) with different b values for all shapes, 
where the ellipsoidal particle samples (h/w = 0.6 and 0.4) 
have coordination numbers of 9.28 and 9.58, respectively, 
before shearing, whereas the spherical shape (h/w = 1) 
has a value of 5.67. This corresponded to the higher 
strength of the ellipsoidal particle sample than the 
spherical particle sample because of closer contacts within 
the sample. The greater coordination number shows more 
contacts that increase the load carrying capacity. In 
addition, Fig. 9 shows that the coordination number does 
not depend on the b values in spherical particle sample, 
where it does depend on the b values in ellipsoidal particles 
(h/w = 0.6 and 0.4). Furthermore, the coordination 
number depended on the particle type. Figures 6(a)–(c) 
show the graphs of the sliding contact fraction and, the 

graph of 𝜀𝑑 for the different b values in all shapes. These 
figures show that the ellipsoidal particle sample (h/w = 
0.4) had more sliding particles than the ellipsoidal particle 
sample (h/w = 0.6) and the spherical particle sample (h/w 
= 1), when the deviatoric stress increased. 

 
3.3. Microscopic Characteristics 

 

In Figs. 7 (a) and (b), the normal contact force (𝑓𝑛
𝑐) ’s 

direction is normal to the tangential contact force (𝑓𝑡
𝑐) in 

the contact plane at the point of contact of two particles 
where both are either spherical or ellipsoidal. During 

shearing, the particle orientation and contact forces (𝑓𝑐) 
continuously changed. This study focused on the normal 
and tangential contact forces. Figures 8(a1)–(a3) show the 
chains of normal, and tangential contact forces of 
spherical, h/w = 1, and ellipsoidal samples, h/w = 0.6 and 
0.4, after isotropic compression of 100 kPa. Figures 9(a1)–
(c3) shows at peak stress of b = 0 but Figs. 10(a1)–(c3) 
shows at peak stress of b = 1. In these figures, the line 
indicates one contact force and the colors in each line 
correspond to the intensity of contact force. Figures 
8(a1)–(a3) show that the normal contact forces are 
symmetrical distribution in all directions of all shapes. 
Nevertheless, the particle h/w=0.6 in Fig. 8(a2) shows 
higher intensity than h/w = 1 (sphere) and h/w = 0.4 at 
isotropic compression 100 kPa. This result shows that 
different normal contact forces depend on the particle 
shape. Figures 9(a1)–(a3) show that the normal contact 
forces align with the vertical axis at peak stress under b = 
0. Besides, the normal contact force of the particle h/w = 
0.6 shows the highest intensity followed by h/w = 0.4 and 
h/w = 1. Then, Fig. 9(b1) shows that the h/w = 0 sample 
shows almost zero tangential contact forces at peak stress 
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at b = 0, h/w = 0.6 shows the highest direction of 45 
degrees and h/w = 0.4 shows the highest direction (higher 
than 45 degrees). Then, Figs. 10(a1)–(b3) show the normal, 
tangential contact forces of particle h/w = 1, 0.6 and 0.4 
at peak stress under b = 1. Figures 10(a1)–(a3) shows that 
the normal contact force of the particle h/w = 0.6 has 
higher values than h/w = 0.4. And h/w = 1 has the 
smallest values similar to stress b = 0 in Figs. 9(a1)–(a3). 
Nevertheless, the normal contact force when stress path b 
= 0 is greater than stress path b = 1. To conclude, the 
normal and tangential contact forces show dependency on 
the shape of particles and b. In Figs. 9 and 10, the normal 
and tangential contact forces at peak stress show changes 

according to the reorientation and the change of contact 
force’s intensity. When stress path is b = 0, 𝜎𝑧 is at the 
maximum peak. The reorientation of particles causes the 
orientation of contact forces of increasing load-carrying 
capacity to resist 𝜎𝑧 increase. At the same time, if stress 
path is b = 1, 𝜎𝑥 and 𝜎𝑦  increase causes the particle 

reorientation to resist the stress in 𝜎𝑥and 𝜎𝑦 . Therefore, 

the direction of major principal stress and loss of the 
minor one has influence on the orientation of contact 
forces, depending on the particle’s shape. 

 

   
(a)  (b)  (c)  

Fig. 4. Stress-strain relationship of stress paths b = 0, 0.3, 0.5, 0.7 and 1: (a) h/w=1, (b) h/w=0.6 and (c) h/w=0.4. 

   
(a) (b) (c) 

Fig. 5. Graph of coordinate number and 𝜀𝑑 (%) under different b of all samples. 

   
(a) (b) (c) 

Fig. 6. Graphs of sliding contact fraction and 𝜀𝑑 (%) under different b of all samples. 

 
(a)  

(b) 
Fig. 7. Interparticle contact forces; (a) spherical particles; (b) ellipsoidal particles. 
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(a1) h/w=1 

 

(a2) h/w=0.6 
 

(a3) h/w=0.4 

Fig. 8. (a1) - (a3) The chains of contact normal of h/w = 1, 0.6 and 0.4 after isotropic compression 100 kPa. 

 

 
  

(a1) h/w=1 (a2) h/w=0.6 (a3) h/w=0.4 

   

(b1) h/w=1 (b2) h/w=0.6 (b3) h/w=0.4 

Fig. 9. (a1) - (a3) The chains of normal contact forces and (b1-b3) the chains of tangential forces at peak 

stress of sample h/w=1, 0.6 and 0.4 at peak of b = 0. 

 
  

(a1) h/w=1 (a2) h/w=0.6 (a3) h/w=0.4 

   

(b1) h/w=1 (b2) h/w=0.6 (b3) h/w=0.4 

Fig. 10. (a1) - (a3) The chains of normal contact forces and (b1-b3) the chains of tangential forces at peak 

stress of sample h/w=1, 0.6 and 0.4 at peak of b = 1. 
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3.4. Contact Distribution  
 
Figures 11(a1)–(c9) show contact intensity 

distribution referred from Figs. 10(a1)–(a3) of normal 
contact forces before shearing in stress paths b = 0 and b 
= 1 for h/w = 1 (spheres), h/w = 0.6 and 0.4 (ellipsoids). 
The length of each direction shows the contact intensity 
in each direction of the principal stresses. The color 
represents the magnitude of contact in each direction. It 
can be seen in Fig. 11(a1) that the normal contact forces 
of spherical particle h/w = 1 are distributed in isotropic 
after isotropic compression but those of the ellipsoidal 
particle h/w = 0.6 and 0.4 are not. Figure 11(a2) shows 
that most of the normal contact forces of h/w = 0.6 seem 
aligned with the vertical loading direction (𝜎𝑧) and greater 
than the other two horizontal symmetry directions (𝜎𝑥and 
𝜎𝑦 ) with few and small normal contact forces. In Fig. 

11(a3), the normal contact forces of h/w = 0.4 are 
asymmetric in all directions. The normal contact forces of 
h/w = 0.4 are aligned with the vertical loading direction 
(𝜎𝑧) in the same level of intensity inclined 0 to 45 degrees 
from vertical directions. The normal contact force 

distribution shows the mechanical picture of contact 
forces and its anisotropic [15]. The normal contact forces 
at a peak stress of stress path b = 0 and b = 1 in all shapes 
are shown in Figs. 11(b1)–(c3) referring from the force 
chain of the normal contact forces in Figs. 8(b1)–(c3). It 
can be seen in Figs. 11 (b1) - (b3) that the great magnitude 
and intensity of the normal contact forces are in vertical 
direction where loading direction (𝜎𝑧) is in the maximum 
when b = 0. In addition, Figs. 11(c1)–(c3) show that when 
b = 1 (𝜎𝑧 = 𝜎𝑥), the magnitude and intensity of the normal 
contact forces in vertical ( 𝜎𝑧 ) and horizontal ( 𝜎𝑥 ) 
directions are greater than those in horizontal ( 𝜎𝑦 ) 

directions. Moreover, in Fig. 11(c1), the normal contact 
forces of vertical ( 𝜎𝑧 ) direction seem equal to the 
magnitude with horizontal (𝜎𝑥) direction when h/w = 1 
(spheres). But the normal contact forces of vertical (𝜎𝑧) 
direction are greater than those in horizontal (𝜎𝑥) direction 
when h/w = 0.6 and 0.4 in Figs. 11(c2) and (c3). All of 
these result from the fact that the sample of h/w = 1 is 
isotropic but h/w = 0.6 and 0.4 are anisotropic before 
shearing. 
 

 

   

(a1) h/w =1, before shearing. (a2) h/w =0.6, before shearing. (a3) h/w =0.4, before shearing. 

   

(a4) h/w =1, at peak of b = 0. (a5) h/w =0.6, at peak of b = 0. (a6) h/w =0.4, at peak of b = 0. 

   

(a7) h/w =1, at peak of b = 1. (a8) h/w =0.6, at peak of b = 1. (a9) h/w =0.4, at peak of b = 1. 

Fig. 11. (a1) – (a9) Contact normal distributions in all shapes: (a1-a3) before shearing before shearing, (a4-a6) at peak of 

b = 0, and (a7-a9) at peak of b = 1. 
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(b1) h/w =1, before shearing (b2) h/w =0.6, before shearing (b3) h/w =0.4, before shearing 

   

(b4) h/w =1, at peak of b = 0. (b5) h/w =0.6, at peak of b = 0. (b6) h/w =0.4, at peak of b = 0. 

   

(b7) h/w =1, at peak of b = 1. (b8) h/w =0.6, at peak of b = 1. (b9) h/w =0.4, at peak of b = 1. 

 

Fig. 11. (b1) - (b9) Normal contact forces distributions in all shapes: (b1) - (b3) before shearing before shearing,  

(b4) –(b6) at peak of b = 0, and (b7) - (b9) at peak of b = 1. 
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(c1) h/w =1, before shearing (c2) h/w =0.6, before shearing (c3) h/w =0.4, before shearing 

   

(c4) h/w =1, at peak b = 0 (c5) h/w =0.6, at peak b = 0 (c6) h/w =0.4, at peak b = 0 

   

(c7) h/w =1, at peak b = 1 (c8) h/w =0.6, at peak b = 1 (c9) h/w =0.4, at peak b = 1 

 

Fig. 11. (c1) - (c9) Tangential contact forces distributions in all shapes: (c1) - (c3) before shearing before shearing,  

(c4) - (c6) at peak of b = 0, and (c7-c9) at peak of b = 1. 
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4. Fabric Tensor 
 
Figures 12 (a1)–(c3) shows the evolutions of the 

principal fabric tensors of h/w = 1, 0.6 and 0.4 indicating 
the contact intensity in each direction of the principal 
stresses. The fabric tensor was defined by Oda [23] as one 
of the key factors to indicate the strength of macro 
behavior. The fabric tensor is: 

 

𝐹𝑖𝑗 =
1

𝑀
∑ 𝑛𝑖

𝑘𝑛𝑗
𝑘𝑀

𝑘=1          (5) 

 

where M is the total number of contacts, 𝑛𝑖
𝑘 is the part of 

unit vector 𝑛𝑘. 𝐹𝑍𝑍 ,𝐹𝑋𝑋, and 𝐹𝑌𝑌are the principal values 
of fabric tensors in major, intermediate, and minor 

directions. In Fig. 12(a1), 𝐹𝑍𝑍  of h/w = 1(sphere) 
increases when b = 0 and decreases after b increases. As 

for Fig. 12(a2), 𝐹𝑋𝑋 decreases when b = 0 and gradually 

increases after b increases. In Fig. 12(a3), 𝐹𝑌𝑌 begins to 
decrease when b = 0 and keeps decreasing after b increases. 
Similarly, Huang et al. [13], Zhou et al. [15] and [17] 

reported that the principal fabric tensor showed the 
similar trend as those of the stress tensor in the true triaxial 

tests. In Fig. 12(b1), 𝐹𝑍𝑍  of h/w = 0.6 increases in the 

similar degree of all b. In Fig. 12(b2),  𝐹𝑋𝑋  gradually 
decreases when b = 0 but it increases when b = 0.3,0.5, 0.7 

and 1. The trend of b increases together with 𝐹𝑋𝑋. In Fig. 

12(b3), 𝐹𝑌𝑌 begins to decrease in all b but keeps decreasing 

when b increases. In Fig. 12(c1), 𝐹𝑍𝑍  of h/w = 0.4 
increases when b increases. This shows the opposite trend 

to 𝐹𝑍𝑍 of h/w = 1. It can be seen that the particle h/w = 

1 when b =1, 𝐹𝑍𝑍 decreases with the increase of b (see Fig. 
12(a1)) while h/w = 0.4 shows the opposite trend (see Fig. 

12(c1)). It is noted that 𝐹𝑍𝑍  should increase in the 
maximum degree under stress path b = 0. This should 
have occurred when the particle is h/w = 1 or sphere, but 
it does not happen in the particle h/w = 0.4. Thus, the 
contact orientations of particle h/w = 0.4 affects the 
increasing trend of the intermediate stress ratio b. Namely, 
the contact orientations of particle h/w = 0.4 before 
shearing is more anisotropic than h/w = 0.6 while h/w = 
1 is isotropic assembly.

 

   

(a1) (a2) (a3) 

   

(b1) (b2) (b3) 

   

(c1) (c2) (c3) 

 

Fig. 12. (a1)–(c3) Principal fabric tensors of all samples. 
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5. Deviatoric Anisotropy Coefficient Evolutions  
 
The deviatoric mechanical anisotropy mainly resulted 

from loading stress paths and depends greatly on the 
generated internal contacts. The internal contacts induced 
the contact force and related to the contact plane’s 
orientation of each particle. As usual, the anisotropy of the 
contact normal as well as the branch vector can describe 
the geometrical anisotropy of the assemble. The 
anisotropy coefficients can be identified to be normal 
contact force anisotropy and tangential contact force 
anisotropy. The deviatoric invariants representing the 
contact normal anisotropy, normal and tangential contact 
forces anisotropies are defined to quantify anisotropy’s 
degree. The tensor explains the magnitudes of normal 
contact forces without considering the degree anisotropy 
of contact orientation.  The coefficient of anisotropy 

tensors, 𝑎𝑖𝑗
𝑟 , 𝑎𝑖𝑗

𝑛  and 𝑎𝑖𝑗
𝑡 were resulted from their 

invariants in the same way as the stress tensor [9, 15, 25, 

26, 32, 33]. The 𝑎𝑖𝑗
𝑛  can also be described is: 

 

𝑎𝑖𝑗
𝑛 =

15

2

𝐹′
𝑖𝑗
𝑛

𝑓0̅
𝑛     (6) 

The shape of the average normal contact forces was 
created from the approximate equation similar to the 
distribution of fabric. The equation is: 

 

𝑓̅𝑛(𝛺) = 𝑓0̅
𝑛[1 + 𝑎𝑖𝑗

𝑛 𝑛𝑖𝑛𝑗]    (7) 

 

The 𝑎𝑖𝑗
𝑡 is: 

 

𝑎𝑖𝑗
𝑡 =

15

3

𝐹𝑖𝑗
𝑡

𝑓0̅
𝑛           (8) 

The coefficients of the deviatoric anisotropy 𝑎𝑟 , 𝑎𝑛, 

𝑎𝑡 can be described as: 
 
 

𝑎𝑟 = √
3

2
𝑎𝑖𝑗

𝑟 𝑎𝑖𝑗
𝑟     (9.1) 

 

𝑎𝑛 = √
3

2
𝑎𝑖𝑗

𝑛 𝑎𝑖𝑗
𝑛     (9.2) 

 

𝑎𝑡 = √
3

2
𝑎𝑖𝑗

𝑡 𝑎𝑖𝑗
𝑡     (9.3) 

 
The evolution between the coefficients of the 

deviatoric anisotropy 𝑎𝑟 , 𝑎𝑛 , 𝑎𝑡  and the equivalent 

deviatoric strain 𝜀𝑑  (%) for all shapes under different b 
values are shown in Figs. 13(a1)–(c3). Figure 13(a1) shows 

that the 𝑎𝑟 increase together with b increase. It maximizes 

when b =1. The less 𝑎𝑟means less deviatoric in contact 

normal of particles. The large 𝑎𝑟 means greater deviatoric. 

In Figs. 13(b1) and (c1), 𝑎𝑛 and 𝑎𝑡 increase together with 

b decrease. 𝑎𝑛shows the high influence on b because it 
shows the similar trend with the curve between stress ratio 
and equivalent deviatoric strain in Fig. 4(a). Figures 13(a1), 

(a2) and (a3) shows 𝑎𝑟of spherical h/w = 1, ellipsoid h/w 

= 0.6 and 0.4. Figure 13(a2), it can be seen that 𝑎𝑟of h/w 
= 0.6 starts at 1 but decreases and increases with an 

increase of 𝜀𝑑 (%). In Fig. 13(a3), 𝑎𝑟of h/w = 0.4 shows 
the maximum in the beginning but decrease.in the end. 
This means that the sample h/w = 0.4 shows the most 
anisotropic behaviors followed by h/w = 0.6 and h/w = 
1 (spherical particles). Obviously, the h/w = 1 is isotropic 
sample, and h/w = 0.6 and 0.4 are anisotropic samples. 
Moreover, it can be seen in Figs. 13(a1), (a2) and (a3) that 
b value depends on the particle orientations and the 
particle shapes. Then, Figs. 13(b1), (b2) and (b3) show 

𝑎𝑛of sphere particle h/w = 1, ellipsoid h/w = 0.6 and 0.4. 

Figure 13(b3) shows that 𝑎𝑛  of h/w = 0.4 shows the 
maximum start from 5 but then it increases together with 

the decrease of b.  Figure 13(b2) shows that 𝑎𝑛of h/w = 
0.6 starts from 2 but then it increases together with the 

decrease of b. The 𝑎𝑛of h/w = 1 in Fig. 13(b1) starts from 
0 and then increases together with the decrease of b. Then, 

Figs. 13(c1), (c2) and (c3) shows 𝑎𝑡of sphere particle h/w 

= 1, ellipsoid h/w = 0.6 and 0.4. The 𝑎𝑡 of all samples 
starts from 0 but increased together with the decrease of 

b. Thus, the evolution of 𝑎𝑟 , 𝑎𝑛, 𝑎𝑡of isotropic samples, 
h/w = 1, and anisotropic samples, h/w = 0.6 and 0.4, 
depend on the shape of particle, but on b.  

 

6. Conclusions 
 
The study aims to review various mechanical 

behaviors of 3 different shapes, h/w (height/width) equal 
to 0, 0.6 and 0.4). 8,000 particles with h/w = 0 were 
formed into spherical particle assemblies but h/w = 0.6 
and 0.4 were formed into ellipsoidal particle assemblies. 
The stress path b = 0, 0.3, 0.5, 0.7 and 1 were used to learn 
the effect of various intermediate principal stress. The 
results of macro mechanical and microscopic behaviors 
including the contact force and deviatoric anisotropy 
characteristics of all particle shapes were reported. The 
conclusions are followed: 

1. The ellipsoidal particles h/w = 0.4 and 0.6 were 
inherent anisotropy where the spherical particles h/w = 1 
were isotropic in all directions before shearing. The stress-
strain curves showed that the strains of ellipsoidal particles 
h/w = 0.4 and 0.6 show extension first, followed by 
compression but spherical particles showed compression 
in the beginning. To conclude, the spherical particles were 
dense samples in all directions of principal stresses, but 
ellipsoidal particles were loose samples. This resulted from 
the fact that the shape, even the preparation of the 
samples, were in the same condition. 

2. The coordination number and sliding contract 
fraction of ellipsoidal particles h/w = 0.4 were greater 
than h/w = 0.6 and h/w = 1 (spheres). So, the ellipsoidal 
shape caused contacts and sliding particles more than the 
spherical particles even in the same number of particles. 

3. The forces chain of normal contact forces could 
be used in the 3 dimensions of contact distributions to 
draw pictures and show the anisotropic level of the 
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granular materials. Most contact force distribution was 
aligned with the direction in major loading stress. 

4. The ellipsoidal particles h/w = 0.4 showed the 
highest level of anisotropic, followed by h/w =0.6 but 
spheres h/w =1 was isotropic. The distributions in normal 
contact forces changed depending on stress paths and 
intermediate stress ratio b. 

5. The fabric tensor and the deviatoric anisotropy 
coefficient could be used to give the mechanical response 
of spherical particles of granular soils. But the deviatoric 
anisotropy coefficient was not used to give the mechanical 
response of non-spherical particles. 

 

   

(a1) (a2) (a3) 

   
(b1) (b2) (b3) 

   
(c1) (c2) (c3) 

Figs. 13 (a1) – (c3) The relationship of 𝑎𝑟, 𝑎𝑛, 𝑎𝑡 and 𝜀𝑑(%) in all samples. 
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