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Abstract. Aggregate is the most extracted material from the world's mines and widely used 
in civil and construction projects. The Micro-Deval abrasion test (MD) is one of the most 
important tests that provides characteristics of crushed aggregates that show their resistance 
against mechanical abrasive factors such as repeated impact loading. The impact of various 
factors on abrasive resistance properties of aggregates has led researchers to seek 
correlations, often focusing on limited data samples, leading to reduced accuracy. This study 
employs machine learning (ML) methods to predict MD abrasion values, considering diverse 
aggregate properties. Various ensemble ML methods were applied, revealing the exceptional 
performance of the stacking model, which achieved an R2 score of 0.95 in predicting 
aggregate abrasion resistance. The feature importance analysis highlights the influence of 
factors such as Magnesium Sulfate Soundness (MSS), Water Absorption (ABS), and Los 
Angeles Abrasion (LAA) on aggregate abrasion values, suggesting that the use of multiple 
test methods could yield a more dependable assessment of aggregate durability. 
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1. Introduction 
 
Aggregates, a blend of fine and coarse particles 

including gravel, sand, crushed stone, slag, concrete waste, 
polymer materials, glass, and rubber fragments, are 
essential in various structures. Its primary use is found in 
the construction of concrete structures, the surfacing of 
roads, and the development of railway infrastructure, 
where it often makes up a significant part of the 
composition, representing approximately 70-80% of the 
material in concrete. 

deployed in a specific grain size distribution, they 
directly impact characteristics like compressive strength, 
thermal expansion, and concrete density. In road 
construction, asphalt, or asphaltic concrete, stands as the 
most prevalent material. Aggregates, acting as the primary 
load-bearing elements, make up approximately 90-95% by 
weight and 75-85% by volume of asphalt compositions. 
Whether sourced from natural deposits, processed from 
broken materials, or synthetically manufactured, 
aggregates must consistently conform to rigorous 
requirements for road pavement, encompassing physical 
attributes such as granularity, durability, toughness, shape, 
texture, water absorption, and abrasion [1]. 

Insufficient friction between vehicle tires and road 
surfaces is a significant contributor to traffic accidents. To 
mitigate accidents and fatalities arising from poor friction, 
optimal skid resistance must be ensured under various 
weather conditions. The primary determinants of high 
pavement friction are the type and texture of aggregates. 
In practical terms, addressing this issue requires 
conducting laboratory testing and evaluating aggregate 
materials. Two widely used tests for ensuring the quality 
control of aggregates include the Micro-Deval abrasion 
test (MD) and the Los Angeles abrasion test (LAA) [2, 3]. 
The MD test, developed in France in the 1960s, evaluates 
mineral aggregates' abrasion resistance and durability by 
simulating abrasive actions with steel balls in the water. 
This test is highly valuable as it closely mimics the 
conditions experienced in the field, where aggregates are 
subject to abrasive forces in the presence of moisture. In 
reality, water can infiltrate the interface between 
aggregates and asphalt, potentially causing adhesion loss 
and asphalt concrete pavement failure. Therefore, it's 
crucial to consider moist conditions resulting from rain, 
snow, and ice melt during pavement service [4,5]. Despite 
the widespread use of the LAA test for evaluating 
aggregate durability, many researchers have expressed 
reservations about its suitability for assessing aggregates 
intended for use in asphalt and concrete pavements [6]. 
This discrepancy stems from variations in the behavior of 
different aggregate materials; those with strong crystals 
like granite may respond differently than materials with 
weaker crystals, such as slates, during the LAA test [7]. In 
response to the concerns mentioned, the American 
Association of State Highway and Transportation 
Officials (AASHTO), as part of the National Cooperative 
Highway Research Program (NCHRP-405) project, 
investigated aggregate behavior in asphalt pavements. The 

primary objectives were to analyze and compare outcomes 
from the LAA and MD tests and establish correlations 
with assessments like the magnesium sulfate soundness 
test [8]. Testing 16 aggregate types revealed a strong 
correlation between the MD test and the magnesium 
sulfate soundness test, providing valuable insights into the 
aggregate performance in asphalt pavements. In a study by 
M. Takarli, a strong link was found between aggregate 
abrasion resistance and mineral composition. Their 
findings indicated a significant correlation between 
mineral compositions and various aggregate properties, 
including density, water absorption, and wear resistance 
[9]. This research illuminated how an aggregate's mineral 
composition influences its physical characteristics and 
durability, providing valuable insights for material 
selection and pavement design. Another study reviewed 
the relationship between the geology of aggregates and 
their performance in LAA and MD tests. It was 
demonstrated that drawing final conclusions about 
mechanical performance based on a single textural factor 
is not adequate. Therefore, a comprehensive 
consideration of all relevant factors simultaneously is 
necessary [10]. The demand for natural aggregates has 
experienced a substantial surge due to the expansion of 
construction projects and the depletion of natural 
aggregate reserves. This has prompted researchers to 
explore alternatives, such as recycled aggregates, and seek 
ways to minimize destructive testing of granular materials. 
Consequently, computer-based methods have gained 
prominence in the realm of engineering sciences [11]. 
Recently, artificial intelligence methods have experienced 
substantial growth in addressing large-scale challenges 
within the engineering sciences. The rise in available data 
and the efficiency of modern computational processes 
have fueled the adoption of ML methods, especially in 
fields like geotechnical engineering and material science 
which have attracted considerable attention over the past 
decade [12]. 

Researchers have widely applied ML to predict and 
assess various engineering issues within the civil 
engineering domain [13-15]. In pavement engineering, 
ML's potential remains largely untapped due to the 
unpredictable nature of data. However, as ML advances, 
it could increasingly address challenges in this field, 
offering innovative solutions [16]. An insightful study by 
M. Asadi et al. showcased this potential, using ML to 
predict LAA values based on rock aggregate properties, 
such as uniaxial strength. The research revealed that 
specific ML methods outperformed traditional correlation 
approaches [17]. The research presented thus far has 
highlighted a notable gap in the existing literature 
regarding the influence of various factors on abrasion 
resistance, encompassing both the physical and 
mechanical properties of aggregates. The focus of much 
prior research was primarily on establishing linear 
correlations between the two factors and their mutual 
effects. However, the impact of multiple variables derived 
from available data on the abrasion resistance of various 
aggregates, as determined by MD abrasion tests, has not 



DOI:10.4186/ej.2024.28.3.15 

ENGINEERING JOURNAL Volume 28 Issue 3, ISSN 0125-8281 (https://engj.org/) 17 

been comprehensively explored in previous studies. The 
MD test, conducted with water to mimic field conditions 
by exposing aggregates to weathering and mechanical 
stress, has been confirmed as reliable and repeatable by 
past studies and Department of Transportation (DOT) 
reports. Consequently, it is required for quality control of 
aggregates in projects, especially road construction. 

In this paper, the impact of physical and mechanical 
properties of aggregates on their abrasion resistance based 
on the MD abrasion test was investigated using different 
ensemble ML methods. The durability and strength of 
aggregate were predicted by evaluating several physical 
and mechanical properties, including water absorption, 
specific gravity (measured in dry, saturated-surface-dry 
(SSD), and apparent states), magnesium sulfate soundness, 
alcohol-water freezing and thawing tests, and the LAA 
tests. A set of laboratory data was collected to construct 
ML algorithms. Python was employed to analyze different 
algorithms and predict the abrasion values based on 
various laboratory tests. Finally, to evaluate the accuracy 
and effectiveness of these machine learning models, four 
commonly employed performance metrics were used: 
Mean Squared Error (MSE), Root Mean Square Error 
(RMSE), Mean Absolute Error (MAE), and the R-squared 
(R2 score). 
 

2. Materials and Methods 
 
ML is widely applied in civil engineering for 

prediction, classification, and solving complex 
mathematical challenges. In the context of road safety, one 
critical attribute of asphalt pavement is its friction 
resistance. Insufficient friction between car tires and road 
surfaces is a significant contributor to traffic accidents [18]. 
Ensuring maximum skid resistance under diverse weather 
conditions are imperative. Primary factors influencing 
pavement friction includes aggregate type and pavement 
surface texture. Standard tests, including the vital MD test, 
evaluate the durability and abrasion resistance of 
aggregates. In order to achieve a good prediction of the 
abrasion resistance in aggregates by the MD test, 
consideration was given to various tests and aspects that 
might have an impact on aggregate abrasion, such as water 
absorption, specific gravity in dry, SSD, apparent 
conditions, and soundness tests of magnesium sulfate, 
along with alcohol-water freezing, thawing, and the LAA 
test. Experimental data from various studies was collected 
to formulate the model. Due to the use of labeled datasets, 
the model is defined by its ability to be trained by 
algorithms that accurately predict outcomes. The 
development of super learner models was undertaken by 
utilizing a varied ensemble of methods, including random 
forest (RF), gradient boosting machine (GBM), extreme 
gradient boosting (XGBoost), adaptive boosting 
(AdaBoost), categorical gradient boosting (CatBoost), and 
stacking by utilizing linear regression as the meta-learner 
to combine various algorithms for enhanced accuracy. 
The optimal conditions for each ensemble algorithm were 
obtained through a process of hyper-parameter 

optimization, utilizing a grid search method to achieve the 
best performance. For the assessment of the accuracy and 
effectiveness of these ML models, four widely used 
performance metrics, namely MSE, RMSE, MAE and the 
R2 score, were utilized. These metrics provided valuable 
insights into the models' performance in accurately 
predicting the abrasion resistance of aggregates through 
the MD test and capturing the underlying patterns in the 
data. The MSE quantifies the average squared difference 
between the actual and predicted values, presenting an 
overall measure of prediction accuracy. Derived from 
MSE, the RMSE represents the square root of the average 
squared error, providing a measure of prediction deviation 
relative to the actual values. The MAE calculates the 
average absolute difference between the actual and 
predicted values, offering a straightforward measure of the 
model's predictive errors. Additionally, the R2 score 
statistic serves as a crucial indicator of how well the 
influence of an independent variable explains the variance 
in a dependent variable. It aids in determining the extent 
to which the variability in the abrasion resistance of 
aggregates through the MD test can be attributed to the 
variations in the input features. 

 
2.1. Ensemble Learning Methods 

 
Ensemble learning methods can be categorized into 

three distinct groups: bagging, boosting, and stacking, as 
demonstrated in Fig. 1. In this study, all these methods 
were utilized. Firstly, the bagging method, specifically the 
RF algorithm, was employed. Secondly, the boosting 
method, encompassing GBM, XGBoost, AdaBoost and 
Catboost, was put to use. Additionally, a stacking 
ensemble model, capable of combining the strengths of 
both boosting and bagging methods was applied [19]. 

 

 
 
Fig. 1. Flowchart of ensemble methods. 

 
2.1.1. Random FOREST (RF) 

 
The RF is an ensemble learning method rooted in 

bagging, utilized for both regression and classification 
purposes. In the RF, trees operate independently in 
parallel, with no interaction among them during the 
construction phase. The introduction of random elements 
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allows each tree to make independent predictions, even 
though they are developed using a deterministic algorithm 
and a fixed set of training data. [20]. 

 
2.1.2. Gradient boosting machine (GBM) 

 
GBM is an ensemble machine learning technique that 

sequentially merges the forecasts of several basic models, 
often decision trees, to enhance overall predictive 
accuracy. By adjusting the model's weight based on errors, 
it systematically minimizes prediction errors, progressively 
enhancing model accuracy. GBM possesses the capability 
to uncover any nonlinear relationships between the target 
and features of the model, offering excellent usability that 
can handle missing values and outliers without requiring 
any special treatment. [21]. 

 
2.1.3. Extreme gradient boosting (XGBoost) 

 
XGBoost is an optimized distributed Gradient 

Boosting Machine (GBM). It employs an ensemble 
learning approach that combines predictions from 
numerous weak models to generate a more robust 
prediction. An impressive aspect of XGBoost is its skillful 
management of missing values, which enhances its 
efficacy. This approach effectively addresses overfitting 
while also improving computational efficiency [22]. 

 
2.1.4. Adaptive boosting (AdaBoost) 

 
The fundamental principle of AdaBoost involves 

iteratively adjusting parameters associated with a 
designated set of functions. AdaBoost's efficacy lies in its 
capability to transform a group of weak learners into a 
robust ensemble learner, often delivering remarkable 
predictive accuracy. Nonetheless, caution is advised 
against overfitting, particularly when the weak learners are 
overly complex [23]. 

 
2.1.5. Categorical gradient boosting (CatBoost) 

 
CatBoost builds upon the principles of decision trees 

and gradient boosting. The main concept behind 
CatBoost involves sequentially integrating numerous weak 
models to create a robust predictive model through 
iterative improvement. This model utilizes the complete 
dataset during training and incorporates random 
permutations for each instance. It introduces a novel 
approach for computing leaf values during the selection of 
tree structure; through these advancements, CatBoost 
significantly improves model performance and the ability 
to generalize [24]. CatBoost diverges from typical gradient 
boosting models by employing oblivious trees. This 
approach dictates that trees are grown under the 
constraint that nodes at the same level must test the same 
predictor with the same condition. 

 

2.1.6. Stacking 
 
Stacking is widely recognized as one of the most 

utilized and effective ensemble techniques within the 
realm of ML as distinguished from bagging and boosting, 
stacking integrates numerous classifiers or regressors 
developed using various ML algorithms, functioning 
across distinct levels or layers [25]. Given the stacking 
ensemble model's potential to generate diverse 
permutations through various ML algorithms, this study 
focused on applying the super learner technique. 
Specifically, linear regression was employed as the meta-
learner to combine different algorithms, with the objective 
of achieving improved accuracy. Figure 2 depicted the 
process of the stacking algorithm. 

 

 
Fig. 2. Stacking algorithm process. 

 

3. Data Collection and Processing  
 
For MD prediction, data from various peer-reviewed 

publications, some of which are referenced in Table 1 
were collected, comprising 300 entries with various 
physical and durability factors affecting aggregate abrasion. 
The dataset, derived from standard tests, included 7 input 
features: Los Angeles Abrasion (LAA), Magnesium Sulfate 
Soundness (MSS), Water–Alcohol Freezing and Thawing 
(AFT), Water Absorption (ABS), Bulk, Saturated Surface 
Dry (SSD), and apparent specific gravity (SGBULK, 
SGSSD, SGAPP). The output was MD abrasion. To 
ensure dataset quality, missing data and outliers were 
filtered, resulting in a final dataset of 282 records 
specifically focused on MD abrasion. The dataset's 
statistical characteristics are summarized in Table 2. 

 
3.1. Micro-Deval Abrasion (MD) 

 
The MD test represents one of the most important 

methods for quality control, evaluating the abrasion 
resistance and durability of mineral aggregates Fig. 3. This 
test was conducted according to ASTM D6928 and ASTM 
D7428. An aggregate sample is placed in a test container 
with abrasive balls and water. The container is then rotated 
at 100 rpm for a specific time. The quality of an aggregated 
report is based on how much mass loss occurred [2].  
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Table 1. Some sources of collected Data. 
 

ID Type LAA MSS AFT ABS SGBULK SGSSD SGAPP MD Ref 

1 Dolomite 31 12.2 7 1.6 2.58 2.63 2.7 17 [17] 

2 Granite 29 23.9 5.75 2.2 2.51 2.57 2.66 22.2 [18] 

3 Meramec 21 1.1 2.375 0.6 2.75 2.76 2.79 9.7 [26] 

4 Limestone 26 3 2.8 0.7 2.67 2.69 2.72 11 [27] 

Unit of LLA, MSS, AFT, ABS and MD (%) 

 
Table. 2. Statistical properties of dataset. 
 

 LAA MSS AFT ABS SGBULK SGSSD SGAPP MD 

count 282 282 282 282 282 282 282 282 

mean 25.44 7.59 4.43 1.50 2.17 2.19 2.25 14.70 

std  8.25 7.51 2.90 1.16 0.74 0.74 0.73 7.34 

min 9.36 0.03 0.60 0.10 0.98 0.99 1.01 1.40 

max 56.88 36.70 13.90 5.91 2.88 2.88 2.91 39.98 

 
 

 
 

 
 
Fig. 3. MD apparatus. 
 

Figure 4 displayed the Pearson correlation coefficient 
between various attributes. This coefficient revealed a 
weak and negative correlation among certain variables. 
While the Pearson correlation coefficient is commonly 
employed to assess the strength and direction of linear 
relationships between variables, it may not reliably identify 
nonlinear relationships.  

Pair plots (Fig. 5) provided valuable insights into the 
data distribution, revealing patterns and potential 
anomalies. This data visualization tool facilitated a deeper 
understanding of the relationships between variables, 
guiding informed decisions during the analysis and 
modeling process. A data splitting strategy was employed 
to develop and assess ML models. The dataset was divided 
into two segments: a training sample, which comprised 80 
percent of the data, and a test sample, which contained the 
remaining 20 percent. The training sample was utilized for 
the construction and training of the ML model using 
various super learner methods, aimed at uncovering the 
underlying patterns and relationships between the input 

features, such as LAA, MSS, AFT, ABS, SGBULK, 
SGSSD and SGAPP [18]. Once the model was trained, its 
performance was evaluated using the test sample, which 
had been withheld during the training phase. The ability to 
accurately predict the MD abrasion based on the provided 
input data was assessed by the trained model. Valuable 
insights into the model's generalization and its 
performance on previously unseen data were provided by 
this evaluation. Through this rigorous testing, it was 
ensured that new data could be effectively handled by our 
model, enabling accurate predictions in real-world 
scenarios. 
 
3.2. Hyperparameter Tuning 

 
Hyperparameter tuning constitutes a crucial step in 

the development of robust ML models. By tuning the ML 
model, overfitting can be mitigated, thus enhancing the 
model's adaptability to unseen data [25]. Optimal 
hyperparameter selection also plays a determinant role in 
augmenting model accuracy. Various approaches have 
been proposed to automate the selection of 
hyperparameters, such as grid search and random search 
hyperparameter optimization, aiming to avoid manual 
tuning. Grid search was utilized in this study, involving the 
construction of a model for each conceivable combination 
of the provided hyperparameter values. Each model was 
then evaluated, and the architecture yielding the most 
optimal results was selected. 
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Fig. 4. Pearson correlation coefficient for the dataset. 

 

 
 

Fig. 5. Pair graph of dataset. 
 

4. Results and Discussion 
 
The development of accurate prediction models for 

estimating the abrasion resistance of aggregates through 
the MD test constituted the main objective of this study. 
In order to achieve this goal, supervised ML algorithms 

were employed, with a particular focus on various 
ensemble models. Six ensemble models, including RF, 
GBM, AdaBoost, XGBoost, CatBoost, and a stacking 
method combining elements of boosting and bagging, 
were implemented using the scikit-learn library in Python. 
The utilization of these super learner models aimed to 
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predict the abrasion resistance of aggregates through the 
MD test, considering various physical and durability 
factors that could potentially influence aggregate abrasion. 
By training each model with the labeled dataset, intricate 
relationships between the input features and their 
corresponding MD abrasion resistance values were 
acquired. 

 
4.1. Performance of ML Models 
 

High accuracy in predicting the abrasion resistance of 
aggregates through the MD test was demonstrated by the 
Stacking, GBM, and CatBoost models, which achieved the 
highest prediction accuracy with R2 score exceeding 0.94 
for the stacking model and approximately 0.92 for both 
the GBM and CatBoost models, as depicted in Table 3 and 
Fig. 6. This outcome suggests that the relationship 
between the abrasion resistance of aggregates through the 
MD test and other variables is not primarily linear, owing 

to the intricacies of the dataset and the complex interplay 
of various factors. Notably, the dataset incorporates 
abrupt changes in specific values, which can adversely 
affect the accuracy of sensitive algorithms like Adaboost, 
resulting in a lower R2 score and higher MSE, RMSE and 
MAE. Conversely, other algorithms displayed more 
accurate predictions on the test data, mainly due to their 
adeptness in capturing the nonlinear nature of the dataset. 

The stacking model exhibited the best predictive 
performance, as indicated in Table 3, with the lowest MSE, 
RMSE, and MAE values for the test and train data, along 
with the highest coefficient of determination compared to 
that of the other models. The MAE and MSE and RMSE 
values were 0.99, 2.14 and 1.46 respectively, for the 
stacking ensemble model. It is evident that the model 
effectively captured the trend in the data, showcasing 
robust performance on both the train and test datasets. 

 

 

Table 3. Super learner models metrics. 
 

Model MAE  MSE RMSE R2 score 

 Test  Train Test  Train Test  Train Test  Train 

RF 1.74 1.71 5.85 5.44 2.41 2.33 0.85 0.84 

GBM       1.22 1.27 3.22 3.23 1.79 1.8 0.92 0.92 

  AdaBoost         2.79 3.21 11.77 14.26 3.43 3.77 0.71 0.67 

  XGBoost     0.88 0.88 4.46 4.46 2.11 2.11 0.89 0.89 

 CatBoost 0.9 0.9 3.204 3.205 1.78 1.78 0.92 0.92 

Stacking     0.99 0.99 2.14 2.14 1.46 1.46 0.948 0.947 

 
Fig. 6. Predicted vs Actual values of the MD for the different methods (test dataset). 
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Both the CatBoost and GBM models demonstrated a 
high capacity to generalize learned patterns, as evidenced 
by the notably similar prediction errors observed between 
the training and testing sets, which supports the notion 
that transitioning from linear regression to ensemble 
models, particularly boosting methods, strengthens the 
capability to capture non-linear relationships inherent in 
the data. For the CatBoost model, the MAE, MSE, and 
RMSE values were 0.9, 3.2, and 1.78, respectively, and the 
GBM model produced MAE, MSE, and RMSE values of 
1.22, 3.22, and 1.77, respectively. This enhancement 
consequently leads to a significant improvement in 
prediction accuracy for the specific task of estimating the 
abrasion resistance of aggregates through the MD test. 
Table 4 presented the predicted values of the MD by 
different methods utilized in this study, derived from 
randomly selected values from the test set and compared 
with their corresponding actual values. In most cases, the 
prediction results were considered acceptable. 

The comparison between the actual and predicted 
values by the CatBoost model revealed a mean difference 
of 0.98, with a standard deviation of the difference equal 
to 1.59, showcasing the powerful performance of the 
model in predicting the MD. The MD abrasion values of 
aggregates are influenced by several factors, including 
water absorption, specific gravity, soundness tests, and 
LAA results. To assess the impact of each feature on the 
target, the feature importance for the CatBoost model, 

which exhibited the highest prediction accuracy and the 
lowest errors, was computed. The result of importance 
values for each feature on the target function were 
presented in Fig. 7 left) bar chart and right) radar plot, 
revealing that the MSS had the most significant effect on 
the predicted abrasion values by the MD. Subsequently, 
ABS and LAA also demonstrated notable importance, 
while other features exhibited relatively lower importance. 

The feature importance analysis revealed that the 
abrasion values of aggregates are influenced by several 
factors, such as MSS, ABS, and LAA. As a result, it is 
recommended that these tests should be conducted on the 
aggregate to ensure the attainment of an accurate value of 
abrasion resistance. The influence of these factors on the 
abrasion values highlights the necessity of comprehensive 
testing to capture the intricate interplay of variables 
affecting the abrasion resistance of aggregates. Previous 
studies have indicated that the strength of rocks and 
aggregates is influenced by various geological features. 
Consequently, these research efforts have led to improve 
regression and analytical models where the assessment of 
polishing and abrasion properties is based on specific 
aggregate types or groups that share similar geological 
characteristics [28-29]. However, the feature importance 
analysis in this study revealed that the impact of multiple 
variables derived from available data on the abrasion 
resistance of various aggregates could be effectively 
assessed using different ML methods. 

 
Table 4. Random selected prediction values. 

Actual Value Predicted Value 

MD RF GBM AdaBoost XGBoost CatBoost 

12.5 12.96 14.13 14 12.68 12.59 
25.25 21.99 22.58 21.5 19.92 20.32 
19.1 18.51 18.43 17.27 19.02 18.59 
20 21.93 23.4 21.42 24.19 19.93 

19.3 20.04 19.35 16.74 19.26 19.24 
16.32 16.74 16.52 16.65 17.13 16.04 

   

       
Fig. 7. Feature importance of CatBoost model Left) bar chart, Right) radar plot. 
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5. Conclusions 
 
The primary objective of this research was to use real 

data acquired from various standard tests on diverse 
aggregates to predict the degree of abrasion of the 
aggregate obtained from the MD test. Certain durability 
and physical tests, such as the LAA test and soundness 
tests, have been known to be time-consuming, destructive, 
and less reliable. Consequently, the growing use of the MD 
is attributed to its capability to simulate field conditions 
and yield valid results. Additionally, the escalating 
extraction of mineral aggregates for construction projects 
has led to an increasing trend of utilizing recycled materials. 
In this context, the development of ML methods has been 
proven to be advantageous in predicting required values 
obtained through destructive tests, thereby contributing to 
the preservation of aggregate materials. 

This study has demonstrated how ML, particularly 
ensemble methods, can be effectively employed in the 
field of pavement engineering, facilitating precise 
predictions. Previously, a significant gap existed between 
pavement engineering and ML due to insufficient 
laboratory data and diverse features, leading most 
researchers to rely on simple correlations between data. 
However, with the application of ML, it has now become 
feasible to assess models with a broader array of features, 
utilizing advanced methods and algorithms. 

The exceptional precision demonstrated in predicting 
the abrasion resistance of aggregates through the MD test 
was underscored by the provided R2 score values, with the 
stacking, GBM, and CatBoost models exhibiting an 
impressive R2 score of 0.95 for the stacking model and 
approximately 0.92 for both the GBM and CatBoost 
models.  

The capacity of the CatBoost and GBM models to 
generalize learned patterns was demonstrated, as 
confirmed by the remarkably similar prediction errors 
observed between the training and testing sets, reinforcing 
the concept that transitioning from linear regression to 
ensemble models, especially boosting methods, enhances 
the ability to capture non-linear relationships inherent in 
the data. The analysis of the comparison between the 
actual and predicted values by the CatBoost model 
uncovered a mean difference of 0.98, accompanied by a 
standard deviation of the difference equaling 1.59. These 
results stand as a testament to the formidable performance 
of the model in accurately predicting the MD.  

The feature importance analysis uncovered that the 
abrasion values of aggregates are influenced by several 
factors, such as MSS, ABS, and LAA. Therefore, the 
utilization of multiple test methods could potentially yield 
a more reliable assessment of aggregate durability and 
abrasion. 
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