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Abstract. The Vehicle Routing Problems (VRPs) has been extensively studied and applied in many fields.  
Variations of VRPs have been proposed and appeared in research for many decades. Dynamic Vehicle 
Routing Problem with Multiple Depots (D-MDVRP) extends the variation of VRPs to dynamism of 
customers by knowing the information of customers (both locations and due dates) at diverse times. An 
application of this problem can be found in food delivery services which have many service stores. The 
customer delivery orders are fulfilled by a group of scattered service stores which can be analogous to 
depots in D-MDVRP. In this example the information of all customer orders are not known at the same 
time depending on arrivals of customers. Thus the objective of this operation is to determine vehicle 
routing from service stores as well as dispatching time. This paper aims to develop a heuristic approach for 
D-MDVRP. The proposed heuristic method comprises of two phases: route construction and vehicle 
dispatch. Routes are constructed by applying the Nearest Neighbor Procedure (NNP) to cluster customers 
and select a proper depot, Sweeping and Reordering Procedures (SRP) to generate initial feasible routes, 
and Insertion Procedure (IP) to improve routing. Then the determination of dispatch is followed in the 
next phase. In order to deal with the dynamism, the dispatch time of each vehicle is determined by 
maximizing the waiting time to provide the opportunity to add more arriving customers in the future. An 
iterative process between two phases is adopted when a new customer enters the problem, and the vehicles 
are dispatched when the time becomes critical. From the computational study, the heuristic method 
performs well on small sized test problems in a shorter CPU time compared to the optimal solutions from 
CPLEX, and provides an overall average of 8.36 % Gap. For large size test problems, the heuristic method 
is compared with static problems, and provides an overall average of 3.48 % Gap. 
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1. Introduction 
 
In Vehicle Routing Problems (VRPs), routes for identical vehicles at the depot are determined, so that each 
customer is visited exactly once, and the total routing is minimized. After Dantzig and Ramser [1] 
introduced VRP, various types of this problem have been explored and solution approaches have been 
proposed. A number of variations of VRP have been extensively studied and applied in many firms [2], 
namely, the delivery of meal [3-5], the distribution of chemical products, petroleum products, gases and 
fuels [6-9], the delivery of soft drinks [10], etc. The well-known variations of VRP [11] are the Capacitated 
Vehicle Routing Problem (CVRP), where vehicles have limited capacities; the Vehicle Routing Problem 
with Time Windows (VRPTW), where the vehicles have to service or visit customers in the specific time 
frame; the Vehicle Routing Problem with Pick-up and Delivery (PDP), where the vehicles have to pick-up 
and deliver goods at given locations; the Heterogeneous Fleet Vehicle Routing Problem (HVRP), where the 
vehicles are different in dimensions of types and capacities; the Multi-Depot Vehicle Routing Problem 
(MDVRP), where there are several depots to select for starting or ending of routes; Dial-A-Ride-problem 
(DARP) which involves moving customers between locations. Wilson and Colvin [12] claimed to be the 
first reference to a dynamic vehicle routing problem. This paper presents DARP where customers appear 
dynamically, and the insertion heuristic method is applied to plan trips from an origin to a destination. 
Psaraftis [13] also introduced the concept of immediate request where the current route has to be changed 
in order to respond to customers as soon as possible. Later, many works are considered to be dynamic 
vehicle routing problems (D-VRP) in which new requests arrive dynamically. 

Dynamic Vehicle Routing Problem with Multiple Depots (D-MDVRP) is classified in MDVRP and D-
VRP because there are several depots to dispatch vehicles, and the demands of customers dynamically enter 
the system. All the inputs are unknown and revealed dynamically during routes execution. According to the 
taxonomy of vehicle routing problems by information evolution and quality, this problem can be called the 
dynamic and deterministic problems  [12]. The evolution of inputs causes the deviation of this problem 
compared to other MDVRP. In D-VRP, most research introduced problems that design routes before 
dispatch vehicles and allowed minor changes during the process [14, 15] or consisted of designing routes in 
an online situation and communicated with the vehicle in order to assign the next customer to visit [16, 17]. 
The inputs which dynamically arrival can be a demand for goods or services [12]. In this work, demand for 
goods or services do not know simultaneously and the vehicles have to contain goods for all known 
demands before leaving the depot. So, the routes cannot be changed during the execution. All customers in 
the route have to be known before routing. Therefore, it is necessary to carefully consider current 
customers and current routes before dispatching vehicles because the routes can be changed only when the 
vehicles are still at the depot. There are real world problems related to D-MDVRP, for example, food or 
grocery delivery. In these businesses, once customers call the call centre, the call centre takes orders and 
assigns them to the selected store with assurance to deliver the order in committed time. After receiving the 
order, the store prepares food or pick up the pre-packaged food for delivery. The customer service level 
must be evaluated. Consistently prompt delivery is the most important aspect in customer’s view. However, 
quickest delivery may entail significant costs. Therefore, management of the delivery system to facilitate 
timely delivery while minimizing the cost of transportation is important [18]. The minimum distance 
routing provides many benefits. First, it allows more available time for limited resources ready to cater 
delivery at stores or depots. Secondly, delivery with the optimum route cut down the cost of transportation. 
Finally, transportation is not the core business of food delivery firms; so maintaining confidence of 
customer service with low cost is an accomplishment. 

This paper aims to introduce the Dynamic Vehicle Routing Problem with Multiple Depots and propose 
a heuristic approach. As mentioned before, this problem has dynamic demands which arrive in the system 
at different times. The dynamic demands obviously affect the solution because they change the problem at 
the instant they arrive at the system. Moreover, the guaranteed time is hard constraint in this problem. In 
addition, construction of routes from several available depots with minimum distances as the objective is 
the challenge of this research. 

The remaining parts of this paper are organized as follows. The statement of problem is described in 
section 2. Literature review on approaches is presented in section 3 and the proposed heuristic approach is 
explained in section 4. Computational experiments are shown and discussed in section 5. The paper is 
concluded with results and discussions in section 6. 
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2. Problem Description 
 
The problem can be explained by using the classic version of MDVRP which is defined on a Graph G = 
(VC U VD, E). Where VC is a set of customers, VD is a set of depots and E is a set of edges between 
customer and customer and customer and depot. A number of capacitated vehicles are m while Q is a 
maximum capacity of each vehicle. The distance of route, calculated by assuming Euclidian distance, is 
associated with every edge in routes total to times of service. The travelling rate is 1 unit of distance/1 unit 
of time. 

In this problem, the customers are revealed dynamically during the routing process. Each customer has 
a demand (q) and a guaranteed time (G) which indicates the latest time for servicing. Therefore, in each 
state of time, there is a different number of customers to consider due to the difference in the arrival time 
and a guaranteed time which affects the latest time to dispatch the vehicle to visit each customer in the 
committed time window. Figure 1 shows the dynamically change of the customers of the illustrated 
problem which has the guaranteed time = 30 units. 
 

 
Fig. 1. The illustrated problem. 
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As shown in Fig. 1, at the beginning, there is no customer in the system. Later, customer A comes in 
the system at Time = 5 units, then customer B arrives at Time = 22 units. Lastly, customer C arrives at 
Time = 30 units. The set of customer has changed over time, it has more customers when new customers 
arrive and has fewer customers when customers have to be visited. At time = 30 units, there are 3 situations 
which could happen with the set of customers: first, the set is consisted of customers A, B and C and the 
vehicle has to start to visit customer A at time = 30 units because of the critical dispatching time, second, 
the set consisted of customers B and C because customer A is already serviced, lastly, the set consisted of 
only customer C because customer A and customer B are serviced. Related to the classic problem, VC of 
this problem has changed over time but VD is revealed at the beginning. These situations provides the 
difference between this considered problem and the classic problem.  

As mentioned earlier, each demand comes in the system at a different time, hence the arrival time is 
collected once the demand enters the system and the time window is determined immediately. The time 
window of each customer is the time between the arrival time and the due date (due date = arrival time + 
guaranteed time). The guaranteed time is a constant and known at the beginning. In this incident, the actual 
time is instrumental in monitoring the maintenance of the results from the system to satisfy the time 
constraint. Figure 2 represents the graph of the illustrated problem and the solutions which are affected by 
the dynamism of the customers. The expected results are routes and dispatch time for each route and the 
objective of this problem is to minimize the total distance while satisfying the following conditions: 

1.       Every customer is served by exactly one route. 
2.       Every route starts and ends at the same depot. 
3.       The overall demands of customers in the same route do not exceed Q. 
4.       The customer is serviced under the guaranteed time. 

 

 
Fig. 2. The illustrated problem and the solutions. 
 

As shown in Fig. 2, there are two depots to select. The unit of distance is identical to the unit of time. 
The critical dispatching time or the latest time of departure of each vehicle is determined after designed the 
routes. The vehicle is assigned to wait at the depot as long as possible, hence there are at least one customer 
whose vehicle is visited at a due date. At each state of time, if the new customer arrives at the system, the 
former solutions are neglected and all routing processes will be applied for all current customers to design 
new solutions. To simplify this, the solution for dispatching the vehicle can be as follows: 

At time = 0: There is no customer arrives to the considered problem. 
At time = 5: Customer A arrives to the problem and the solution is 

Routing: Depot 1 – Customer A – Depot 1  
Critical dispatching time: Time = 30  
Total distance: 10 
Cumulative distance: 10 

At time = 22: Customer B arrives to the problem and the solution is 
Routing: Depot 2 – Customer A – Customer B – Depot 2  
Critical dispatching time: Time = 28  
Total distance: 15 
Cumulative distance: 15 

At time = 30: Customer C arrives to the problem and the solution is 
Routing: Depot 2 – Customer C –Depot 2  
Critical dispatching time: Time = 58  
Total distance: 4 
Cumulative distance: 19 
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From the above solutions, a better solution from Time = 0 units to Time = 30 units could exist if the 
first route is executed (Depot 1 – Customer A – Depot 1) and Customer B and C are delivered by the same 
vehicle because the cumulative distance will be 17 as shown in Fig. 3. At this point, the dispatching time 
decision is important because it is affected by the dynamic arrivals of the customer. Moreover, this paper 
has considered more constraints, customers and depots comparing with this illustrated problem which 
make the problem to be more complex to find good solutions. 
 

 
Fig. 3. The illustrated problem and the new solutions. 
 

3. Literature Review  
 
In order to deal with D-MDVRP, approaches for MDVRP are explored. Exact algorithms for the MDVRP 
are rare. According to Renaud et al. [19], only two exact algorithms have been proposed for the MDVRP. 
The first algorithm was developed by Laporte et al. [20] , which is a branch and bound algorithm. Another 
algorithm was also proposed by Laporte et al. [21], which is the same algorithm modified to solve 
asymmetric MDVRPs while the first one was developed for symmetric problems. Even though mathematic 
model provides optimum solutions but it is inefficient in the evaluation time consumption and it is 
inappropriate to apply to large problems. Since the VRP is NP-hard, D-MDVRP which poses more 
restrictions than general VRP also belong to NP-hard problems [22]. Therefore, “Good enough, fast 
enough” is the interested and realistic characteristic of the approach. The fast solutions can be separated to 
two different types; heuristics and metaheuristics. The notable vehicle routing problem heuristics can be 
divided to construction heuristics, e.g., Nearest Neighbor Procedure, Insertion Procedure, Clarke and 
Wright algorithm and improving heuristics, e.g., 2-Opt method, 3-Opt method, k-Opt method. 
Metaheuristics are developed after heuristics and also appeared in many researches lately. The acclaimed 
metaheuristics are Simulated Annealing, Tabu Search, Genetic Algorithm, Neural Nets Algorithm, and Ant 
Colony Algorithm. 

Approaches for MDVRP are explored to develop the proper approach for this problem. Abundant 
heuristics and metaheuristics were developed for the MDVRP. “Cluster first, route second” method has 
been applied generally even in real situations. Most businesses cluster customers to the responsible depot 
by area. As a result, each depot will have to deliver goods to customers separately or MDVRP is 
transformed to VRP. Crevier et al. [23] proposed the best known solutions for the MDVRP. Their 
algorithm begins by clustering the customer at the nearest depot, and then a sweep method is applied to 
each depot. Later, they improved the route by transferring the customer in the same depot or across other 
depots. Clustering customers at the nearest depot then applying the VRP algorithm and finally improving 
the solution by the exchange of customer within/between a depot is the method that has been used 
extensively. However, the initial routes originally routed by basing on the nearest depot affect the domain 
of better solutions. The desired approach should route and cluster customers based on the routes which 
change at the moment when the new customer has arrived. 

In order to deal with the dynamism, Psaraftis [24] suggested that the dynamic problem should be 
solved as soon as possible and the algorithm should be flexible and provides a good solution while 
consuming a short time. Continuous re-optimization is one method adopted by this research. The 
algorithm solves the problem every time there are changes in inputs. Therefore, good routes can be 
changed with every customer’s arrival. Due to the problems’ dynamism over time, optimal solutions from 
CPLEX of overall problems cannot be found. The dynamic approaches have to rely on the heuristic 
approach in order to quickly compute a solution to the current state of the problem. 

To conclude, at each state of time, the problem is classified to be the static problem which is 
reasonable to apply heuristics solving in static VRP. Moreover, because the problem is dynamic, the flexible 
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and short time consumption algorithm is preferable. The “quicker” solution algorithms are natural to adopt 
for route construction and improvement for dynamic response [25]. Therefore, in order to find good 
solutions for this specific problem, efficient heuristic approaches which are assigned to find good solution 
every time the problem changes should be adopted. 
 

4. Proposed Heuristic Approach 
 
The proposed heuristic approach comprises of two phases: route construction and vehicle dispatch. The 
route construction phase deals with constructing and improving routes for the current set of customers 
while the vehicle dispatch phase determines the dispatching time for each vehicle. 

In route construction phase, the problem is considered as static problem with the current set of 
customer. The well-known heuristic approaches which are frequently adopted in static VRP are adapted to 
solve this problem. Three heuristic methods are adopted and applied for finding solutions to the considered 
problem: Nearest Neighbor Procedure (NNP), Sweeping and Reordering Procedures (SRP), and Insertion 
Procedure (IP). Iterative process between NNP and SRP are applied to generate a good feasible route or it 
can be called “Cluster and route at the same time”. The modified NNP is applied to cluster a customer to a 
proper depot and then group customers into the same vehicle while before actually adding another 
customer into the considered group, SRP is applied to arrange order for customers in order to ensure that 
customers in the same group can be constructed a feasible route. Finally, IP is used to improve the initial 
routes from NNP and SRP. After the entire process is done, the heuristic approach will provide solutions 
by selecting the shortest routes to determine the dispatch time in the next phase.  

In vehicle dispatch phase, the dispatch time of each vehicle is determined. It can be the longest waiting 
time that the vehicle can wait (until reaching the critical time of each route) to provide the opportunity to 
add more future customers to the routes. So, there is at least one customer that the vehicle visits at a critical 
time or a due date. At this point, the developed decision model provides a longer waiting time for 
dispatching vehicles comparing with sending the vehicle to the customer after receiving orders decision (the 
vehicle does not have to wait the new customers for servicing). Also, it provides a shorter waiting time 
comparing to holding the customer order as long as possible decision because the feasible routes might be a 
“one-customer-route” due to a time constraint. To provide update good solutions, the solutions of each 
state of time are deleted and heuristics reprocess again if there is a new customer entering the system. The 
details of the mentioned heuristic approach applied to this problem are explained as follows and the steps 
of solution procedure are drawn in Fig. 4. 
 
4.1. Nearest Neighbor Procedure (NNP) 
 
Nearest Neighbor Procedure (NNP) is the method for clustering customers to the group which all 
members will be visited by the same vehicle or route. In this heuristic, the nearest customers which are 
usually determined by a distance between nodes (customer or depot), Euclidian distance, are grouped 
together, and then the next nearest customer to the first couple is added. This procedure is continued until 
there is no nearest unvisited customer exits. To close the route, the vehicle returns to the starting depot [26, 
27]. For the multiple depots problem, customers can be visited by a vehicle from any depot that is nearest 
to customers.  

In the ordinary NNP, Euclidian distance is used as the only criterion to select the nearest visiting node. 
However, the Euclidian distance indicates only a distance between nodes which does not provide a 
relationship of nodes in the group. For simplicity, the relationship between two nodes can be explained by 
distances and directions. Determining both distances and directions might add more complexity to 
construct routes. To solve this weakness, square grids counting is applied instead of Euclidian distance. It 
determines a relationship between more than two nodes in the group and it is straightforward to compute 
and used as a criterion. 

The square grid counting is the idea to make computer visualizes the map in order to generate routes 
efficiently. Most of former approaches considered the distance as scalar but the expected outcomes are 
routes which should be well explained by vector. The heuristic method used grids referenced as the vector 
for clustering the customers who should be serviced by the same vehicle and also choosing the depot which 
generates the minimum distance for the group. Square grids define the location on map using Cartesian 
coordinates. To define the considered grids, Manhattan distance which measures distance following only 
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axis-aligned directions is applied. Figure 5 illustrates the difference between Manhattan distance and the 
Euclidean distance and Fig. 6 shows the Manhattan distance applied on the map to calculate grids. 
 

 
Fig. 4. The steps of solution procedure. 
 
 

 
Fig. 5. The difference between Manhattan distance and Euclidean distance. 
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In Fig. 6, the Manhattan distance from A to B is 8 units, whether by calculating from distances 1, 2, or 
3. In this paper, grids under all possible Manhattan routes are called grid area. The heuristic method will 
calculate the grid area between the location of each depot and customer who enters system. Then, a 
customer in a location that generates the minimum grid area between its location and a depot will be 
clustered together and listed as the first group to consider adding more customers. The next customer is 
added to an existing group if their locations provide the minimum grids for the group. As shown in Fig. 7, 
the counting grids of nodes A, B and C equals 18 grids. The relationship can be determined by counting 
intersect grids of all customer locations in the group. If the group generates the minimum grid (Primary 
criteria) area and minimum intersect grids (Secondary criteria), the group is considered to be applied in SRP 
first. Again in Fig. 7, the intersect grids of nodes A, B and C are equal to 9 grids. 

 
Fig. 6. The Manhattan distance and square grids area. 
 

 
Fig. 7. The grid area of node A, B and C. 
 

To ensure that the preferable nodes or customers can be added to the considered group, overall 
capacities are determined to meet the constraint of capacity. Each customer can be added to the considered 
group if the SRP can find the feasible route for the group. NNP and SRP are iteratively processed until no 
more customers in the system and will start over if the new customer arrives. By counting square grids, 
distances and directions are simultaneously considered in clustering customers. The ability to quickly 
compute directions and distances from one arbitrary node to another and the flexibility to generate 
solutions for the dynamic problem are the reasons that this developed method is applied in this work. 
 
4.2. Sweeping and Reordering Procedure (SRP) 
 
As described in the previous procedure, the customers are grouped together by using minimum grid area 
and intersect grids as the criterion. In this procedure, SRP is utilized to ensure that feasible routes to serve 
those customers are available. 

A sweep method, which was originally develops by Gillet and Miller [26, 28], identifies the order of 
customers to be visited by sweeping the line from the depot until all customers in the group are taken into 
account. Because a sweep can start from any customer, there may be many candidate routes depending on 
the number of customers as shown in Fig. 8. If the sweep method starts at customer 6, the route is Depot- 
customer 6- customer 2- customer 5- customer 1- customer 3- customer 8- customer 7- customer 4-Depot. 
Then, the route with minimum distance is determined first. If it satisfies the constraints, this process is 
done. In contrast, a reordering procedure, which is operated by reordering the infeasible nodes with the 
prior order to satisfy the time constraint and remain the other orders, will proceed until all constraints are 
satisfied. Lastly, if the reordering process is done without satisfactory routes, the heuristic method will 
consider new groups and avoid founding of infeasible groups in the NNP. 
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Fig. 8. A sweep method. 
 
4.3. Insertion Procedure (IP) 
 
After NNP and SRP have been performed, solutions can be improved to minimize the total distance by an 
IP [26]. Each node in initial routes will be analyzed to determine placement of orders in routes. Customers’ 
order or routes will be changed if the total distance is decreased, and the routes are still feasible. To finish 
the solutions, interchange of customers over depots is in consideration. The customer will be inserted into 
other routes should it is deemed necessary. This iterative process needs to exceed or at least equate the 
former results, and must turn feasible solutions. Figure 9 demonstrates an example of before and after 
solutions resulted by an insertion procedure. 
 

 
Fig. 9. An insertion procedure. 

 
Because the complexity of this problem is NP-hard, the first best cluster of a customer and a selected 

depot may not provide the best or optimal solutions. Hence, in the beginning of NNP, the heuristic 
method will generate the list of the first clusters by sorting solutions from the best to the worst. Each 
cluster in the list is examined to find out the final routes from IP for comparison of the total distance when 
the last cluster in the list is completed. Finally, the minimum distance solution will be selected for creation 
of dispatch event. 
 

5. Computational Experiments 
 
There is no benchmark test problems is available for D-MDVRP. Therefore, test problems are generated in 
section 5.1. To evaluate the efficiency of the heuristic method, solutions from solving the dynamic 
problems are compared with those from the static ones. The developed heuristic method is tested on two 
sizes of problem: small size problems and large size problems. For small size problems’ experiments shown 
in section 5.2, the heuristic solutions are compared with optimal solutions from CPLEX. Large size 
problems’ experiments are shown in section 5.3, and the heuristic solutions on dynamic and static problems 
are compared. The algorithm is coded in C# 2010 and run on the Windows 7 Ultimate with Intel Core i5-
2450M, CPU 2.50GHz and RAM 8GB. The tested results in the experiment of small sized problems are 
compared with solutions from a commercial optimization tool (ILOG CPLEX 12.1.0). 
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5.1. Test problems 
 
In relation to the well-known research by Solomon [29], there are several factors that mainly affect the 
distances and characters of routes: geographical data, the number of customers serviced by a vehicle, the 
percentage of time-constrained customers, and the tightness and dislocation of the time windows.  In this 
work, locations of customers are randomly generated and the main parameters are the ratio of an inter-
arrival time to a guaranteed time which are related to the percentage of time-constrained customers; 
tightness and disposition of the time windows; average of customers per vehicle or number of customers 
serviced by a vehicle; size of problems and a location of each depot in the multiple depots problems. 

In dynamic problems, customers can be served by the same vehicle if their time windows are 
overlapped in feasible routes’ construction. A time window of each customer in this problem is the time 
between an arrival time and a due date which depends on a guaranteed time for servicing. Hence, the arrival 
time and the guaranteed time are important for identifying the characteristic of dynamic problems and they 
affect the number of customers to construct routes as well. To clarify this, in problems that have a short 
inter-arrival time and a long guaranteed time, there are many arriving customer in the system available to 
construct routes for servicing and if an inter-arrival time are decreased to zero, the problems are likely to be 
static problems (all customers are known at the beginning). In contrast, in a long inter-arrival time and the 
guaranteed time is the same as the previous example, there are few or just one customer to consider for 
routing in each state of time because the customers have to be visited before the next customer arrives at 
the system. Therefore, in this work, a ratio of mean inter-arrival time to a guaranteed time is considered to 
formulate the test problems. Parameters defined a ratio of an inter-arrival time to a guaranteed time are 
shown in Table 1. 
 
Table 1. Parameters defined a ratio of an inter-arrival time to a guaranteed time. 

Parameters Ratio of mean of inter-arrival 
time to guaranteed time Degree of ratio 

Mean of inter-arrival time Guaranteed time 

40 200 1:5 High (H) 

20 200 1:10 Moderate (M) 

10 200 1:20 Low (L) 

 
The inter-arrival time is assumed to be exponentially distributed with a mean µ for each customer but 

the guaranteed time is a constant and fixed at 200 units of time. Therefore, there are different numbers of 
customers to consider dependent on the degree of ratios. The number of customers indicates the size of 
problem or decision variables as well. To clarify this, if the degree of ratio is low, the problems are likely to 
have more customers for route construction than high ratio problems, because there are more chance to 
accumulate the number of customers at any state of time or the number of customers at any point of time 
depends on the degree of ratio. 

Vehicle capacity and an average demand capacity are parameters for identification of average of 
customers per vehicle. In this work, average demand capacities vary between 15-20 units with uniform 
distribution and vehicle capacity is fixed at 10,000 units in order to render vehicle capacity constraint invalid 
for simplicity of discussion about dynamic characteristic of the problem. 

A number of depot and an average customer per depot are important characteristics in multiple depots 
problem. In these experiments, the number of depot is set to 2 and 4 and depot locations within the 
relevant area (100 unit2) are fixed as illustrated in Table 2. The fixed locations as shown in Fig. 10 are 
designed for equally separating the area to service customers and providing unbiased solutions because the 
locations of customers are randomly generated.  
 
Table 2. A number of depot and location. 

A number of depots  
Depots location 

Depot 1 Depot 2 Depot 3 Depot 4 

2 (25,25) (75,75)   

3 (25,25) (75,25) (50,75)  

4 (25,25) (75,75) (75,25) (25,75) 
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Fig. 10. The location of depots. 
 
5.2. The Experiment of Small Size Problems 
 
In this experiment, the heuristic solutions are compared with the optimal CPLEX solutions. Test problems 
for CPLEX are identified as static problems because all parameters and inputs are known in advance in 
order to find the optimal solutions. According to the limitation of CPLEX, there are 12 customers assigned 
to a test problem in order to achieve solutions in a reasonable time. There are 10 sets of customer locations 
which are divided into 9 characteristics of problems (high, moderate, low ratio and 2, 3, 4 depots). 
Therefore, 90 problems are tested. Table 3 illustrates the percentage gap between the total distances of 
solutions from the heuristic and CPLEX. 
 
Table 3. The results from experiments of small size problems (comparing the performance between the 

heuristic and CPLEX). 
A number 
of depots 

Degree 
of ratio 

% Gap 
Heuristic CPU time (sec) CPLEX CPU time (sec) 

Avg.  Min. Max.  Avg.  Min.  Max.  

2 

H 8.03 0.081 0.072 0.089 2,056.71 107 5,331 

M 15.02 0.177 0.091 0.203 1,464.71 205 3,133 

L 13.76 0.155 0.120 0.176 1,222.86 49 2,123 

3 

H 6.69 0.086 0.072 0.098 1,774.86 252 5,453 

M 6.61 0.089 0.078 0.096 1,508.57 327 2,760 

L 11.14 0.090 0.082 0.112 633.29 131 1,408 

4 

H 1.92 0.075 0.064 0.087 603.29 58 1,391 

M 4.24 0.079 0.068 0.094 1,260.14 32 2,469 

L 7.79 0.072 0.059 0.079 519.57 72 1,451 

An overall average  
% Gap 

8.36 
 

 
As shown in Table 3, the first and second column indicate the problem characteristics while the third 

shows the percentage gap between the total distances of solutions from the heuristic method and CPLEX 
(% Gap). The fourth column shows the computational time of the heuristic method while the seventh 
column shows the computational time of CPLEX and the eighth and ninth column show the minimum and 
maximum time to find the optimal solution of CPLEX respectively. The result shows that the heuristic 
method can find good solutions with an average of 8.36% Gap, 1.92% Gap at minimum, and 15.02% Gap 
at maximum from the optimal solutions which are solved when the problems are static. The heuristic 
method consumes much less computational time comparing with CPLEX. Moreover, CPLEX has a 
variation of time consuming as shown in the last two columns while the heuristic method has more 
consistency at this point. 

According to the 3rd column, an average of % Gap separated by the degree of ratio indicate that the 
heuristic method performs well if problems with a high ratio of inter-arrival time to the guaranteed time. 
The high ratio problems have fewer customers to consider in each state of time while the low ratio 
problems have many customers to route. The number of customers affects the quality of solutions from the 
heuristic method. Therefore, it can find the closest solution in problems with high ratio to the optimum in 
comparison to others. Also, the heuristic method performs well on 4, 3, 2 depots problems respectively. 
The main reason is that more clusters are available in the list to generate solutions if the problem has more 
depots. 
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Table 4. The results from experiments of small size problems (comparing the performance of the 
heuristic on static and dynamic problems). 

A number 
of depots 

Degree of 
ratio 

Total average 
distance of dynamic 

problems 
(units) 

Total average 
distance of static 

problems 
(units) 

% Gap 

2 

H 595.63 611.08 -2.68 

M 511.40 537.91 -5.74 

L 478.78 498.96 -6.06 

3 

H 479.31 479.48 0.06 

M 419.04 432.71 -3.67 

L 397.50 415.31 -5.33 

4 

H 394.52 400.12 -1.38 

M 368.87 370.33 -0.54 

L 349.15 355.95 -2.34 

An overall average % Gap -3.08 

 
The result in Table 4 presents the problem characteristics in the first and second columns. The third 

and fourth columns show the average of total distance from solving dynamic and static problems and the 
percentage gap (% Gap) between total average distances of solutions obtained from testing the heuristic on 
dynamic and static problems in the fifth column. The result states that the developed heuristic performs 
well on dynamic test problems in comparison to static problems as proven by the negative value of % Gap. 
 
5.3. The Experiment of Large Size Problems 
 
To date, there is no referential benchmark for dynamic vehicle routing problem [12]. Many authors based 
their computational experiment on adaptations of the Solomon instances [25, 29-32]. Therefore, 
comparison of the results between dynamic and static problem is an interesting experiment for evaluation 
of the heuristic and it is reasonable to apply in the experiment of large sized problems.  

Dynamic problems tested in this experiment are 10 sets of 200 customer locations which are divided 
into 9 characteristics of problems (high, moderate, low ratio and 2, 3, 4 depots). Hence, 90 problems are 
tested the same as the former experiments. Static problems are identical to the dynamic problem but an 
inter-arrival time becomes zero for every customer. In this case, at the beginning, there are 200 customers 
suitable for construction of routes for static problems. The percentage gap between the total distances of 
solutions obtained from testing the heuristic method on dynamic and static problems are shown in Table 5. 
 
Table 5. The results from experiments of large size problems. 

A number 
of depots 

Degree of 
ratio 

Total average 
distance of dynamic 

problems 
(units) 

Total average 
distance of static 

problems 
(units) 

% Gap 

2 

H 9,634 9,986 -3.65 

M 7,675 7,817 -1.85 

L 6,495 6,604 -1.68 

3 

H 8,637 9,064 -4.94 

M 6,973 7,127 -2.20 

L 5,940 6,108 -2.83 

4 

H 7,637 8,219 -7.62 

M 6,315 6,558 -3.85 

L 5,341 5,487 -2.73 

An overall average % Gap -3.48 

 
The result in Table 5 presents the problem characteristics in the first and second columns. The third 

and fourth columns show the average of total distance from solving dynamic and static problems and the 
percentage gap (% Gap) between total average distances of solutions obtained from testing the heuristic on 
dynamic and static problems in the fifth column. The result states that the heuristic method performs well 
on dynamic test problems in comparison to static problems as proven by the negative value of % Gap. 

The considered ratios dependent on an inter-arrival time in dynamic problems are beneficial to the 
heuristic method in clustering customers appropriate for visitation in the same route. Most solutions 
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obtained from static problems offer short distances and require many vehicles for dispatch events. These 
situations provide short routes in every state of time but long total visiting distances. It demonstrates that 
this heuristic method should consider only customers in the same time frame to construct a good route. 
Time frame is also beneficial in clustering proper groups in problems with many customers in consideration 
and few depots for selection. 

In summary, the developed heuristic method can be applied to problem of interest. The heuristic 
performs well in all given characteristics by consumption of very short computational time. It is able to 
generate good solutions when the problems are changed dynamically. The results indicate that the heuristic 
provides good solutions in comparison to optimal solutions of static problems provided by CPLEX in the 
experiment of small size problems. In addition, the heuristic is more suitable to find solutions from 
dynamic problems than static problems as shown in the experiment of large sized problems. 
 

6. Conclusion 
 
This paper has D-MDVRP in consideration. This problem’s characters are more specific in comparison to 
the general MDVRP. The dynamism of customers changed the problems over time. The proper heuristic 
was required to find good solutions for this specific problem. NNP utilizing grid as a criterion provided the 
method to cluster customers and minimize routing distance while simultaneously assigning a customer 
group to proper depot. SRP were applied to routing and searching good routes. IP improved routing by 
minimizing the distances. The heuristic method was tested on generated problems to evaluate its efficiency 
and identify characteristics of considered problems under which the heuristic method performs well. 
Moreover, results provide knowledge and urge improvement of heuristic approaches for this problem of 
interest in future research. 

As discussed in the results part, the developed heuristic method provides good solutions in all problem 
characteristics by the consumption of very short time. Also, the heuristic method performs better if the test 
problems belong to high ratio of an inter-arrival time to a guaranteed time characteristic and have more 
depots available for selection. Lastly, the dynamic of problems provides proper groups of customers for 
consideration in respect of time frame in order to construct good routes. 

From the experiment, the solutions can be improved if some customers in the former routes (already 
dispatched) are clustered in the current routes (awaiting dispatch). However, this proposed heuristic 
method is developed to construct routes with only one objective, minimization of distances in each state of 
time. In order to improve routes in dynamic problems, determination of time frame and waiting time of 
each customer for the purpose of minimization of total distances is interesting for the future study. In 
addition, this work does not apply the developed heuristic method in real applications, so another subject 
of future work is to apply the heuristic method in real world problems. 
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