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Abstract. In this paper, we consider an application of robust model predictive control to 
optimal dosing of breast cancer chemotherapy. The model-patient mismatch is handled by 
computing an ellipsoidal invariant set containing the measured patient’s states at each 
sampling time. An optimal dose of chemotherapeutic agent is obtained by solving a 
convex optimization problem subject to linear matrix inequalities. In the case study of 
simulated patients, the results show that the tumor volume can be reduced to a specified 
target with up to 30% model-patient mismatch. Moreover, the robust model predictive 
control algorithm can achieve better treatment results as compared with the nonlinear 
model predictive control algorithm while the on-line computational time is significantly 
reduced. 
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1. Introduction 
 
Cancer is one of the diseases causing millions of death around the world every year. According to World 
Health Organization, 7.6 million people worldwide have died from cancer in 2008. In England, 410,500 
people have been diagnosed with cancer in 2008 [1]. In US, 1.47 million new cancer cases have been found 
in 2009 [2]. From the impact of cancer, advanced algorithms have been widely studied in order to improve 
the treatment efficacy [3, 4]. 

In the past decades, model-based optimal control algorithms have been developed [5, 6, 7]. The aim is 
to compute an efficient treatment profile that satisfies a performance objective such as minimizing the 
tumor volume. The optimization problem is solved based on only the patient’s states at the beginning of 
the treatment. Since these algorithms do not revise their treatment profiles according to the patient’s 
responses during treatments, the treatment performance significantly deteriorates as the model-patient 
mismatch occurs. 

Another technique for cancer treatment is model predictive control (MPC). MPC is an advanced 
control algorithm for multivariable control problem [8 ,9 ,10]. At each sampling instant, the patient’s states 
are measured and a dynamic optimization problem based on the explicit model (e.g. tumor growth, 
pharmacokinetics and pharmacodynamics) is solved on-line. Although an optimal treatment profile is 
calculated, only the first computed element is implemented. Since the optimality is achieved while all of the 
constraints are satisfied, MPC is a promising technique for cancer chemotherapy. 

A nonlinear MPC algorithm for dosing daily anticancer agents was developed by Florian et al. [11]. The 
full nonlinear model is incorporated in the problem formulation. The optimization problem is solved at 
each day to calculate an optimal dose of chemotherapeutic agents that can decrease the tumor volume along 
a specified reference trajectory. Since the optimization problem is formulated by using the complicated 
nonlinear model, the algorithm requires large on-line computational time. Moreover, the model uncertainty 
is not explicitly included in the problem formulation so the treatment performance deteriorates as the 
model-patient mismatch increases. In Chareyon and Alamir [12], the model uncertainty is handled by direct 
addition of a correction term. This correction term is updated based on the measured tumor volume. The 
uncertain parameter is not directly estimated so this method yields accurate results only in the case of the 
simple patient’s model. 

Nonlinear MPC with joint state and parameter estimation was developed by Chen et al. [1]. The 
moving horizon estimation method is used to estimate the uncertain parameter and the patient’s states. At 
each sampling time, their estimated values are obtained by solving a dynamic estimation problem over a 
finite time horizon. These values are then used in the formulation of nonlinear MPC to compute an optimal 
treatment profile. The main drawback of this approach lies in the fact that both estimation problem and 
nonlinear control problem have to be solved at each sampling instant so the computational complexity 
significantly increases. 

Since the model is only an approximation of the real patient, MPC should be robust to the model-
patient mismatch. In this paper, we consider an application of robust MPC to optimal dosing of breast 
cancer chemotherapy. At each sampling time, an optimal dose of chemotherapeutic agent is obtained by 
solving a convex optimization problem subject to linear matrix inequality (LMI) constraints [13]. This 
article is organized as follows. The mathematical model is described in Section 2. In Section 3, a robust 
MPC algorithm based on LMI is presented. In Section 4, the simulation results are presented. The 
conclusions are then drawn in section 5.   
 

2. The Mathematical Model 
 
In this paper, we consider the problem of decreasing the tumor volume using the chemotherapeutic agent 
(tamoxifen). The tumor growth, the absorption of tamoxifen and the effect of tamoxifen can be described 
by growth kinetics, pharmacokinetics and pharmacodynamics, respectively. Figure 1 shows interactions 

among the five phases of the cell cycle. They are oG (quiescence), 1G (growth), S (DNA replication), 2G

(mitotic preparation) and m (mitosis).  
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Fig. 1. The interactions among the five phases of the cell cycle. 
 

Based on total DNA content, oG  and 1G  phases contain the same amount of DNA so they can be 

lumped together into a single phase G . Similarly, 2G  and m  phases contain the same amount of DNA so 

they can be lumped together into a single phase M  [14]. The growth kinetics can be described by the 
following equations [11] 
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where GX  is the volume of tumor cells in G  phase, SX  is the volume of tumor cells in S  phase, MX  is 

the volume of tumor cells in M  phase and MSG XXXN   is the total tumor volume. It is assumed 

that 1 mm3 is equivalent to 106 cells. The plateau population of the tumor   is set at 104 mm3. The values 
of the transfer rates shown in Table 1 are obtained by minimizing the squared difference between model 
predictions and tumor growth [15]. 
 
Table 1. The parameters of the tumor growth model. 

Parameter Description Value Unit 

Gk  Transfer rate from G  phase to S  phase 0.0013 h-1 

Sk  Transfer rate from S  phase to M  phase 0.0390 h-1 

Mk  Transfer rate from M  phase to G  phase 0.0169 h-1 

  Plateau population 104 mm3 

 
The pharmacokinetics is described by the four-compartment model as shown in Fig. 2. The two initial 

compartments represent the digestive tract from which tamoxifen is absorbed. After tamoxifen is absorbed 
into plasma, tamoxifen is converted to its metabolites such as 4-hydroxytamoxifen, N-desmethyltamoxifen, 
and others. Of all these metabolites, only 4-hydroxytamoxifen contributes a significant anti-tumor effect 
[16]. For this reason, in plasma, only tamoxifen and 4-hydroxytamoxifen are considered. The mass of 
tamoxifen in plasma is represented by the third compartment and the mass of 4-hydroxytamoxifen is 
represented by the fourth compartment. 
 

 
Fig. 2. The four-compartment model of the pharmacokinetics. 
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The pharmacokinetics can be described by the following equations: 
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where 0X  is the mass of tamoxifen in the first compartment, 1X  is the mass of tamoxifen in the second 

compartment, 2X  is the mass of tamoxifen in plasma, 3X  is the mass of 4-hydroxytamoxifen in plasma, 1Y  

is the concentration of tamoxifen in plasma and 2Y  is the concentration of 4-hydroxytamoxifen in plasma. 

The values of the parameters shown in Table 2 are obtained by minimizing the squared difference between 
model predictions and data obtained from non-tumor-bearing athymic mice [17]. 
 
Table 2. The parameters of the pharmacokinetic model. 

Parameter Description Value Unit 

01k  Transfer rate from 1st compartment to 2nd compartment  0.048 h-1 

12k  Transfer rate from 2nd compartment to 3rd compartment 0.993 h-1 

23k  Transfer rate from 3rd compartment to 4th compartment 35.932 h-1 

2rk  Transfer rate from tamoxifen to other metabolites 1.145 h-1 

3rk  Transfer rate from 4-hydroxytamoxifen to other metabolites 39.525 h-1 

V  Compartment volume of tamoxifen and 4-hydroxytamoxifen 8.592 mL 

 
The pharmocodynamics is modeled by including a bilinear kill term in (1) as shown in (10)  
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This bilinear kill term indicates that increases in the mass of tamoxifen and 4-hydroxytamoxifen in 
plasma have an increasing anti-tumor effect. The parameter c  accounts for the different binding affinity of 

tamoxifen and 4-hydroxytamoxifen and it is set at 25. The value of the death rate Dk  = 0.0062  mLµg-1hr-1 

is obtained by minimizing the squared difference between model predictions and data obtained from 
tumor-bearing athymic mice [15]. The effect of chemotherapy on the patient’s health is described by the 
circulating lymphocyte level. The equation for the number of the circulating lymphocytes can be written as 
[18] 
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where C  is the number of the circulating lymphocytes,   is the natural generation rate of the circulating 

lymphocytes,   is the natural lifespan of the circulating lymphocytes and Ck  is the killing rate. The 

parameter b  accounts for the different killing effect of tamoxifen and 4-hydroxytamoxifen. The values of 
these parameters are summarized in Table 3. 
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Table 3. The parameters of the pharmacodynamic model. 

Parameter Description Value Unit 

Dk  Death rate  6.20x10-3 mLµg-1hr-1 

c  Binding affinity of tamoxifen and 4-hydroxytamoxifen 25 - 

  Natural generation rate of the circulating lymphocytes 1.21x105 h-1 

  Natural lifespan of the circulating lymphocytes 0.012 h-1 

Ck  Killing rate 0.010 mLµg-1hr-1 

b  Killing effect of tamoxifen and 4-hydroxytamoxifen 25 - 

 

3. A Robust MPC Algorithm Based on Linear Matrix Inequalities 
 
MPC is an advanced control algorithm for multivariable control problem. The basic concept of MPC is to 
repeatedly solve an optimal control problem subject to system dynamics, input and output constraints. 
MPC is a promising technique for dosing of breast cancer chemotherapy because the optimality can be 
achieved while all of the constraints (e.g. the upper limit for the dose of tamoxifen and the lower limit for 
the number of the circulating lymphocytes) can be satisfied. At each sampling instant, the patient’s states 
are measured and an optimal dose of tamoxifen is computed on-line by solving a dynamic optimization 
problem based on the patient’s model. Since the model is only an approximation of the real patient, MPC 
should be robust to the model-patient mismatch. 

In this section, a robust MPC algorithm based on LMI is presented. Due to inter-patient variability and 
time-varying states of patient, all parameters in Tables 1, 2 and 3 are considered to have a certain degree of 
uncertainty. Consider the following linear time-varying system with polytopic uncertainty 
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)()()()()1(
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kukBkxkAkx
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where )(kx  is the vector of the patient’s states, )(ku  is the dose of tamoxifen and )(ky  is the vector of the 

measured patient’s states. The matrices )(kA  and )(kB  belong to the polytope Ω  
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where Co  denote the convex hull and LjBA jj ,...,2,1],,[   are the vertices of the convex hull. From the 

convexity of the polytopic description, any )(kA  and )(kB  can be written as 
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where )](),...,(),([)( 21 kkkk L   is the uncertain parameter vector. A detailed technique to transform the 

nonlinear system (2)-(7), (10) and (11) to the linear time-varying system with polytopic uncertainty (12)-(14) 
can be found in Toth [19]. Note that the set point (e.g. the target tumor volume) is considered to be the 
equilibrium point in this paper. 

The aim of this paper is to compute the state feedback control law )/()/( kikKxkiku   that 

robustly stabilizes the linear time-varying system with polytopic uncertainty (12)-(14) and achieves the 
following performance cost  
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where K  is a state feedback gain, P  is a Lyapunov matrix, Θ  and R  are symmetric weighting matrices, 
subject to  
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where n  is the upper bound on )(, kJ n  , )/(][)/1(
^^^^

kikxKBAkikx   is the vector of the nominal 

patient’s states, LBABA

L
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

  is the nominal patient’s model, u  is the limit for the dose of 

tamoxifen, y  is the vector of the limits for patient’s states and yn  is the number of the measured patient’s 

states. An ellipsoidal invariant set containing the measured patient’s states at each sampling instant is 

computed by (16). By summing (17) from 0i  to i  and applying (16), it follows that n  is the upper 

bound on )(, kJ n  . (18) is for guaranteeing that the Lyapunov function )/()/( kikPxkikx T   is strictly 

decreasing so the closed-loop system is robustly stabilized. The constraint on the dose of tamoxifen is 
imposed by (19). The constraints on the patient’s states are imposed by (20).       

By following Bumroongsri and Kheawhom [20], the constraints (16)-(20) can be written as the LMI 
constraints (22)-(26), respectively. At each sampling instant, the state feedback control law that minimizes 

the upper bound n  on )(, kJ n   and robustly stabilizes the closed-loop system is given by 

1),/()/(  YGKkikKxkiku  where Y  and G  are obtained by solving the following optimization 

problem  
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It is seen that the complicated nonlinear optimization problem is transformed to the convex optimization 
problem subject to LMI constraints so the computational complexity is significantly reduced. 
 

4. Simulation Results 
 
In this section, the robust MPC algorithm in Section 3 is applied to scheduling the delivery of tamoxifen to 
the simulated patients. The model-patient mismatch is created by subjecting all of the model parameters in 
Tables 1, 2 and 3 to a certain deviation. The objective is to reduce the total tumor volume 

MSG XXXN   from 1,000 mm3 to 25 mm3 as rapidly as possible. The set points for GX , SX  and MX  

are 22.5 mm3, 1.25 mm3 and 1.25 mm3, respectively. Note that the set point (e.g. the target tumor volume) 
is considered to be the equilibrium point in this paper. The symmetric weighting matrices in (15) are Θ
=diag[100; 100; 100; 0; 0; 0; 0; 0] and R =1. The upper limit for the dose of tamoxifen is 800 µg. The lower 
limit for the number of the circulating lymphocytes is 4x106. The sampling interval is 1 day. The numerical 
simulations have been performed in Intel Core 2 Duo (2.53 GHz), 2 GB RAM, using SeDuMi [21] and 
YALMIP [22] within the Matlab R2008a environment. 

Figure 3 shows the total tumor volume as a function of time. Starting from the initial value of 1,000 
mm3, the total tumor volume can be reduced to the specified target of 25 mm3 in the presence of up to 30% 

model-patient mismatch. However, the treatment result is more favorable as the level of the model-patient 
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mismatch decreases. In the presence of the model-patient mismatch, the tumor volume can be reduced 
because model uncertainty is explicitly included in the problem formulation. 
 

 
Fig. 3. The total tumor volume as a function of time computed by the robust MPC algorithm. 
 

Figure 4 shows the dose of tamoxifen as a function of time. The dose of tamoxifen decreases as the 
level of model-patient mismatch increases. However, the dose of tamoxifen converges to its nominal value 
for all levels of the model-patient mismatch.  
 

 
Fig. 4. The dose of tamoxifen as a function of time computed by the robust MPC algorithm. 
 

The robust MPC algorithm will be compared with the nonlinear MPC algorithm [11] where the 
nonlinear system (2)-(7), (10) and (11) is directly used in the problem formulation. The resulting nonlinear 
optimization problem is solved by using the fmincon function in Matlab R2008a. The weighting matrices of 
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nonlinear MPC are the same as those of robust MPC. The prediction horizon and the control horizon are 5 
days and 2 days, respectively. Figure 5 shows the total tumor volume as a function of time. It is seen that 
the nonlinear MPC algorithm cannot reduce the total tumor volume to the specified target of 25 mm3 in 
the presence of 30% model-patient mismatch. For the nonlinear MPC algorithm, the model uncertainty is 
not explicitly included in the problem formulation so the tumor volume cannot be reduced to a specified 
target.  
 

 
Fig. 5. The total tumor volume as a function of time computed by the nonlinear MPC algorithm. 
 

Figure 6 shows the dose of tamoxifen as a function of time. It is seen that for the nonlinear MPC 
algorithm, the dose of tamoxifen does not converge to its nominal value. 
 

 
Fig. 6. The dose of tamoxifen as a function of time computed by the nonlinear MPC algorithm. 
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The on-line computational burden is shown in Table 4. It can be observed that the robust MPC 

algorithm requires less on-line computational time that the nonlinear MPC algorithm. This is due to the fact 
that the nonlinear optimization problem is transformed to the convex optimization problem subject to LMI 
constraints so the computational complexity is significantly reduced. The main drawback of the nonlinear 
MPC algorithm is that it would be numerically intractable for large prediction and control horizons.  
 
Table 4. The on-line computational burden. 

Algorithm CPU time (s) per step 

The robust MPC algorithm 120  

The nonlinear MPC algorithm 1,800  

 

5. Conclusions 
 
In this research, we have presented an application of robust MPC algorithm to optimal dosing of breast 
cancer chemotherapy. The model uncertainty is explicitly included in the problem formulation. At each 
sampling time, an optimal dose of chemotherapeutic agent is obtained by solving a convex optimization 
problem subject to linear matrix inequality constraints. A case study of simulated patients is presented. In 
the presence of the model-patient mismatch, the robust MPC algorithm can achieve better treatment results 
than the nonlinear MPC algorithm while the computational complexity is significantly reduced.  
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