
doi:10.4186/ej.2010.14.2.1

www.ej.eng.chula.ac.th ENGINEERING JOURNAL : VOLUME 14 ISSUE 2 ISSN 0125-8281 : ACCEPTANCE DATE, APR. 2010 1

HEURISTIC FOR TASK-

WORKER ASSIGNMENT WITH

VARYING LEARNING SLOPES

Kanjana Thongsanit, Wipawee Tharmmaphornphilas
and Rein Boondisakulchok*

Department of Industrial Engineering, Faculty of Engineering,
Chulalongkorn University, Bangkok, Thailand 10330
E-mail : kanjanath7@yahoo.com, wipawee.t@chula.ac.th and
 rein.b@chula.ac.th*

ABSTRACT

When a worker performs a task repetitively, s/he requires less time to produce the
succeeding units of a task due to his/her learning ability. In mass production, a
constant production rate assumption is always assumed in developing a task-worker
assignment since the learning period is only a small part compared to the overall
production period. However, in the fashion industry, new product styles are launched
more frequently and order sizes are smaller. Due to this small lot size, task-worker
assignments based on a constant production rate assumption may not be applicable.
As a result, learning should be considered in the assignments in the fashion industry.
This paper proposes a method of task-worker assignment considering worker skill
levels and learning abilities. The processing time of each worker varies in the
production period depending on worker learning ability. We focused on task-worker
assignments where tasks are ordered in a series and the number of tasks is greater
than the number of workers. Workers could perform multiple tasks with the
precedence restriction. An integer linear programming model was formulated with the
objective to minimize makespan. A heuristic was proposed to find the best
assignment. The performance of the heuristic method was tested by comparing the
quality of solution and computational time to optimal solutions. The experimental
results show that the heuristic provides good solutions with a better CPU time
compared to the optimal solutions. For problems 7, 8 and 9 workers, the heuristic
found a solution within 3% of the optimal solutions with 0.67% on average.

KEYWORDS

heuristics, assembly line balancing, assignment problem, skill and learning

doi:10.4186/ej.2010.14.2.1

2 ENGINEERING JOURNAL : VOLUME 14 ISSUE 2 ISSN 0125-8281 : ACCEPTANCE DATE, APR. 2010 www.ej.eng.chula.ac.th

I . Introduction

In the fashion industry, new product styles are launched more frequently than in the past with
smaller lot sizes due to increased market competition. Consequently, a trend in garment
production in Thailand has emerged shifting from mass production to small lot production
since it is more flexible and responsive compared to mass production. Garment production
is labor intensive and the production rate mainly depends on worker skills. With experience
and training, each worker has different skill levels and learning ability.

Generally, people learn and improve their performance by repeating operations. They will
require less time to produce the succeeding unit or gain proficiency with the repetition of the
same task. This is called learning behavior. Learning behavior is examined and presented
in mathematical models [1,2]. Many factors influence learning e.g. job complexity, the
number of repetitions, previous experience and training [2]. Many studies related to
production address learning e.g. scheduling [3], assembly line balancing [4], allocation or
worker selection [5].

In mass production, learning behavior is usually not considered. A constant production rate
assumption is always assumed in developing a task-worker assignment since the learning
period is only a small part compared to a whole production period. However, in the fashion
industry, new product styles are launched more frequently and lot sizes are smaller. With
this small lot size, the learning period becomes a more substantial part of production time. A
task-worker assignment with a constant production rate assumption may not directly apply
since it may not provide the optimal solution in practice. For this reason, learning should be
considered in a task-worker assignment in the fashion industry.

A conventional assembly line balancing problem is one of the workstation assignment
problems which concern the task precedence constraint. It is designed for mass production
and the processing time of every item in order is assumed equivalent. However, for small lot
production, learning cannot be ignored [6]. The objective of addressing this problem is
minimizing the maximum workstation time or cycle time. However, this cannot be applied
when learning is considered since the bottleneck dynamically changes based on the
reduction of learning slope of each worker. Therefore, considering learning minimizes
makespan in regards to this problem.

An assembly line balancing problem with learning consideration is studied in different
assumption. Toksari, [7] assumed that the learning for all tasks is same. Chakravarty,[4] ,
Karni and Herer [6], Dar-El [8] and Cohen, [9] defined that learning depends on the task
which is assigned. Cohen [10] assumed learning depends on the worker who operated the
task. Furthermore, the processing time which represents learning behavior is set in different
ways. For example Karni and Herer[6] ; Chakravarty[4] set processing time in discrete
whereas Cohen and Dar-El [11] , Cohen, [9] and Cohen, [10] used continuous which is
represented by a learning model. Moreover Cohen, [9] and Cohen,[10] assumed that tasks
can be divisible whereas Karni and Herer, [6], Chakravarty,[4] and Cohen and Dar-El [12]
assumed the tasks cannot be split.

Most previous studies on the assembly line balancing problem considering learning ability
assumed no buffer space between workstations. That is a paced line where accessible time
to complete tasks at each workstation is limited by a maximum workstation time or
bottleneck. When the bottleneck station finishes its tasks, all items between stations are
simultaneously transferred [13]. However, when learning is considered, the bottleneck
station dynamically changes place. The inter-departure time of finished items depends on
the bottleneck time, so the sum of the bottleneck time becomes the completion time of the
last item or makespan. Cohen [9] developed the upper envelope, which is the line that is
formed by the maximum workstation time or bottleneck time, and showed that the area under
the envelope will be the makespan. Therefore, minimizing the area under the envelope is
minimizing the makespan. Cohen [9], Cohen [10] and Cohen and Dar-El [11] developed a
heuristic and method to determine the optimal assignment based on the upper envelope
concept.

This study, however, is concerned with the problem where buffer spaces between work
stations are allowed. The buffer space is used to hold items when the next station is still
working on the previous item. Buffers allow workstations to operate more independently
when the production rate is different. Buffers are also introduced as decoupling agents to
smooth and balance the flow of items between successive stations [14]. We focused on

doi:10.4186/ej.2010.14.2.1

www.ej.eng.chula.ac.th ENGINEERING JOURNAL : VOLUME 14 ISSUE 2 ISSN 0125-8281 : ACCEPTANCE DATE, APR. 2010 3

task-worker assignments in the assembly line balancing problem in the fashion industry.
Workers have different abilities in learning and tasks are set in series. Multiple assignments
are only allowed for consecutive tasks. To complete production, all tasks must be done and
all workers must be utilized. In this paper, a heuristic for worker-task assignment based on
the consideration of learning in order to minimize makespan was developed.

Il. Problem Statement

This problem concerns assembly lines which contain a set of sequential workstations. Buffer
spaces are set up between workstations. A workstation consists of a worker who carries out
assigned tasks. An order includes i, which are identical items that must be processed along
the same route passing through all workstations. This problem assumes that the workers
have multiple skills and are able to do more than one task. The skill levels of the workers
differ; therefore, workers’ processing times vary.

Moreover, workers have different learning abilities i.e. the processing time of the succeeding
item being shorter than the preceding item. In the problem, the processing time of each
worker for each item is based on the skill level and learning of the worker. Table 1 provides
an example of processing times applied in the problem.

We want to establish worker assignments where all tasks must be assigned to workers.
Each worker is assigned to at least one task. Since it is assumed that the number of tasks is
greater than the number of workers, some workers can perform multiple tasks. Only
consecutive tasks are allowed in the multiple assignments to smooth out the line. If a worker
is assigned to more than one task, the worker processing time is determined by the sum of
the processing time of all tasks that s/he performs. For example, if task 1 and task 2 are
assigned to worker A, then the task processing times are 7, 6, 4 for items 1, 2, and 3
respectively. Tasks cannot be split. This problem is also based on the following
assumptions. 1) The other learning factors among the tasks at the same workstation are not
considered such as the task similarity. 2) There is unlimited buffer space between each
workstation. The objective is to minimize the makespan, which is the completion time of the
last item of the last task. The problem is formulated in an integer linear programming model.

The mathematical model presented below determines which tasks { j =1,…, o } and workers

{ w =1,…, k } are assigned to the workstations { s =1,…, k }. Workers must complete all

items { m =1,…, i } with the minimum completion time. The model uses three types of

continuous decision variables and three types of binary decision variables. The continuous

variables relate to the objective function value or makespan (maxC), the processing time

(msq), and completion time (ms) of items m in workstations s . The binary decision

variables relate to the assignments that are to determine whether the task is assigned to a

workstation (jsy), whether the worker is chosen for a workstation (wsr), and also the three

dimensional variables, wjsa which combine the assignment solution of both variables jsy and

wsr . Different types of constraints are formulated to ensure feasibility of assignment. The

Table 1
The processing times
of 5 tasks, 3 workers
(A, B, C) and 3 items

Worker
A

items
1

items
2

items
3

Task 1 4 4 3

Task 2 3 2 1

Task 3 7 4 4

Task 4 2 1 1

Task 5 4 4 3

Worker
B

items
1

items
 2

items
3

Task 1 5 4 3

Task 2 3 3 2

Task 3 6 6 4

Task 4 3 1 1

Task 5 5 4 2

Worker

C
items

1
items

2
items

3

Task 1 4 2 2

Task 2 4 2 2

Task 3 7 6 5

Task 4 2 2 1

Task 5 6 2 2

doi:10.4186/ej.2010.14.2.1

4 ENGINEERING JOURNAL : VOLUME 14 ISSUE 2 ISSN 0125-8281 : ACCEPTANCE DATE, APR. 2010 www.ej.eng.chula.ac.th

first set of constraints represents the mechanism of the flow line in which all items follow the
same sequence of operations. The processing time of tasks was used to evaluate the
completion time of each item. The second set of constraints involves worker – workstation
assignment. They are required to ensure that all workers must be assigned to operate tasks
within a workstation. The last set of constraints involves task – workstation assignment.
They are required to ensure that only consecutive tasks are grouped and assigned to
workstations. The MIP model for this problem was developed using the notations in Table 2:

Minimize ik

 (1)

Subject to

Completion time constraint:

wjs

Ww Jj

wmjms aTq

 m , s (2)

1111 q (3)

msmsms q 1 Mm 1 , Ss 2 (4)

mssmms q 1 ,2 Mm Ss 1 (5)

Worker – workstation assignment constraint:

1wjs

j J s S

a

 w (6)

ws

Jj

wjs roa

 w , s (7)

1
Ss

wsr w (8)

1
Ww

wsr s (9)

Table 2

Notations

Index

 M = set of items , Mm ,for m

= 1, …, i

S = set of workstations , Ss ,for s

 = 1,…, k

J = set of tasks , Jj ,for j

 = 1,…, o

W

 = set of workers ,

Ww ,for w = 1,…, k

Parameter

i

 = the number of items

k = the number of workstations / the number of workers

o = the number of tasks

wmjT

 = the processing time of item m task j operated by worker w

Variable

wjsa

 = 1 if task j is assigned to worker w in workstation s

 0 otherwise

jsy = 1 if task j is assigned in or before workstation s

 0 otherwise

wsr = 1 if worker w works in workstation s

 0 otherwise

msq = the processing time of item m in the workstation s

ms = the completion time of item m in workstation s

doi:10.4186/ej.2010.14.2.1

www.ej.eng.chula.ac.th ENGINEERING JOURNAL : VOLUME 14 ISSUE 2 ISSN 0125-8281 : ACCEPTANCE DATE, APR. 2010 5

Grouping task – workstation assignment constraint:

1oky

(10)

jssj yy 1 11 Jj , s (11)

1 jsjs yy j , 11 Ss (12)

Ww

wjj ay 11 j (13)

Ww

wjsjsjs ayy 1 j , Ss 2 (14)

Objective function (1) is to minimize the makespan. Constraints (2) are used to calculate the
sum processing time of all tasks that are assigned in workstation s

for item m. Constraint (3)

reflects that the production line starts empty, no WIP at the beginning of production.
Constraints (4) and (5) are used to calculate the completion time of item m in workstation s .

Workstation s can process an item only after the previous workstation 1s has finished the

operation on that item and item m can be operated on at a workstation only after the

previous item 1m has completed the operation on that workstation. Constraints (6) force

all workers to be assigned to at least one task. Constraints (7) represent that if a worker is
assigned to any task in a workstation, they must work at that workstation. Constraints (8) and
(9) represent one - one assignment between workers and workstations. Constraints (10)
through (14) concern grouping tasks and assigning them to workstations. Constraints (10)
through (12) force a structure on the task-workstation assignments. Constraint (10) assigns

the last task o to the last workstation k . Constraints (11) force the required precedence

relationships among the tasks in the y variables. That is, if 1 1 sjy then 1jsy . (e.g., If

53 1y , then 43 1y and, in turn, if 43 1y , then 33 1y .) Similarly, constraints (12) force

the correct structure for the precedence relationships on the workstations: if 1jsy then

11 sjy (e.g., If 11 1y , then 12 1y and since 12 1y then 13 1y . Constraints (13) and

(14) also ensure that a task cannot be split among workers; thus, each task will be assigned
to only one worker.

To illustrate how these variables are interpreted, consider the 5 task, 3 workstations example
discussed previously. If tasks 1, 2, and 3 are assigned to workstation 1, task 4 is assigned
to workstation 2 and task 5 is assigned to workstation 3, this assignment would be

represented in the model as
1 [1 1 1 0 0]Ty ,

2 [1 1 1 1 0]Ty and

3 [1 1 1 1 1]Ty . To interpret these vectors, 11 21 31 1y y y in
1

Ty means that tasks

1, 2 and 3 are grouped and assigned to workstation 1. For the other 2 workstations (s= 2 and

3), the assignments are determined by 1 sjjs yy for each j. So, for example,

2 1 [0 0 0 1 0]T Ty y means that task 4 is assigned to workstation 2.This is how the

constraint set restricts consecutive tasks to the same workstation.

III. Solution Approach

The idea behind the heuristic is applying the concept of an upper envelope of a non-buffered
system in order to determine the upper bound (UB) and lower bound (LB) of the solution to
limit search space. The solutions are searched only between UB and LB. The heuristic
starts by grouping tasks into workstations then, assigning workers to perform grouped tasks.
Groups of consecutive tasks are generated based on the trial value, which is a
predetermined value between UB and LB. The objective of the problem is to determine the
assignment of the grouped tasks and workers which has the minimum makespan.

Regarding the relation between idle time and makespan, the idle time has the recurrence
relation between the idle time of the previous workstation and the idle time of the previous
item on the same workstation. Bellman [15] identified makespan in two simple expressions.
For the first expression, makespan is calculated by the idle time on the last station plus the
summation of the task’s processing time of the last workstation. For the second expression,
it is calculated by the flow time of a last item from the completion time on the first workstation

doi:10.4186/ej.2010.14.2.1

6 ENGINEERING JOURNAL : VOLUME 14 ISSUE 2 ISSN 0125-8281 : ACCEPTANCE DATE, APR. 2010 www.ej.eng.chula.ac.th

to the completion on the last workstation plus the summation of task’s processing time of the
first station as shown in Figure 1.

Makespan depends on the idle time on the last station plus the total task processing time of
the last workstation, and the idle time on the last station depends on the idle time of previous
stations. The recurrence relation of the idle times of the previous workstation is shown in the
appendix. We developed a methodology to minimize the idle time of every workstation via a
recurrence relation. The details of the heuristic are presented in the next section

IV. Details of the Heuristic and Numerical Example

The heuristic simplifies the problem by grouping tasks first. After tasks are grouped, the
feasible assignment between the groups of tasks and workers will be determined by the
modified Dijkstra’s algorithm. We developed a procedure to generate groups of tasks. First,
the UB and LB of the solution are determined. Then the trial value between UB and LB is
set as a bound for task grouping. They are detailed in the following steps. Figure 2 shows
the flowchart of the heuristic.

Step 1: Generate the initial UB and LB

To determine UB and LB, the summation of task processing time is determined in Table 3
based on the data in Table 1 and it is solved as an assembly line balancing problem to
minimize the maximum workstation time. The objective function value in this stage becomes
the LB of the original problem. The solution of worker - task assignment is used to evaluate
makespan. This makespan becomes the UB of the original problem.

For example, to minimize the maximum workstation time, the solution of the task-workstation
assignment is {12, 3, 45}, the worker-workstation assignment is {C, B, A} and the objective
value is 16, so the LB is 16. The makespan of this solution and also the UB is 29, as shown
in Figure 3.

Step 2: Set the trial value (TV)

Once LB and UB are determined, a trial value is set. A trial value is chosen to be the bound
for generating groups of tasks. The trial value is 10% of the UB-LB difference increased
from the LB or TV = LB + (UB-LB)×0.1. Therefore, the first trial value of the example is 16 +

(29-16) × 0.1 = 17.3. The UB or the makespan value of the solution consists of the idle time
plus workstation time at the last workstation. The LB is the minimum size of grouped tasks.
However, the solution of the minimum groups of tasks may not give the optimal solution in
makespan value. For this reason, we set the trial value by increasing the LB with the small
amount (10%) of the UB-LB difference in order to search for a better solution in a close area.

Figure 1
An expression of the
Makespan

Makespan2 = q11+q21+q31+

q12

q32

q22

q13

q23

q33

Station1

Station2

Station3

q11

q21

q31

FT33

Makespan1 (π33)= q11+q21+q31+ID13+ID33

ID33 ID33

doi:10.4186/ej.2010.14.2.1

www.ej.eng.chula.ac.th ENGINEERING JOURNAL : VOLUME 14 ISSUE 2 ISSN 0125-8281 : ACCEPTANCE DATE, APR. 2010 7

Step 3: Determine the groups of tasks

The idea is that we will generate only the groups of tasks based on the maximal station load
rule which is that a workstation will never close if fittable tasks remain. The consecutive
tasks will be grouped without exceeding the current trial value and with the maximum group

Table 3
The summation of task
processing time of 3
items of workers (A, B,
C)

 task 1 task 2 task 3 task 4 task 5

workerA 11 6 15 4 11

workerB 12 8 16 5 11

workerC 8 8 18 5 10

Figure 3
A solution of the
example to determine
UB and LB

Makespan = 29

Max station time = 16

8 4 4

6 4 6

6 5 4

Station1, C, task 12

Station2, B, task 3

Station3, A, task 45

Figure 2
The flowchart of
heuristic

doi:10.4186/ej.2010.14.2.1

8 ENGINEERING JOURNAL : VOLUME 14 ISSUE 2 ISSN 0125-8281 : ACCEPTANCE DATE, APR. 2010 www.ej.eng.chula.ac.th

size. Only the groups of tasks based on the maximal station load rule are generated.
Beginning with each task, the next consecutive task will be in the groups. Only the
maximum group size (the sum of task processing time) within the trial value is considered.
The groups of tasks are generated based on the trial value. For example, the first trial value
is 17.3. The possible groups of tasks based on the rule of worker A are {tasks1, 2}, {task2}
{task3} {tasks4, 5}, and {task 5}. Worker A does not operate task 1 alone and 4 alone
because the sum processing time of tasks 1 and 2 is 17 seconds and the sum processing
time of tasks 4 and 5 is 15 seconds which are below the maximum group size of 17.3
seconds. The possible groups of tasks for worker B are {task1}, {task2}, {task3}, {tasks4, 5}
and {task5}. Worker B does not operate tasks 4 alone because the sum processing time of
tasks 4 and 5 is 16 seconds which is below the maximum group size of 17.3 seconds. The
possible groups of tasks for worker C are {tasks1, 2}, {task2}, {tasks 4, 5} and {task5}.
Worker C cannot operate task 3 since the processing time of task 3 is 18 seconds which is
greater than 17.3.

In Figure 4(A), the number in the nodes shows a group of consecutive tasks within the trial
value. In this step, a worker who is chosen to carry out each group of tasks is not
considered. However, workers who can do those tasks within the trial value are shown at
upper right of the nodes. For node 12, workers A and C can be chosen. In the next step,
the heuristic will determine the feasible paths. A feasible path must include all tasks using
the number of nodes equal to the number of workers. The infeasible nodes are cut off as in
Figure 4(B). The feasible path is duplicated based on the workers who can operate tasks in
those nodes. Therefore, node 12 will be extracted to node 12A and 12C as shown in Figure
4(C). After that, the step of the modified Dijkstra’s algorithm is run to determine the path
which leads to the minimum makespan.

Step 4: Determine the assignment of the possible groups of tasks and workers

This step applies the idea of Dijkstra’s algorithm. Generally, Dijistra’s algorithm is an
algorithm to determine the shortest path [16]. A node in this problem is a workstation that
includes an assignment between the consecutive tasks and a worker and a path means the
assignment starting from the first workstation to the last workstation. In the Dijistra’s
algorithm, the shortest path from the starting node to every other node is determined in order
to develop the shortest path to the ending node. In the heuristic, the shortest path to each
node becomes the minimum idle time of that node which is designed to search for a solution
minimizing makespan. If the minimum idle time of the last station is found, the minimum
makespan would tend to be reached.

The search will start at a randomly selected initial node. The initial nodes are the ones which
own the first task e.g. node 12A and 12C. The algorithm will repeat at other initial nodes that
are not selected. All initial nodes are possible to be chosen.

Figure 6 shows the pseudo code of the modified Dijkstra’s algorithm. Firstly, the best
makespan is set to UB (line 0). The initial node is randomly selected (line 1) and the
variables to keep a solution are initialized (line 2 to line 10). In each step, the heuristic will
determine which node in set Q which has the minimum idle time. It will be node u as shown
in line 12. In the first loop, node u will be the initial node. If node u is found, the node u will
be added to set Se and removed from set Q (line 14 to line 15).The nodes which are
connected from node u using a single arc will be node b. The algorithm will check the
feasibility of assignment of node b from node u. The one to one assignment between worker
and workstation is examined. If the assignment is feasible (line 17), the sub-makespan and
the idle time on the workstation b will be determined (line 18).

Figure 4(A)
Nodes of the group of
tasks

Figure 4(B)
Feasible nodes of task-
workstation assignment

Figure 4(C)
Nodes for Modified
Dijkstra’s algorithm

4(A) 4(B) 4(C)

3A

3B

45A

45B

45C

12A

12C

doi:10.4186/ej.2010.14.2.1

www.ej.eng.chula.ac.th ENGINEERING JOURNAL : VOLUME 14 ISSUE 2 ISSN 0125-8281 : ACCEPTANCE DATE, APR. 2010 9

If the new idle time, new_idleb, is less than idle time, idleb of node b and the sub makespan is
less than the best makespan, the idle time of the node, idleb is updated (line 19 - 20).
 Then the assignment solution is kept (line 21). For example, the initial node is 12A, so node
12A will be node u. Node 3B will be node b. This assignment is feasible. The sub-
makespan will be 23 and the idle time will be 7. Figure 7 shows an example of the idle and
the sub-makespan. Set previousb , the previous node of node b equals node 12A. The steps
will repeat for all node b. Then the new node u, which has minimum idle time, is determined
again. The step will repeat until no node having minimum idle is found or idle time of every
node in Q equals infinity. If the last tasks is in node b and s_makespanb is less than the best
makespan, then the best makespan is updated (line 22-23). For example, node u is 3B and
node 45C is node b. Previously, the best makespan was infinity. It is updated to 28 with the
assignment solution (12A, 3B, 45C). Since the heuristic is designed to minimize idle time that
is not a direct algorithm to minimize makespan, it is better to keep a set of solutions in a
node.

Step 5: Check the improvement of the solution and Stopping Criteria

This step is to select whether UB and LB should be updated in order to further limit search
space. If a better makespan of a feasible solution is found, the UB is set to the makespan
value in the corresponding solution. Otherwise LB is set to the previous trial value. Then
new trial value is re-calculated. The stopping criteria depend on the cumulative number of
iterations which is not improving the makespan. For example, the limit of iterations is 2; the
heuristic will stop if a solution is not improved in 2 consecutive iterations

Figure 7
An example of idle and
sub-makespan

Sub-makespan = 23

6

4 7

4 6

Station1, A, task 12

Station2, B, task 3

6

Idle =7

Figure 6
The pseudo code of
Modified Dijkstra’s
algorithms

Modified Dijkstra’s algorithm
0 Set best_makespan = UB
1 Randomly select of initial node
2 FOR each node v
3 SET idle time of each node (idlev) = infinite
4 SET sub makespan of each node (s_makespanv) = infinite
5 SET status of the previous node (previousv)= NULL

6 END Loop
7 SET idlev of the selected starting node = 0
8 SET Se = empty set
9 SET Q = set of unselected nodes
10 SET Have_min = true
11 WHILE (Have_min = true)
12 Determine node (u) which has the minimum idle time in Q,
13 IF node u is found THEN
14 u is removed from set Q
15 u is added in set Se
16 FOR each node b in Q , a node that is connected from node u using a single arc
17 IF (the assignment of b from u valid feasible assignment) THEN
18 Determine idle time, new_idleb and sub makespan, s_makespanb
19 IF ((new_idleb < idleb) AND (s_makespanb < best_makespan)) THEN
20 idleb is replaced by new_idleb
21 SET u = the previousv of node b
22 IF node b is the last workstation
23 IF s_makespanb < best_makespan THEN update best_makespan
24 END IF
25 END IF
26 END IF
27 END IF
28 END Loop
29 ELSE Have_min = false End IF
30 END WHILE

doi:10.4186/ej.2010.14.2.1

10 ENGINEERING JOURNAL : VOLUME 14 ISSUE 2 ISSN 0125-8281 : ACCEPTANCE DATE, APR. 2010 www.ej.eng.chula.ac.th

Trial The Modified Dijkstra’s algorithm

The 1
st
 Trial

UB=29 LB=16

Trial value = 16 +(29-16) × 0.1 = 17.3

Best makespan =UB = 29

Start at node 12A
Se = {Ø} , Q = {12A, 3B, 45A, 45C }
best_makespan = 29

Node 12A 3B 45A 45C

idlev 0 ∞ ∞ ∞

s_makespanv ∞ ∞ ∞ ∞

previousv - - - -

Node u = 12A
Se = {12A} , Q = { 3B, 45A, 45C}
best_makespan = 29
 Node b

Node 12A 3B 45A 45C

idlev 0 7 ∞ ∞

s_makespanv - 23 - -

previousv - 12A - -

Node u = 3B
Se = {12A, 3B} , Q = { 45A, 45C}
 Node b

1
 Node b

2

Node 12A 3B 45A 45C

idlev 0 7 ∞ 13

s_makespanv - 23 - 28

previousv - 12A - 3B

Node b = 45A : Infeasible assignment solution(12A,3B,45A)
Node b = 45C : assignment solution (12A,3B,45C)
best_makespan = 28

Start at node 12C

Se = {Ø} , Q = {12A, 3A, 3B, 45A, 45B, 45C }
best_makespan = 28

Node 12C 3A 3B 45A 45B 45C

idlev 0 ∞ ∞ ∞ ∞ ∞

s_makespanv ∞ ∞ ∞ ∞ ∞ ∞

previousv - - - - - -

Node u = 12C
Se = {12C} , Q = { 3A, 3B, 45A, 45B, 45C}
best_makespan = 28
 Node b

1
 Node b

2

Node 12C 3A 3B 45A 45B 45C

idlev 0 8 8 ∞ ∞ ∞

s_makespanv - 23 24 - - -

previousv - 12C 12C - - -

Node u = 3A
Se = {12C,3A}, Q = { 3B, 45A, 45B, 45C}
best_makespan = 28
 Node b

1
 Node b

2

Node 12C 3A 3B 45A 45B 45C

idlev 0 8 8 ∞ 15 ∞

s_makespanv - 23 24 - 31 -

previousv - 12C 12C - 3A -

Node b
2
 = 45C : Infeasible assignment (12C,3A,45C)

Node u = 3B
Se = {12C,3A,3B }, Q = { 45A, 45B, 45C}
best_makespan = 28
 Node b

1
 Node b

2

Node 12C 3A 3B 45A 45B 45C

idlev 0 8 8 14 15 ∞

s_makespanv - 23 24 29 31 -

previousv - 12C 12C 3B 3A -

The best makespan = 28

The best solution is {12A,3B, 45C}

The 2
nd

UB=28 LB=17.3

Trial value = 17.3+ (28-17.3)×0.1=18.37

An improvement of solution is not found.

The 3
rd

UB=28 B=18.37

Trial value = 19.33

An improvement of solution is not found.

Stop If the limit number of the consecutive trial value equals 2, the search will stop.

3B

45A

45C

12A

3B

45A

45C

12A

3B

45A

45C

12A

3A

3B

45A

45B

45C

12C

3A

3B

45A

45B

45C

12C

3A

3B

45A

45B

45C

12C

3A

3B

45A

45B

45C

12C

Figure 8
An example of the
Modified Dijkstra’s
algorithm

doi:10.4186/ej.2010.14.2.1

www.ej.eng.chula.ac.th ENGINEERING JOURNAL : VOLUME 14 ISSUE 2 ISSN 0125-8281 : ACCEPTANCE DATE, APR. 2010 11

V. Computational Result

A heuristic algorithm was implemented using the C++ programming language. The quality of
the solution and computational time of the proposed heuristic were compared to those
obtained from the mathematical model which was solved by CPLEX 8.0. Both CPLEX and
the heuristic algorithm were run on a PC with an Intel Core

TM
2 Duo 2.00 GHz CPU and 1.93

GB of RAM. Normally in a modular production in the garment industry, the number of
workers is between 6 and 15. However, only the problem with 7-9 workers was tested since
a problem size of 10-15 workers is too large to achieve optimal solutions using the
mathematical model. The problem parameters were chosen to reflect a realistic situation in
the garment industry. In this testing, the number of tasks was three times the number of
workers, since generally in the garment industry a worker is assigned less than three tasks.
The numbers of items that were examined were 100 and 300 for the difference of lot sizes.

Table 4 shows all the problem sets of this test. Each problem includes 10 instances. The

learning ability of each worker was set based on a Log-Linear model
)2log/(log

1

nttn ,

where t1 and tn represent the task processing times of the first and the n
th
 item, and Ø is the

learning slope [1]. In the experiment, the learning slope was uniformly generated from the
interval between [0.70, 0.90] based on a learning slope for apparel manufacture reported by
Dar-El [2]. Since the task processing of the sewing process varies, it was uniformly
generated. The mean task processing times of the first item (t1) were generated uniformly in
the interval between [1, 30]. The differences in performance of experienced and
inexperienced workers in the sewing line are represented by the percent deviations from the
mean task processing times. The percent deviations are uniformly distributed in the interval
[-20%, 20%]. For example, if the mean task processing time of the first item is 10 and the
percentage of deviation 20%, t1 becomes 12. Both the mean task processing times and their
deviations come from the experience of experts in the field.

For the problem sets 7w21t100i, 7w21t300i, 8w24t100i and 8w24t300i, CPLEX was
designed to run until the optimal solution was found. Table 5 shows the computational time
in the second column. Since the problem size of 9 workers is quite large to achieve the
optimal solutions, the run time of the problem was limited. For 9 workers with 100 items,
9w27t100i, the limited run time was 259,200 sec. or (3days). For 9 workers with 300 items,
9w27t300i, the limited run time was 345,500 sec. or (4days) due to the bigger problem. The
third column in Table 5 shows the computational time of the heuristic. It was found that the
computational time for the heuristic was short compared to the computational time from
CPLEX. The optimal value or makespan from CPLEX was compared the final solution from
the heuristic. Nine tests of 9w27t100i problem and 4 tests of 9w27t300i found the exact
solution within the limit time of each problem. The fourth and fifth column of Table 5 shows
the percentage difference in the makespan of the heuristic solution versus the optimal
solution, when available. For problems 7, 8 and 9 workers, the heuristic found a solution
within 3% of the optimal solutions with 0.67% on average. The heuristic clearly outperforms
CPLEX. The experimental results show that the heuristic provides good solutions with a
better CPU time compared to the CPLEX solutions. When the number of items increases,
the CPU time of heuristic is slightly increased.

Problem
Code

Number of
Worker

Number of
Task

Number of
item

Instances

7w21t100i 7 21 100 10

7w21t300i 7 21 300 10

8w24t100i 8 24 100 10

8w24t300i 8 24 300 10

9w27t100i 9 27 100 10

9w27t300i 9 27 300 10

Table 4
Problem size

doi:10.4186/ej.2010.14.2.1

12 ENGINEERING JOURNAL : VOLUME 14 ISSUE 2 ISSN 0125-8281 : ACCEPTANCE DATE, APR. 2010 www.ej.eng.chula.ac.th

VI. Conclusions

This paper has proposed a heuristic methodology for the task-worker assignment problem
with varying learning slopes for the fashion industry. The problem was formulated in an
integer linear programming model with the objective of minimizing makespan. For solving
the problem, a heuristic was developed. The LB and UB were determined. Tasks were
grouped based on the trial value between LB and UB following the maximal load rule. The
worker-workstation assignment solution was determined based on the relation between idle
time and makespan. A modified Dijkstra’s algorithm was developed to determine the most
efficient worker-workstation assignment.

The effectiveness of the heuristic was evaluated in terms of computational time and quality
of the solution. The experimental results show that the heuristic provides good solutions with
a better CPU time compared to the optimal solutions. For problems with 7, 8 and 9 workers,
the heuristic found a solution within 3% from the optimal solutions with 0.67% on average.

VI. Appendix

The appendix shows the recurrence relation between the idle times of the previous

workstation. Let
msFT be the flow time of an item m from the completion time of the first

workstation to the completion time of workstation s as shown in equation 15 and let
msID be

the idle time of an item m at workstation s , there are two types of expression of the

makespan. Using the idle time of the last workstation, the makespan (ik) =

i

m

mk

i

m

mk IDq
11

,the first term of the right side is the sum of the task processing time and

the second term is the sum of the idle times at the last workstation. Using the flow time, the

makespan (ik) =
ik

i

m

m FTq
1

1,
, the first term of the right side is the sum of the task

processing time at the first workstation and flow time of the last item at the last workstation.

 msFT ms - 1m (15)

Since ms =

m

z

zs

m

z

zs IDq
11

 and 1m =

m

z

zq
1

1

, so

m

z

zzs

m

z

zsms qqIDFT
1

1

1

)((16)

Since the start of the processing of item m at workstation s follows both the completion of

item m at the previous workstation 1s and the completion of the previous item 1m

on workstation s , the recurrence relation holds for every flow time, so

],max[111 msmsmmsms FTqFTqFT (17)

By replacing
smFT 1
and

1msFT in an eq. 17 by the eq. 16,

Table 5
The CPU. Time on
average of optimal sol.
and heuristic sol.

Test CPU. Optimal CPU. Heu. % diff makespan

 (sec.) (sec.) Avg. Max.

7w21t100i 951.15 4.44 0.07 0.56

7w21t300i 8,669.15 9.40 0.35 2.93

8w24t100i 11,847.81 23.15 0.36 2.15

8w24t300i 106,111.15 32.30 0.09 0.58

9w27t100i -* 83.94 0.54(9) 1.49(9)

9w27t300i -** 188.93 0.685(4) 0.825(4)

 * Limited run time = 2 days, ** Limited run time = 3 days

doi:10.4186/ej.2010.14.2.1

www.ej.eng.chula.ac.th ENGINEERING JOURNAL : VOLUME 14 ISSUE 2 ISSN 0125-8281 : ACCEPTANCE DATE, APR. 2010 13

m

z

zzs

m

z

zs qqID
1

1

1

)(=

])(,)(max[
1

11

1

11

1

1

1

1

1

m

z

zzs

m

z

zsm

m

z

zzs

m

z

zsms qqIDqqqIDq (18)

By subtracting the quantity,

m

z

zzk qq
1

1)(from both sides of the eq. 18, the recurrence

relation for idle time is obtained.

m

z

zsID
1

 =)](,max[
1

1

1

1

1

1

1

1

m

z

m

z

zszs

m

z

zs

m

z

zs qqIDID (19)

An eq.19 shows the recurrence relation between the idle times of the previous workstation.

doi:10.4186/ej.2010.14.2.1

14 ENGINEERING JOURNAL : VOLUME 14 ISSUE 2 ISSN 0125-8281 : ACCEPTANCE DATE, APR. 2010 www.ej.eng.chula.ac.th

REFERENCES

[1] T. P. Wright, "Factors affecting the cost of airplanes," Journal of the Aeronautical Sciences, vol. 3, no. 4, pp. 122-128, 1936.
[2] E. Dar-El, Human Learning: From Learning Curves to Learning Organizations. Springer, 2000.
[3] G. Mosheiov, "Scheduling problems with a learning effect," European Journal of Operational Research, vol. 132, no. 3, pp. 687-693,

2001.
[4] A. K. Chakravarty, "Line balancing with task learning effects," IIE Transactions (Institute of Industrial Engineers), vol. 20, no. 2, pp.

186-193, 1988.
[5] D. A. Nembhard and N. Osothsilp, "Learning and forgetting-based worker selection for tasks of varying complexity," Journal of the

Operational Research Society, vol. 56, no. 5, pp. 576-587, 2005.
[6] R. Karni and Y. T. Herer, "Allocation of tasks to stations in small-batch assembly with learning: basic concepts," International

Journal of Production Research, vol. 33, no. 11, pp. 2973 - 2998, 1995.
[7] M. D. Toksari, S. K. Isleyen, E. Guner, and O. F. Baykoc, "Simple and U-type assembly line balancing problems with a learning

effect," Applied Mathematical Modelling, vol. 32, no. 12, pp. 2954-2961, 2008.
[8] Y. Cohen and M. E. Dar-El, "Optimizing the number of stations in assembly lines under learning for limited production," Production

Planning & Control, vol. 9, no. 3, pp. 230 - 240, 1998.
9] Y. Cohen, G. Vitner, and S. C. Sarin, "Optimal allocation of work in assembly lines for lots with homogenous learning," European

Journal of Operational Research, vol. 168, no. 3, pp. 922-931, 2006.
[10] Y. Cohen, G. Vitner, and S. C. Sarin, "Work allocation to stations with varying learning slopes and without buffers," European

Journal of Operational Research, vol. 184, no. 2, pp. 797-801, 2008.
[11] Y. Cohen and M. E. Dar-El, "Optimizing the number of stations in assembly lines under learning for limited production," Production

Planning & Control, vol. 9, no. 3, pp. 230 - 240, 1998.
[12] Y. Cohen and M. E. Dar-El, "Optimizing the number of stations in assembly lines under learning for limited production," Production

Planning and Control, vol. 9, no. 3, pp. 230-240, 1998.
[13] R. G. Askin and C. R. Standridge, Modeling and Analysis of Manufacturing Systems. New York: John Wiley & Sons, Inc., 1993.
[14] F. Altimparmak, B. Dengiz, and A. A. Bulgak, "Buffer allocation and performance modeling in asychronous assembly system

operations: An artificial neural network metamodeling approach," Applied Soft Computing, vol. 7, no. 3, pp. 946-956, 2007.

[15] R. Bellman, A. O. Esogbue, and I. Nabeshima, Mathematical Aspects of Scheduling & Applications. New York: Pergamon Press,

1982.
[16] S. S. Skiena, The Algorithm Design Manual. New York: Springer Verlag, 1998.

