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ABSTRACT  
 

When a worker performs a task repetitively, s/he requires less time to produce the 
succeeding units of a task due to his/her learning ability.  In mass production, a 
constant production rate assumption is always assumed in developing a task-worker 
assignment since the learning period is only a small part compared to the overall 
production period.  However, in the fashion industry, new product styles are launched 
more frequently and order sizes are smaller.  Due to this small lot size, task-worker 
assignments based on a constant production rate assumption may not be applicable.  
As a result, learning should be considered in the assignments in the fashion industry. 
This paper proposes a method of task-worker assignment considering worker skill 
levels and learning abilities. The processing time of each worker varies in the 
production period depending on worker learning ability.  We focused on task-worker 
assignments where tasks are ordered in a series and the number of tasks is greater 
than the number of workers.  Workers could perform multiple tasks with the 
precedence restriction.  An integer linear programming model was formulated with the 
objective to minimize makespan.  A heuristic was proposed to find the best 
assignment.  The performance of the heuristic method was tested by comparing the 
quality of solution and computational time to optimal solutions. The experimental 
results show that the heuristic provides good solutions with a better CPU time 
compared to the optimal solutions.  For problems 7, 8 and 9 workers, the heuristic 
found a solution within 3% of the optimal solutions with 0.67% on average.              
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I .  Introduction  
 
In the fashion industry, new product styles are launched more frequently than in the past with 
smaller lot sizes due to increased market competition.  Consequently, a trend in garment 
production in Thailand has emerged shifting from mass production to small lot production 
since it is more flexible and responsive compared to mass production.  Garment production 
is labor intensive and the production rate mainly depends on worker skills.  With experience 
and training, each worker has different skill levels and learning ability.   
 
Generally, people learn and improve their performance by repeating operations.  They will 
require less time to produce the succeeding unit or gain proficiency with the repetition of the 
same task.  This is called learning behavior.  Learning behavior is examined and presented 
in mathematical models [1,2].  Many factors influence learning e.g. job complexity, the 
number of repetitions, previous experience and training [2].  Many studies related to 
production address learning e.g. scheduling [3], assembly line balancing [4], allocation or 
worker selection [5]. 
 
In mass production, learning behavior is usually not considered.  A constant production rate 
assumption is always assumed in developing a task-worker assignment since the learning 
period is only a small part compared to a whole production period.  However, in the fashion 
industry, new product styles are launched more frequently and lot sizes are smaller.  With 
this small lot size, the learning period becomes a more substantial part of production time.  A 
task-worker assignment with a constant production rate assumption may not directly apply 
since it may not provide the optimal solution in practice.  For this reason, learning should be 
considered in a task-worker assignment in the fashion industry.   
 
A conventional assembly line balancing problem is one of the workstation assignment 
problems which concern the task precedence constraint. It is designed for mass production 
and the processing time of every item in order is assumed equivalent.  However, for small lot 
production, learning cannot be ignored [6].  The objective of addressing this problem is 
minimizing the maximum workstation time or cycle time. However, this cannot be applied 
when learning is considered since the bottleneck dynamically changes based on the 
reduction of learning slope of each worker.  Therefore, considering learning minimizes 
makespan in regards to this problem.  
 
An assembly line balancing problem with learning consideration is studied in different 
assumption.  Toksari, [7] assumed that the learning for all tasks is same.  Chakravarty,[4] , 
Karni and Herer [6], Dar-El [8] and Cohen, [9] defined that learning depends on the task 
which is assigned.  Cohen [10] assumed learning depends on the worker who operated the 
task.  Furthermore, the processing time which represents learning behavior is set in different 
ways.  For example Karni and Herer[6] ; Chakravarty[4] set processing time  in discrete 
whereas Cohen and Dar-El [11] , Cohen, [9] and Cohen, [10] used continuous which is 
represented by a learning model.  Moreover Cohen, [9] and Cohen,[10] assumed that tasks 
can be divisible whereas Karni and Herer, [6], Chakravarty,[4] and Cohen and Dar-El [12]  
assumed the tasks cannot be split.   
 
Most previous studies on the assembly line balancing problem considering learning ability 
assumed no buffer space between workstations.  That is a paced line where accessible time 
to complete tasks at each workstation is limited by a maximum workstation time or 
bottleneck.  When the bottleneck station finishes its tasks, all items between stations are 
simultaneously transferred [13].  However, when learning is considered, the bottleneck 
station dynamically changes place.  The inter-departure time of finished items depends on 
the bottleneck time, so the sum of the bottleneck time becomes the completion time of the 
last item or makespan.  Cohen [9] developed the upper envelope, which is the line that is 
formed by the maximum workstation time or bottleneck time, and showed that the area under 
the envelope will be the makespan.  Therefore, minimizing the area under the envelope is 
minimizing the makespan.  Cohen [9], Cohen [10] and Cohen and Dar-El [11] developed a 
heuristic and method to determine the optimal assignment based on the upper envelope 
concept.   
 
This study, however, is concerned with the problem where buffer spaces between work 
stations are allowed.  The buffer space is used to hold items when the next station is still 
working on the previous item.  Buffers allow workstations to operate more independently 
when the production rate is different.  Buffers are also introduced as decoupling agents to 
smooth and balance the flow of items between successive stations [14].  We focused on 
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task-worker assignments in the assembly line balancing problem in the fashion industry.  
Workers have different abilities in learning and tasks are set in series.  Multiple assignments 
are only allowed for consecutive tasks.  To complete production, all tasks must be done and 
all workers must be utilized.  In this paper, a heuristic for worker-task assignment based on 
the consideration of learning in order to minimize makespan was developed. 
 

Il.  Problem Statement 
 
This problem concerns assembly lines which contain a set of sequential workstations.  Buffer 
spaces are set up between workstations.  A workstation consists of a worker who carries out 
assigned tasks.  An order includes i, which are identical items that must be processed along 
the same route passing through all workstations.  This problem assumes that the workers 
have multiple skills and are able to do more than one task.  The skill levels of the workers 
differ; therefore, workers’ processing times vary. 
 
Moreover, workers have different learning abilities i.e. the processing time of the succeeding 
item being shorter than the preceding item.  In the problem, the processing time of each 
worker for each item is based on the skill level and learning of the worker.  Table 1 provides 
an example of processing times applied in the problem.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We want to establish worker assignments where all tasks must be assigned to workers.  
Each worker is assigned to at least one task.  Since it is assumed that the number of tasks is 
greater than the number of workers, some workers can perform multiple tasks.  Only 
consecutive tasks are allowed in the multiple assignments to smooth out the line.  If a worker 
is assigned to more than one task, the worker processing time is determined by the sum of 
the processing time of all tasks that s/he performs.  For example, if task 1 and task 2 are 
assigned to worker A, then the task processing times are 7, 6, 4 for items 1, 2, and 3 
respectively.  Tasks cannot be split.  This problem is also based on the following 
assumptions. 1) The other learning factors among the tasks at the same workstation are not 
considered such as the task similarity.  2) There is unlimited buffer space between each 
workstation.  The objective is to minimize the makespan, which is the completion time of the 
last item of the last task.  The problem is formulated in an integer linear programming model. 
 
The mathematical model presented below determines which tasks { j =1,…, o } and workers 

{ w  =1,…, k } are assigned to the workstations { s  =1,…, k }.  Workers must complete all 

items { m =1,…, i } with the minimum completion time.  The model uses three types of 

continuous decision variables and three types of binary decision variables. The continuous 

variables relate to the objective function value or makespan ( maxC ), the processing time 

( msq ), and completion time ( ms ) of items m  in workstations s . The binary decision 

variables relate to the assignments that are to determine whether the task is assigned to a 

workstation ( jsy ), whether the worker is chosen for a workstation ( wsr ), and also the three 

dimensional variables, wjsa  which combine the assignment solution of both variables jsy and

wsr . Different types of constraints are formulated to ensure feasibility of assignment.  The 

 
 
 
 
 
 
 
 
 
 
 
 

Table 1 
The processing times 
of 5 tasks, 3 workers 
(A, B, C) and 3 items 

 

 
 
 
 
 
 
 
 

Worker   
A  

items  
1  

items 
2  

items 
3  

Task 1  4  4  3  

Task 2 3  2  1  

Task 3 7  4  4  

Task 4 2  1  1  

Task 5 4  4  3  

 

Worker   
B  

items  
1  

items 
 2  

items  
3  

Task 1  5  4  3  

Task 2 3  3  2  

Task 3 6  6  4 

Task 4 3  1  1  

Task 5 5  4  2  

 
Worker   

C  
items  

1  
items 

2  
items 

3  

Task 1  4 2  2  

Task 2 4  2  2  

Task 3 7  6  5  

Task 4 2  2  1  

Task 5 6  2  2  
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first set of constraints represents the mechanism of the flow line in which all items follow the 
same sequence of operations.  The processing time of tasks was used to evaluate the 
completion time of each item.  The second set of constraints involves worker – workstation 
assignment. They are required to ensure that all workers must be assigned to operate tasks 
within a workstation. The last set of constraints involves task – workstation assignment.  
They are required to ensure that only consecutive tasks are grouped and assigned to 
workstations. The MIP model for this problem was developed using the notations in Table 2: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Minimize                      ik
  

          (1) 

 
Subject to  
 
Completion time constraint: 
 

wjs

Ww Jj

wmjms aTq 
 

    m  , s            (2) 

1111 q                  (3) 

msmsms q 1    Mm 1 ,  Ss 2         (4) 

mssmms q 1    ,2 Mm    Ss 1         (5) 

 
Worker – workstation assignment constraint: 
 

      

1wjs

j J s S

a
 

     w             (6) 

      
ws

Jj

wjs roa 


   w  , s            (7) 

      

1
Ss

wsr      w             (8) 

     

1
Ww

wsr      s             (9) 

 

 
 
 
 
 
 
 
 
 
 
 
 
Table 2 

Notations 

_____________________________________________________________________ 
 
Index 

 M       =  set of items                 , Mm  ,for   m
 
= 1, …, i                        

S        =  set of workstations  , Ss      ,for   s
 
 = 1,…, k

   
  

J    =  set of tasks       , Jj      ,for  j
 
 = 1,…, o

   
 

W
 

  =  set of workers       ,
 

Ww    ,for  w   = 1,…, k  

 
Parameter 

i
  

 =  the number of items   

k    =  the number of workstations / the number of workers 

o    =  the number of tasks 

wmjT
                 

  =  the processing time of item m  task j operated by worker w   
       

 

 
Variable  

wjsa
  

    =  1 if task j  is assigned to worker w  in workstation  s  

                   0 otherwise  

jsy                       =  1 if task j   is assigned in or before workstation s  

                                       0 otherwise  

wsr                        =  1 if worker w works in workstation s  

                                       0 otherwise  
  
 

msq                       = the processing time of item m  in the workstation s  

ms                       = the completion time of item m in workstation s  

_____________________________________________________________________ 
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Grouping task – workstation assignment constraint: 
 

1oky
                

(10)
 

jssj yy 1     11  Jj   , s         (11) 

1 jsjs yy     j   , 11  Ss         (12) 





Ww

wjj ay 11     j              (13) 




 
Ww

wjsjsjs ayy 1   j   , Ss 2                 (14) 

Objective function (1) is to minimize the makespan.  Constraints (2) are used to calculate the 
sum processing time of all tasks that are assigned in workstation s

 
for item m.  Constraint (3) 

reflects that the production line starts empty, no WIP at the beginning of production.  
Constraints (4) and (5) are used to calculate the completion time of item m  in workstation s .  

 

Workstation s  can process an item only after the previous workstation 1s  has finished the 

operation on that item and item m  can be operated on at a workstation only after the 

previous item 1m  has completed the operation on that workstation.  Constraints (6) force 

all workers to be assigned to at least one task.  Constraints (7) represent that if a worker is 
assigned to any task in a workstation, they must work at that workstation. Constraints (8) and 
(9) represent one - one assignment between workers and workstations.  Constraints (10) 
through (14) concern grouping tasks and assigning them to workstations.  Constraints (10) 
through (12) force a structure on the task-workstation assignments.  Constraint (10) assigns 

the last task o to the last workstation k .  Constraints (11) force the required precedence 

relationships among the tasks in the y variables.  That is, if 1 1  sjy  then 1jsy .  (e.g., If 

53 1y  , then 43 1y  and, in turn, if 43 1y  , then 33 1y  .)  Similarly, constraints (12) force 

the correct structure for the precedence relationships on the workstations: if 1jsy   then 

11 sjy  (e.g., If 11 1y  , then 12 1y  and since 12 1y  then 13 1y  .  Constraints (13) and 

(14) also ensure that a task cannot be split among workers; thus, each task will be assigned 
to only one worker.   
 
To illustrate how these variables are interpreted, consider the 5 task, 3 workstations example 
discussed previously.  If tasks 1, 2, and 3 are assigned to workstation 1, task 4 is assigned 
to workstation 2 and task 5 is assigned to workstation 3, this assignment would be 

represented in the model as
1 [1  1  1  0  0]Ty  , 

2 [1  1  1  1  0]Ty   and 

3 [1  1  1  1  1]Ty  .  To interpret these vectors, 11 21 31 1y y y    in 
1

Ty means that tasks 

1, 2 and 3 are grouped and assigned to workstation 1. For the other 2 workstations (s= 2 and 

3), the assignments are determined by 1  sjjs yy  for each j.  So, for example, 

2 1 [0  0  0  1  0]T Ty y   means that task 4 is assigned to workstation 2.This is how the 

constraint set restricts consecutive tasks to the same workstation.  
 

III.  Solution Approach 
 
The idea behind the heuristic is applying the concept of an upper envelope of a non-buffered 
system in order to determine the upper bound (UB) and lower bound (LB) of the solution to 
limit search space.  The solutions are searched only between UB and LB.  The heuristic 
starts by grouping tasks into workstations then, assigning workers to perform grouped tasks.  
Groups of consecutive tasks are generated based on the trial value, which is a 
predetermined value between UB and LB.  The objective of the problem is to determine the 
assignment of the grouped tasks and workers which has the minimum makespan. 
 
Regarding the relation between idle time and makespan, the idle time has the recurrence 
relation between the idle time of the previous workstation and the idle time of the previous 
item on the same workstation.  Bellman [15] identified makespan in two simple expressions.  
For the first expression, makespan is calculated by the idle time on the last station plus the 
summation of the task’s processing time of the last workstation.  For the second expression, 
it is calculated by the flow time of a last item from the completion time on the first workstation 
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to the completion on the last workstation plus the summation of task’s processing time of the 
first station as shown in Figure 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Makespan depends on the idle time on the last station plus the total task processing time of 
the last workstation, and the idle time on the last station depends on the idle time of previous 
stations. The recurrence relation of the idle times of the previous workstation is shown in the 
appendix.  We developed a methodology to minimize the idle time of every workstation via a 
recurrence relation.  The details of the heuristic are presented in the next section 
 

IV.  Details of the Heuristic and Numerical Example 
  
The heuristic simplifies the problem by grouping tasks first.  After tasks are grouped, the 
feasible assignment between the groups of tasks and workers will be determined by the 
modified Dijkstra’s algorithm.  We developed a procedure to generate groups of tasks.  First, 
the UB and LB of the solution are determined.  Then the trial value between UB and LB is 
set as a bound for task grouping.  They are detailed in the following steps.  Figure 2 shows 
the flowchart of the heuristic.   
 
Step 1: Generate the initial UB and LB  
 
To determine UB and LB, the summation of task processing time is determined in Table 3 
based on the data in Table 1 and it is solved as an assembly line balancing problem to 
minimize the maximum workstation time.  The objective function value in this stage becomes 
the LB of the original problem.  The solution of worker - task assignment is used to evaluate 
makespan.  This makespan becomes the UB of the original problem. 

 
For example, to minimize the maximum workstation time, the solution of the task-workstation 
assignment is {12, 3, 45}, the worker-workstation assignment is {C, B, A} and the objective 
value is 16, so the LB is 16.  The makespan of this solution and also the UB is 29, as shown 
in Figure 3. 
 
Step 2: Set the trial value (TV)  
 
Once LB and UB are determined, a trial value is set.  A trial value is chosen to be the bound 
for generating groups of tasks.  The trial value is 10% of the UB-LB difference increased 
from the LB or TV = LB + (UB-LB)×0.1. Therefore, the first trial value of the example is 16 + 

(29-16) × 0.1 = 17.3.  The UB or the makespan value of the solution consists of the idle time 
plus workstation time at the last workstation.  The LB is the minimum size of grouped tasks. 
However, the solution of the minimum groups of tasks may not give the optimal solution in 
makespan value.  For this reason, we set the trial value by increasing the LB with the small 
amount (10%) of the UB-LB difference in order to search for a better solution in a close area.     

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 1 
An expression of the 
Makespan 

 

Makespan2 =  q11+q21+q31+ 

q12 

 

q32 

 

q22 

 

q13 

 

q23 

 

q33 

 
Station1  

Station2  

Station3 

q11 

 

q21 

 

q31 

 
FT33 

Makespan1 (π33)=  q11+q21+q31+ID13+ID33 

ID33 ID33 
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Step 3:  Determine the groups of tasks 
 
The idea is that we will generate only the groups of tasks based on the maximal station load 
rule which is that a workstation will never close if fittable tasks remain.  The consecutive 
tasks will be grouped without exceeding the current trial value and with the maximum group 

 
 

Table 3 
The summation of task 
processing time of 3 
items of workers (A, B, 
C) 

 

 
 
 
 
 
 
 
 

  task 1 task 2 task 3 task 4 task 5 

workerA 11 6 15 4 11 

workerB 12 8 16 5 11 

workerC 8 8 18 5 10 

 

 
 

Figure 3 
A solution of the 
example to determine 
UB and LB 

 

Makespan =  29 

Max station time = 16 

8 4 4 

6 4 6 

6 5 4 

Station1, C, task 12  

Station2, B, task 3  

Station3, A, task 45  

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 
The flowchart of 
heuristic 
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size. Only the groups of tasks based on the maximal station load rule are generated. 
Beginning with each task, the next consecutive task will be in the groups.  Only the 
maximum group size (the sum of task processing time) within the trial value is considered.  
The groups of tasks are generated based on the trial value.  For example, the first trial value 
is 17.3. The possible groups of tasks based on the rule of worker A are {tasks1, 2}, {task2} 
{task3} {tasks4, 5}, and {task 5}.  Worker A does not operate task 1 alone and 4 alone 
because the sum processing time of tasks 1 and 2 is 17 seconds and the sum processing 
time of tasks 4 and 5 is 15 seconds which are below the maximum group size of 17.3 
seconds.  The possible groups of tasks for worker B are {task1}, {task2}, {task3}, {tasks4, 5} 
and {task5}.  Worker B does not operate tasks 4 alone because the sum processing time of 
tasks 4 and 5 is 16 seconds which is below the maximum group size of 17.3 seconds.  The 
possible groups of tasks for worker C are {tasks1, 2}, {task2}, {tasks 4, 5} and {task5}. 
Worker C cannot operate task 3 since the processing time of task 3 is 18 seconds which is 
greater than 17.3. 
 
In Figure 4(A), the number in the nodes shows a group of consecutive tasks within the trial 
value.  In this step, a worker who is chosen to carry out each group of tasks is not 
considered.  However, workers who can do those tasks within the trial value are shown at 
upper right of the nodes.  For node 12, workers A and C can be chosen.  In the next step, 
the heuristic will determine the feasible paths.  A feasible path must include all tasks using 
the number of nodes equal to the number of workers.  The infeasible nodes are cut off as in 
Figure 4(B). The feasible path is duplicated based on the workers who can operate tasks in 
those nodes.  Therefore, node 12 will be extracted to node 12A and 12C as shown in Figure 
4(C). After that, the step of the modified Dijkstra’s algorithm is run to determine the path 
which leads to the minimum makespan.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Step 4:  Determine the assignment of the possible groups of tasks and workers 
 
This step applies the idea of Dijkstra’s algorithm.  Generally, Dijistra’s algorithm is an 
algorithm to determine the shortest path [16].  A node in this problem is a workstation that 
includes an assignment between the consecutive tasks and a worker and a path means the 
assignment starting from the first workstation to the last workstation.  In the Dijistra’s 
algorithm, the shortest path from the starting node to every other node is determined in order 
to develop the shortest path to the ending node.  In the heuristic, the shortest path to each 
node becomes the minimum idle time of that node which is designed to search for a solution 
minimizing makespan. If the minimum idle time of the last station is found, the minimum 
makespan would tend to be reached.           

 
The search will start at a randomly selected initial node. The initial nodes are the ones which 
own the first task e.g. node 12A and 12C. The algorithm will repeat at other initial nodes that 
are not selected. All initial nodes are possible to be chosen.  
 
Figure 6 shows the pseudo code of the modified Dijkstra’s algorithm. Firstly, the best 
makespan is set to UB (line 0).  The initial node is randomly selected (line 1) and the 
variables to keep a solution are initialized (line 2 to line 10).  In each step, the heuristic will 
determine which node in set Q which has the minimum idle time.  It will be node u as shown 
in line 12.  In the first loop, node u will be the initial node.  If node u is found, the node u will 
be added to set Se and removed from set Q (line 14 to line 15).The nodes which are 
connected from node u using a single arc will be node b. The algorithm will check the 
feasibility of assignment of node b from node u. The one to one assignment between worker 
and workstation is examined.  If the assignment is feasible (line 17), the sub-makespan and 
the idle time on the workstation b will be determined (line 18). 

Figure 4(A)  
Nodes of the group of 
tasks 
 
Figure 4(B)  
Feasible nodes of task-
workstation  assignment 
 
Figure 4(C)  
Nodes for Modified 
Dijkstra’s algorithm 

 

 

         
 
 
 
 
   
 

4(A)            4(B)     4(C) 

 
3A 

3B 

45A 

45B 

45C 

12A 

12C 
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If the new idle time, new_idleb, is less than idle time, idleb of node b and the sub makespan is 
less than the best makespan, the idle time of the node, idleb is updated (line 19 - 20).   
 Then the assignment solution is kept (line 21).  For example, the initial node is 12A, so node 
12A will be node u. Node 3B will be node b.  This assignment is feasible.  The sub-
makespan will be 23 and the idle time will be 7.  Figure 7 shows an example of the idle and 
the sub-makespan.  Set previousb , the previous node of node b equals node 12A. The steps 
will repeat for all node b.  Then the new node u, which has minimum idle time, is determined 
again.  The step will repeat until no node having minimum idle is found or idle time of every 
node in Q equals infinity.  If the last tasks is in node b and s_makespanb is less than the best 
makespan, then the best makespan is updated (line 22-23).  For example, node u is 3B and 
node 45C is node b.  Previously, the best makespan was infinity.  It is updated to 28 with the 
assignment solution (12A, 3B, 45C). Since the heuristic is designed to minimize idle time that 
is not a direct algorithm to minimize makespan, it is better to keep a set of solutions in a 
node.  
 
Step 5:  Check the improvement of the solution and Stopping Criteria 
 
This step is to select whether UB and LB should be updated in order to further limit search 
space.  If a better makespan of a feasible solution is found, the UB is set to the makespan 
value in the corresponding solution.  Otherwise LB is set to the previous trial value.  Then 
new trial value is re-calculated.  The stopping criteria depend on the cumulative number of 
iterations which is not improving the makespan.  For example, the limit of iterations is 2; the 
heuristic will stop if a solution is not improved in 2 consecutive iterations 

 

 
 
 
 

Figure 7 
An example of idle and 
sub-makespan  

 

 

 

 
 
 
 
 
 
 
 

 

Sub-makespan =  23 

6 

4 7 

4 6 

Station1, A, task 12  

Station2, B, task 3  

6 

Idle =7 

 

 
 
 
 
 
 

Figure 6 
The pseudo code of 
Modified Dijkstra’s 
algorithms 

Modified Dijkstra’s algorithm 
0    Set  best_makespan  = UB 
1    Randomly select of initial node 
2  FOR   each node v   
3  SET   idle time of each node (idlev) = infinite  
4  SET   sub makespan of each node (s_makespanv) = infinite 
5  SET   status of the previous node (previousv)= NULL 

6   END   Loop 
7  SET   idlev of the selected starting node = 0        
8  SET   Se = empty set  
9  SET   Q   = set of unselected nodes 
10  SET   Have_min = true  
11  WHILE   (Have_min  =  true)  
12 Determine node (u) which has the minimum idle time in Q,  
13 IF node u is found    THEN 
14  u   is removed from set Q  
15  u   is added in set Se  
16     FOR   each node b in Q , a node that is connected from node u  using a  single arc 
17       IF (the assignment of b from u valid feasible assignment) THEN  
18      Determine idle time, new_idleb and sub makespan, s_makespanb  
19                     IF ((new_idleb <  idleb) AND (s_makespanb < best_makespan)) THEN 
20                             idleb is replaced by new_idleb  
21                             SET  u  = the previousv of node b 
22                             IF node b is the last workstation 
23                                   IF s_makespanb < best_makespan  THEN  update  best_makespan 
24                                   END IF                     
25                             END IF 
26                     END IF 
27              END IF 
28          END Loop 
29       ELSE Have_min = false   End IF   
30  END WHILE 
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Trial The Modified Dijkstra’s algorithm 

The 1
st
 Trial 

UB=29  LB=16 

Trial value = 16 +(29-16) × 0.1 = 17.3 

Best makespan =UB = 29 

 

 

 

 
Start at node 12A  
Se        = {Ø}            , Q   = {12A, 3B, 45A, 45C }   
best_makespan = 29  

Node 12A 3B 45A 45C 

idlev 0 ∞ ∞ ∞ 

s_makespanv ∞ ∞ ∞ ∞ 

previousv - - - - 

 
Node u = 12A    
Se        = {12A}        , Q  = { 3B, 45A, 45C}    
best_makespan = 29 
                                                     Node b    

Node 12A 3B 45A 45C 

idlev 0 7 ∞ ∞ 

s_makespanv - 23 - - 

previousv - 12A - - 

 
Node u = 3B    
Se        = {12A, 3B}   , Q  = { 45A, 45C} 
                                                                      Node b

1
      Node b

2
   

Node 12A 3B 45A 45C 

idlev 0 7 ∞ 13 

s_makespanv - 23 - 28 

previousv - 12A - 3B 

Node b  = 45A :  Infeasible assignment solution(12A,3B,45A) 
Node b  = 45C :  assignment solution (12A,3B,45C) 
best_makespan = 28 
 
Start at node 12C 
 
Se        = {Ø}    , Q  = {12A, 3A, 3B, 45A, 45B, 45C }   
best_makespan = 28 

Node 12C 3A 3B 45A 45B 45C 

idlev 0 ∞ ∞ ∞ ∞ ∞ 

s_makespanv ∞ ∞ ∞ ∞ ∞ ∞ 

previousv - - - - - - 

 

Node u = 12C    
Se        = {12C} , Q   = { 3A, 3B, 45A, 45B, 45C}     
best_makespan = 28 
                                                    Node b

1
   Node b

2
   

Node 12C 3A 3B 45A 45B 45C 

idlev 0 8 8 ∞ ∞ ∞ 

s_makespanv - 23 24 - - - 

previousv - 12C 12C - - - 

 
Node u = 3A    
Se        = {12C,3A}, Q   = { 3B, 45A, 45B, 45C}     
best_makespan = 28 
                                                                                                          Node b

1
   Node b

2
   

Node 12C 3A 3B 45A 45B 45C 

idlev 0 8 8 ∞ 15 ∞ 

s_makespanv - 23 24 - 31 - 

previousv - 12C 12C - 3A - 

Node b
2
  = 45C : Infeasible assignment (12C,3A,45C) 

 
Node u = 3B    
Se        = {12C,3A,3B }, Q   = { 45A, 45B, 45C}     
best_makespan = 28 
                                                                                       Node b

1
                       Node b

2
   

Node 12C 3A 3B 45A 45B 45C 

idlev 0 8 8 14 15 ∞ 

s_makespanv - 23 24 29 31 - 

previousv - 12C 12C 3B 3A - 
 

The best makespan = 28 

The best solution is {12A,3B, 45C} 

The 2
nd

 

UB=28  LB=17.3 

Trial value = 17.3+ (28-17.3)×0.1=18.37 

An improvement of solution is not found. 

The 3
rd 

UB=28  B=18.37 

Trial value  = 19.33 

An improvement of solution is not found. 

Stop If the limit number of the consecutive trial value equals 2, the search will stop. 
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Figure 8 
An example of the 
Modified Dijkstra’s 
algorithm 
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V. Computational Result 
 
A heuristic algorithm was implemented using the C++ programming language.  The quality of 
the solution and computational time of the proposed heuristic were compared to those 
obtained from the mathematical model which was solved by CPLEX 8.0.  Both CPLEX and 
the heuristic algorithm were run on a PC with an Intel Core

TM
2 Duo 2.00 GHz CPU and 1.93 

GB of RAM.  Normally in a modular production in the garment industry, the number of 
workers is between 6 and 15.  However, only the problem with 7-9 workers was tested since 
a problem size of 10-15 workers is too large to achieve optimal solutions using the 
mathematical model.  The problem parameters were chosen to reflect a realistic situation in 
the garment industry.  In this testing, the number of tasks was three times the number of 
workers, since generally in the garment industry a worker is assigned less than three tasks.  
The numbers of items that were examined were 100 and 300 for the difference of lot sizes.   
 
Table 4 shows all the problem sets of this test.  Each problem includes 10 instances.  The 

learning ability of each worker was set based on a Log-Linear model
)2log/(log

1

nttn  , 

where t1 and tn represent the task processing times of the first and the n
th
 item, and Ø is the 

learning slope [1].  In the experiment, the learning slope was uniformly generated from the 
interval between [0.70, 0.90] based on a learning slope for apparel manufacture reported by 
Dar-El [2].  Since the task processing of the sewing process varies, it was uniformly 
generated.  The mean task processing times of the first item (t1) were generated uniformly in 
the interval between [1, 30].  The differences in performance of experienced and 
inexperienced workers in the sewing line are represented by the percent deviations from the 
mean task processing times.  The percent deviations are uniformly distributed in the interval 
[-20%, 20%].  For example, if the mean task processing time of the first item is 10 and the 
percentage of deviation 20%, t1 becomes 12.  Both the mean task processing times and their 
deviations come from the experience of experts in the field.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the problem sets 7w21t100i, 7w21t300i, 8w24t100i and 8w24t300i, CPLEX was 
designed to run until the optimal solution was found. Table 5 shows the computational time 
in the second column.  Since the problem size of 9 workers is quite large to achieve the 
optimal solutions, the run time of the problem was limited.  For 9 workers with 100 items, 
9w27t100i, the limited run time was 259,200 sec. or (3days).  For 9 workers with 300 items, 
9w27t300i, the limited run time was 345,500 sec. or (4days) due to the bigger problem.  The 
third column in Table 5 shows the computational time of the heuristic. It was found that the 
computational time for the heuristic was short compared to the computational time from 
CPLEX.  The optimal value or makespan from CPLEX was compared the final solution from 
the heuristic.  Nine tests of 9w27t100i problem and 4 tests of 9w27t300i found the exact 
solution within the limit time of each problem. The fourth and fifth column of Table 5 shows 
the percentage difference in the makespan of the heuristic solution versus the optimal 
solution, when available. For problems 7, 8 and 9 workers, the heuristic found a solution 
within 3% of the optimal solutions with 0.67% on average. The heuristic clearly outperforms 
CPLEX. The experimental results show that the heuristic provides good solutions with a 
better CPU time compared to the CPLEX solutions.  When the number of items increases, 
the CPU time of heuristic is slightly increased. 
 
 
 
 
 
 
 

 

 
 
 

Problem 
Code 

Number of 
Worker 

Number of 
Task 

Number of 
item 

Instances 

7w21t100i 7 21 100 10 

7w21t300i 7 21 300 10 

8w24t100i 8 24 100 10 

8w24t300i 8 24 300 10 

9w27t100i 9 27 100 10 

9w27t300i 9 27 300 10 

 

 
 
 

 
Table 4 
Problem size 
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VI. Conclusions 
 
This paper has proposed a heuristic methodology for the task-worker assignment problem 
with varying learning slopes for the fashion industry.  The problem was formulated in an 
integer linear programming model with the objective of minimizing makespan.  For solving 
the problem, a heuristic was developed.  The LB and UB were determined.  Tasks were 
grouped based on the trial value between LB and UB following the maximal load rule. The 
worker-workstation assignment solution was determined based on the relation between idle 
time and makespan.  A modified Dijkstra’s algorithm was developed to determine the most 
efficient worker-workstation assignment.  

The effectiveness of the heuristic was evaluated in terms of computational time and quality 
of the solution.  The experimental results show that the heuristic provides good solutions with 
a better CPU time compared to the optimal solutions.  For problems with 7, 8 and 9 workers, 
the heuristic found a solution within 3% from the optimal solutions with 0.67% on average. 

 

VI. Appendix 

 
 
The appendix shows the recurrence relation between the idle times of the previous 

workstation.  Let 
msFT  be the flow time of an item m  from the completion time of the first 

workstation to the completion time of workstation s  as shown in equation 15 and let 
msID be 

the idle time of an item m  at workstation s , there are two types of expression of the 

makespan.  Using the idle time of the last workstation, the makespan ( ik ) =   





i

m

mk

i

m

mk IDq
11

,the first term of the right side is the sum of the task processing time and 

the second term is the sum of the idle times at the last workstation.  Using the flow time, the 

makespan ( ik ) = 
ik

i

m

m FTq 
1

1,
, the first term of the right side is the sum of the task 

processing time at the first workstation and flow time of the last item at the last workstation.  
 

 msFT ms - 1m               (15) 

Since  ms  =   



m

z

zs

m

z

zs IDq
11

 and 1m  =   


m

z

zq
1

1    

, so   



m

z

zzs

m

z

zsms qqIDFT
1

1

1

)(                  (16) 

 
Since the start of the processing of item m  at workstation s   follows both the completion of  

item m at the previous workstation 1s  and the completion of  the previous item  1m    

on workstation s , the recurrence relation holds for every flow time, so 

 

 ],max[ 111   msmsmmsms FTqFTqFT           (17) 

 

By replacing 
smFT 1
and 

1msFT  in an eq. 17 by the eq. 16, 

 
 
 
 
 

Table  5 
The CPU. Time on 
average of optimal sol. 
and heuristic sol. 

 

 
 
 

Test CPU. Optimal CPU. Heu. % diff makespan 

 (sec.) (sec.) Avg. Max. 

7w21t100i 951.15 4.44 0.07 0.56 

7w21t300i 8,669.15 9.40 0.35 2.93 

8w24t100i 11,847.81 23.15 0.36 2.15 

8w24t300i 106,111.15 32.30 0.09 0.58 

9w27t100i -* 83.94 0.54(9) 1.49(9) 

9w27t300i -** 188.93 0.685(4) 0.825(4) 
   

   * Limited run time = 2 days, ** Limited run time = 3 days 
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By subtracting the quantity,  



m

z

zzk qq
1

1)(  from both sides of the eq. 18, the recurrence 

relation for idle time is obtained.  
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An eq.19 shows the recurrence relation between the idle times of the previous workstation.   
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