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ABSTRACT  
 

2-D interval halving and response surface methods are presented to 
determine optimal process parameters of linear pressure and constant blank 
holder force profiles for hydromechanical deep drawing of a parabolic cup 
using finite element analysis.  The optimization goal is to obtain the process 
parameters that minimize part thinning without any cracks and wrinkles.  Part 
thinning and geometry-based wrinkle constraint functions are employed to 
quantify cracking and wrinkling severity.  A response surface of part minimum 
thickness as a function of maximum internal pressure and blank holder force is 
constructed by using the data collected during the 2-D interval halving method.  
The optimum process parameters are then determined from the obtained 
surface.  It is found that the method is capable to determine the optimal blank 
holder force and linear pressure profiles for hydromechanical deep drawing of 
the parabolic cup. 
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I .  Introduction  
 
Parabolic shaped cups are commonly used in spot lights and car headlamps as light 
reflectors.  Due to their particularly pointy and tapered shape, if poorly designed, the cupping 
process can easily form part with wrinkles or fractures. These parabolic cups often require at 
least six forming steps using conventional deep drawing process to produce good cups.  The 
hydromechanical deep drawing (HMD), a relatively new forming process where solid die 
cavity is replaced by highly-pressurized water, can potentially form these cups successfully 
by using just a single step with improved part dimensional accuracy [1]. 
 
When applying hydromechanical deep drawing, key process parameters affecting part 
quality are blank holder force and counter pressure.  Excessive blank holder force and 
counter pressure can lead to fracture.  On the other hand, insufficient blank holder force and 
counter pressure can also lead to wrinkle.  Therefore, proper blank holder force and proper 
counter pressure are very important in carrying out the forming process successfully. This 
research proposed an FEA based optimization method to optimize these two process 
parameters. 
 
Zhang et al. [1] - [3] studied effects of anisotropy, pre-bulging, counter pressure and blank 
holder force on formability of several parts such as round cups, parabolic cups and 
rectangular boxes in hydromechanical deep drawing process using both finite element 
analysis simulations and experiments.  Lang et al. [4] – [5] investigated forming of a complex 
square cup and a round cup using the hydromechanical deep drawing process with uniform 
pressure by both experiments and finite element analysis simulations.  They showed that the 
simulated results reasonably agreed with the experimental results. 
 
Response Surface Methodology is a method for constructing global approximations of 
valued objective and constraint functions based on functional evaluations at various points in 
the design space.  Many researchers have applied RSM to simulation models in 
computational mechanics field.  Roux et al. [6] discussed experimental design techniques 
and regression equations for structural optimization.  Response surface methodology 
combining with stochastic finite elements were used by Kleiber et al. [7] for reliability 
assessment in metal forming.  Wang and Lee [8] used response surface methodology and 
finite element analysis to control strain path during forming process with space-variant blank 
holder force. 
 
In this research, RSM is applied to determine optimal constant blank holder force and linear 
pressure from a feasible region.  In this work, 2-D interval halving method is combined with 
response surface methodology to optimize the process parameters for hydromechanical 
deep drawing of a parabolic cup. 
 

Il.  Parabolic cup and Finite element analysis 
 

2.1    Parabolic cup 
 

Dimensions of the parabolic cup used in this study are shown in Figure 1.  This 
particular part geometry is prone to fracture and wrinkle during normal stamping 
process, if the process parameters are not applied properly.  Deep drawing of these 
parabolic parts is difficult because of the fact that the drawing load must be 
transmitted through only a very small cross section area of the sheet.  Thus, the risk of 
local cracking is high even for small drawing ratios.  Moreover, there is a relatively 
large unsupported area between the die and the punch.  Consequently, the 
circumferential compressive stresses can easily cause side wall wrinkles in the 
unsupported area of the forming part. 
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2.2    Finite element analysis and hydromechanical deep drawing  
        process 
 

A nonlinear dynamic explicit code, LS-DYNA, is used for the analysis.  To take 
advantage of part symmetry and material property symmetry, i.e. anisotropy, a quarter 
finite element model, Figure 2, is used as to reduce computational time.  The blank is 
meshed with 8,000 quadrilateral elements and 8,161 nodes.  Belytchko-Tsay thin-shell 
elements are selected in the analysis. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
There are many constitutive material models that can be used to model the steel blank.  
These are Von Mises isotropic material model (material type 18), Barlat-Lian’s three-
parameter model (material type 36) and Hill’s transversely anisotropic model (Hill 1948 
model; material type 37).   It was shown by Zhang et al. [1] that a good agreement 
between the simulation and experiment is obtained when using either Hill’s 
transversely anisotropic model or Barlat-Lian’s three-parameter model.  In this work, 
Barlat-Lian’s three-parameter model is used for the blank material model.  Barlat 
recommends M = 8 for the face centered cubic (FCC) materials, M = 6 for body 
centered (BCC) materials.  AISI 1008 (JIS G 3141 SPCC) sheet steel was found to 
have BCC structure [9], so M = 6 was applied in this work.  Mechanical properties of 
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(a quarter model) 
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Figure 1 
Parabolic cup 
dimensions.  
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AISI 1008 used in this work are provided in Table 1. All of tool components are 
modeled with the rigid material model. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Interface frictional forces are dependent on materials, contact surface roughness, 
lubricant, and normal pressure. Therefore in practice, it is very difficult to determine 
friction coefficients (μs) on all the contacting areas between blank and tools. In 
hydromechanical deep drawing simulation, uniform friction conditions are assumed for 
all contacting surfaces of tools and blank. In several papers based on the works by (a) 
Khandeparkar and Liewald [10], (b) Lang et al. [4] and (c) Zhang et al. [1], a lower 
friction coefficient in the range of 0.03 – 0.08 was assumed at the flange contacting 
interfaces, whereas a higher friction coefficient in range of 0.1 – 0.2 was considered at 
the punch wall contact interface.  In this research work, a coulomb friction coefficient of 
0.06 was used between the blank and the blank holder, and between the blank and the 
counter pot ring.  A friction coefficient of 0.12 was assumed between the blank and the 
punch.  The fluid was not modeled but a uniformly distributed pressure was applied 
directly to the blank surface instead.  After pre-bulging stage, the internal pressure was 
increased linearly up to the end of forming stroke, while the blank holder force 
remained constant throughout the process as described by Figure 3. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 
 

 

Figure 3 

HMD process setup 
440 

188.89 

R=5
0 

h=20 

P 

 
Steel: AISI 1008,  

t = 1,  = 320 

Stroke = 100+5+20 
H R h 

Sealing 

125 

BHF (kN) 

Stroke 

BBHHFF==??  

20 

2255  

P (MPa) 

Stroke 

3 

20 125 

PMax= ? 

BHF 

Material:  AISI 1008 (JIS G 3141 SPCC) 
Blank diameter: 320 mm 
Blank thickness: 1.0 mm 
Depth: 110 mm 
Young’s modulus 207,000 MPa 
Poisson’s ratio 0.28 
Yield strength 267 MPa 
Ultimate strength  471 MPa 
Strain hardening component (n):        0.216 
Strength coefficient (K): 589.4 MPa 
Anisotropy  

      r00: 1.20 

      r45: 1.09 

      r90: 1.86 

 
 

 
 
 

Table 1 

Blank properties 
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Time scaling of 1,000 was used to guarantee a reasonable computational time, i.e. 
using an artificial punch speed of 5.0 m/s while a typical real punch speed is 5.0 mm/s.  
In all the simulations of this work, the pre-bulging pressure and corresponding blank 
holder force are 3 MPa and 25,000 N, respectively.  The pre-bulging stage takes place 
for a dome height of 20 mm with a maximum plastic strain of 2-8%. 

 

III.  Defect criteria 
 
In hydromechanical deep drawing process of a parabolic cup, the blank is initially bulged, 
and becomes in contact with punch.  As the punch is descending downwards, both pressure 
and blank holder force keep the blank stretching for successfully forming as depicted in 
Figure 4. The main part defects are cracks and wrinkles.  The thinnest area often occurs in 
the area contacted with punch head, while severe side wall wrinkling is taken place in the 
unsupported area and flange wrinkling happens in the flange area.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

3.1 Crack criterion 
 
Generally, fracture can be predicted by: (1) strain based criteria, e.g. forming limit diagrams 
(FLDs) [11] and maximum part thinning [12]; (2) stress based criteria, e.g. forming limit 
stress diagrams (FLSDs) [13]; and (3) ductile damage criteria, e.g. the Cockcroft and Latham 
criterion [14].  Part wall thinning is commonly used in industry to indicate probability of 
fracture [15]. Therefore, in this present study, the maximum wall thinning was selected as a 
fracture criterion.  However, this is an approximate criterion because the critical maximum 
thinning is known to be affected by strain paths.  From conducting several hydromechanical 
deep drawing simulations of AISI 1008 parabolic parts, the parts cracked at minimum major 
and minor strains around 0.39 and 0.09, respectively.  This strain condition is located just 
above the FLC (derived from M-K model [16]) on right hand side, which corresponds to part 
thinning of 39%.  The location of crack site is in the punch nose area and it is found to be in 
the same location as the part thinnest area as well, 39% as shown in Figure 5.  For the AISI 
1008 parabolic part, therefore, the thinning criterion limit (ThinLim) was chosen to be 39% as 
it corresponds with the part fracture predicted by the forming limit curve. 
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Figure 4 
The schematic of   
the HMD process    
of parabolic cup 
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3.2  Wrinkle criterion 
 
Two types of wrinkle can occur in the parabolic parts: a) flange wrinkle and b) sidewall 
wrinkle.  In finite element simulation, both wrinkle types can be indicated by certain 
geometry based rules or stress based rules.  Owning to its simplicity, a geometry 
based method was used to indicate and quantify the wrinkles in this work. 
 
 
3.2.1   Sidewall wrinkle 
 
Due to circumferential compressive stresses in the flange area, the blank tends to 
buckle and develops flange wrinkles. The flange wrinkle amplitude (FAM) can be 
inferred from the gap distance between blank holder surface and counter pot 
addendum surface as shown in Figure 6 [15]. To determine the critical FAM value, 
several forming simulations were conducted with various fixed gap distance.  The gaps 
were varied from 1.00, 1.01, 1.02, 1.03, 1.04, 1.05, 1.06, 1.07 and 1.08 mm 
respectively.  The results are shown in Figure 7. The flange wrinkle can be easily 
visualized on the parts if FAM is over 1.05, which agrees with Sheng et al. [15].  They 
used 5% of nominal sheet thickness to be flange wrinkle criteria in their study.  This 
critical wrinkle amplitude, however, would be different for different parts depending on 
part functionality.  In this parabolic part with HMD process, the flange wrinkle limit 
(FAMLim) was chosen as 1.05 mm. 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 5 
Comparison between 
formability and thinning 
in AISI 1008 parabolic 
cup of HMD process 
with crack criteria 
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3.2.2   Wrinkle criterion 
 
The parabolic shape makes this part family very susceptible to sidewall wrinkle 
formation.  During hydromechanical drawing of this part, large hydraulic pressures are 
needed to suppress these potential sidewall wrinkles.  The severity of these wrinkles 
can be quantified by normal distances from part wrinkle-affected nodes to the 
corresponding punch surfaces, which are referred to as the sidewall wrinkle parameter 
(SW) as shown in Figure 8.  The part is found to be defective when SW becomes 
larger than 5% of the initial part thickness, which is referred to as sidewall limit (SWLim).  
From the middle surface simulation model, the SWLim value in this study is 0.525.  

 

 

Figure 7 
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Figure 6 
Measurement of flange 
wrinkling amplitude 
(FAM) 
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Upon completion of a forming simulation, normal distances between the punch and 
formed part mesh are measured at every node as shown in Figure 9.  The longest 
distance is chosen to be the SW.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
IV.  Search Method 
 
In this section, a procedure to determine a feasible region is described. Analytical equations 
are first used to determine search space bounds. Then, a feasible region is obtained through 
2-D interval halving. A flowchart describing the optimization procedure of process 
parameters is given in Figure 10. 
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4.1    Search space bounds and process window 
 

The minimum pressure minp is the smallest pressure that will initiate sheet 

deformation and can be estimated by Eq.1. The maximum pressure maxp is the 

largest pressure beyond which the sheet will burst. Eq.2 determines this maximum 
pressure [17], see Figure 11. 

             
 

min

min

yield t
p

r
                         (1) 

 
 
 

 
Figure 10 
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where yield =the yield strength of the blank material (MPa), t =the wall thickness of 

the blank (mm) and rmin =the minimum radius of the part (mm). 

                                                        
 

max

min

UTS t
p

r
                              (2) 

where pmax maximum pressure to begin forming (MPa), UTS the ultimate strength 

of the blank material (MPa). 
 
The minimum BHF can be estimated using Eq. 3, which follows the idea that the BHF 
should be at least large enough to suppress the flange wrinkle throughout the process. 

                                     elgbu/BHpressure/BHsnBH FF)DD(pMinF  22
0

4


         (3) 

where np = the blank holder pressure, 0D = outgoing blank diameter, sD = sealing 

diameter, pressureBHF /  =  the vertical force from pressure acting on the blank holder and 

ebuBHF lg/ = the bulge force acting on the blank holder. 

The blank holder pressure np , which is the normal pressure between the sheet and 

the blank holder and between the sheet and the draw ring for axisymmetric 
components, one finds in Eq. 4 

                  UTS

punch

n
t

D
.)(.....p  










0

3
0

100
501002500020                  (4) 

where
punchD

D0
0  , punchD = punch diameter, 0t = outgoing blank thickness, UTS  = 

ultimate tensile strength, yield  = yield tensile strength. 

pressureBHF /  is the vertical force acting on the blank holder in the gap between the draw 

ring and sheet metal. It can determine in Eq. 5.  

                            )DD(pF BHscpressure/BH
22

4



          (5) 

where cp = working pressure, BHD = inner blank holder diameter. 

ebuBHF lg/  is the bulge force acting on the blank holder in the area between the inner 

diameter of the blank holder and the contact line. It can compute in Eq. 6. 

                                 / lgBH bu e BHF D t                (6) 

where )DD(
t

p
contactBH

c 
4

 and contactD = contact line diameter 

As for the maximum BHF, in this work, it is chosen to be the upper limit of the press 
capability which is 104 tons (26 tons for the quarter model used in this study). 

Finally, the search space bounds are found to be as follows: 

                 Li  P  Ui ;                 22.00 MPa  P  40.00 MPa 

Li  BHF  Ui ;   50,000 N  BHF  260,000 N 
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Figure 11           
Forming a bulge with 
hydromechanical deep 
drawing components 
with tapered shaped 
walls [17] 
 

 

 

 

 

 

 

 

 

 

 

After having established the search bounds, a process window (a diagram showing 
feasible and defective regions of all forming process conditions) was generated by 
separating the range of pressure and blank holder force into nine points and 
conducting FE analyses were conducted to investigate all combinations of BHF and 
pressure chosen. In this case, the total number of combinations between P and BHF is 
81 simulations.  A crack was determined by the crack criterion and plotted on to the 

process window with symbol.  The flange wrinkle (FW) was determined by the FW 

criterion and plotted on to the process window with  symbol.  The side wrinkle (SW) 

was determined by SW criterion and plotted on to the process window with  symbol.  

All the good part forming conditions were plotted on to process window with  symbol. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
  

The process window was constructed in a diagram as shown in Figure 12.  The left 
boundary shows a flange wrinkle limit caused by insufficient blank holder force.  The 
right boundary shows a crack limit caused by excessive blank holder force.  The upper 
boundary is another crack limit caused by excessive pressure. The lower boundary is a 
sidewall wrinkle limit affected by insufficient pressure. The region bounded by all the 

 
 
 

 
 

 
Figure 12                     
Process window of 
the parabolic cup 
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defective limits mentioned is the successful forming area so called “feasible region”.  
For this part, there are three ways to enter the feasible region; 1) from crack boundary, 
2) from flange wrinkle boundary and 3) from side wall wrinkle boundary.  Solutions 
accessed from the crack boundary will have thinning near the thin limit (39%).  The 
solutions accessed from the flange wrinkle boundary will have FAM near the FAM limit 
(1.05). The solutions accessed from the side wall wrinkle boundary will have SW near 
the SW limit (0.525) and the maximum thinning less than that accessed from the 
thinning boundary.  For example, from the process window, BHF as 76,250 N (for 
quarter) and pressure as 28.75 MPa would form a part with maximum thinning less 
than 34.43%,  FAM of 1.040 mm (no flange wrinkle), SW of 0.487 mm (no side wall 
wrinkle). 

  

4.2    Search method and neighborhood determination 
 

It is evident from the previous section that a numerous number of simulations has to be 
conducted to find the feasible region of the parts, thus expensive and time consuming.  
To reduce a number of simulations in order to find the feasible region of the parabolic 
cup forming, the 2-D interval halving method was applied. 

 
Neighborhoods were created by separation of the search space into four areas equally 
as described by Figure 13.  The center points of the four areas are evaluated through 
simulation runs.  Center points that are found to form a good part (i.e. acceptable 
wrinkles and thinning) are labeled as the feasible points. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 

In each search iteration, all the center points of the current neighborhoods are 
evaluated through the finite element analysis simulation.  A center point in the process 
parameter space is said to be a feasible point if it forms a part with the defect 
parameters; SW, FAM, and % thinning, under their limits; SWLim, FAMLim and ThinLim, 
respectively.  All the center points in each iteration are also compared to determine the 
one with the best quality to be the center of next search. 
 
2-D interval halving method was applied as the search method in this study.  In each 
iteration, the method searches for center point(s) in the current neighborhoods that is 
either of (a) feasible forming parameters or (b) able to be the best quality for the center 
point.  Then, these points determined are to be center points of new neighborhoods, 
which are split into four regions, to be evaluated in the next iteration.  These search 
iterations keep progressing until the forming parameters (blank holder force and 
pressure) of newly found points are only 5% different from the previous point. The 
search objective is to find process conditions with linear pressures and constant blank 
holder forces able to form a part with minimum thinning with no crack and no wrinkles. 
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Figure 13           
Schematic of 2-D 
interval halving search 
algorithm 
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Based on the knowledge obtained from the process window, Fig. 12, search direction 
should be approaching to the feasible region from the sidewall wrinkle boundary (SW 
limit line). 
 
The schematic to determine the center of the next search for the minimum thinning is 
shown in Figure 14.  The neighborhoods with cracks are considered firstly by using the 
thinning criterion as defined in Eq. 7. This is because if all neighborhoods pass the 
thinning criterion (to have the thin defect as zero or negative), the search will be 
entering the feasible region from FAM or SW limit, as suggested. 
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 If the neighborhoods pass both the thinning criterion and FAM criterion, as defined in 
Eq. 8, the search will proceed from the SW limit as a result the parts will tend to have 
minimum thinning.  In case of FAM is the final consideration, the search does not 
guarantee that the formed parts will have minimum thinning quality due to the fact that 
thinning values from of parts accessed from the FAM limit vary considerably.  
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 After having passed the cracking assessment and flange wrinkle assessment, the 
neighborhood can still exhibit sidewall wrinkle.  Hence, the SW is the final 
consideration. If all neighborhoods passed the thinning criterion, FAM criterion and SW 
criterion (defined in Eq. 9) the parts are obviously feasible. If the neighborhoods do not 
pass any of the criteria, the valued indexes (Eq. 7 to 9) of all defects are compared.  
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Figure 14           
Criteria to determine 
the centers of the next 
search procedure 
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The part that has minimum defect index is to be the center of the next search because 
it is nearest the boundary of feasible region. 
 

                                             
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






 
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Limi

SW

SWSW
DefectSW  (9) 

 
The 2-D interval halving method was applied as the search method in this study.  In 
each iteration, the method searches for the center point(s) in the current 
neighborhoods that is either of: (a) feasible forming parameters or (b) able to be the 
best quality for the center point (passed in Figure 14).  Then, these points are to be 
center points of new neighborhoods, which are split into four regions and evaluated in 
the next iteration.  The search iteration procedure keeps progressing until the forming 
parameters (pressure and blank holder force) of newly found points are only 5% 
different from the previous point. In this study, 9 feasible points were determined after 
16 neighborhoods (3 iterations) were evaluated. 
 
These feasible points form a bounded feasible region as shown in Figure 15.  Then, 
the optimization goal is only to determine the best process parameters within this 
feasible region (i.e. BHF and max. pressure) that minimize part thinning. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V. Response Surface Method (RSM) 
 
Quadratic polynomial form, Eq. 10 [18], of RSM was used to describe the relationship 
between the process parameters (BHF and maximum pressure) and resultant part maximum 
thinning percentage in Eq.11.  Using the least square polynomial approximation, the 
response surface over the feasible region, which has been determined through the 2-D 
interval halving method, is given by Eqs. (12-16).  
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Figure 15           
Feasible region 
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Subjected to: 

                               P   29.875                                                                             (13) 
 

                               BHF   63125                                (14) 
 

                               P   -1.28571E-04BHF + 41.366    (15) 
 

                               P   -5.17429E-05BHF + 31.232                    (16) 
 
The feasible values of BHF and pressure from 2-D interval halving method are input in Eq. 
12 to compute the thinning to be compared with the finite element simulation results. The 
errors are shown in table 2. The error percentages were lower than 0.25%; therefore, Eq. 12 
can calculate the thinning from BHF and pressure within the constraints from Eq. 13 - 16. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The approximated response surface is shown in Figure 16. Simplex method was applied to 
locate the optimal point, i.e. the lowest point of the surface. The optimal point is BHF of 
63,125 N and maximum pressure of 27.625 MPa for the quarter model, resulting in part 
maximum thinning of 33.21%. In the same condition the finite element method conducts the 
maximum thinning as 33.21% that is the same value from Eq. 12 and gives FAM as 1.046 
mm (no flange wrinkle), SW as 0.489 (no side wall wrinkle). The solutions were shown in 
Figure 17. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Table 2 
The thinning 
comparison between 
FEM and thinning 
equation on Eq.12 

BHF 
(N) 

Pressure 
(MPa) 

%Thinning 
(FEA) 

% Thinning 
(from Eq. 12) 

Error %Error 

102500 26.5 35.69 35.68386 0.006139 0.02% 

76250 28.75 34.43 34.51647 -0.08647 -0.25% 

128750 24.25 36.94 36.96649 -0.02649 -0.07% 

63125 27.625 33.21 33.21004 -4.2E-05 0.00% 

63125 29.875 34.02 33.97599 0.044006 0.13% 

89375 27.625 35.11 35.08576 0.024238 0.07% 

89375 29.875 36.14 36.14005 -4.7E-05 0.00% 

141875 23.125 37.65 37.65101 -0.00101 0.00% 

115625 25.375 36.35 36.31077 0.039231 0.11% 
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VI. Conclusions 
 
The response surface method coupled with the 2-D interval halving method was applied to 
optimize the necessary process parameters of the constant blank holder force and linear 
pressure profiles for the hydromechanical deep drawing (HMD) of parabolic shaped cup.  
The 2-D interval halving method was found to be well suited for feasible region search in a 
large search space such as the metal forming parameters.  The response surface method 
was used to construct a response surface of the process parameters in the feasible region 
and corresponding part quality.  The constructed surface was then used to determine the 
optimal point using the simplex optimization method.   Based on the finite element simulation 
results for hydromechanical deep drawing of the parabolic cup, the optimal blank holder 
force and maximum pressure of the quarter model were determined to be 63,125 N and 
27.625 MPa, which resulted in a good part with only 33.21% thinning just 16 simulations. 
 
This FEA based optimization approach developed and implemented in this work is believed 
to reduce lead time and effort spent in the HMD process parameter design significantly.  
Nevertheless, these predicted process parameters obtained need testing in real HMD 
experiments in the near future work, as to validate and improve the developed optimization 

approach. 

 
 
 
 
Figure 16                     
Part thinning response 
surface of two variables; 
BHF and P with 
constraints 
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Figure 17                     
Part thickness 
distribution formed by 
the optimized BHF 
and P from RSM 
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